1
|
Zhu Y, Wang G, Gu Y, Zhao W, Lu J, Zhu J, MacAskill CJ, Dupuis A, Griswold MA, Ma D, Flask CA, Yu X. 3D MR fingerprinting for dynamic contrast-enhanced imaging of whole mouse brain. Magn Reson Med 2025; 93:67-79. [PMID: 39164799 PMCID: PMC11518651 DOI: 10.1002/mrm.30253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE Quantitative MRI enables direct quantification of contrast agent concentrations in contrast-enhanced scans. However, the lengthy scan times required by conventional methods are inadequate for tracking contrast agent transport dynamically in mouse brain. We developed a 3D MR fingerprinting (MRF) method for simultaneous T1 and T2 mapping across the whole mouse brain with 4.3-min temporal resolution. METHOD We designed a 3D MRF sequence with variable acquisition segment lengths and magnetization preparations on a 9.4T preclinical MRI scanner. Model-based reconstruction approaches were employed to improve the accuracy and speed of MRF acquisition. The method's accuracy for T1 and T2 measurements was validated in vitro, while its repeatability of T1 and T2 measurements was evaluated in vivo (n = 3). The utility of the 3D MRF sequence for dynamic tracking of intracisternally infused gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) in the whole mouse brain was demonstrated (n = 5). RESULTS Phantom studies confirmed accurate T1 and T2 measurements by 3D MRF with an undersampling factor of up to 48. Dynamic contrast-enhanced MRF scans achieved a spatial resolution of 192 × 192 × 500 μm3 and a temporal resolution of 4.3 min, allowing for the analysis and comparison of dynamic changes in concentration and transport kinetics of intracisternally infused Gd-DTPA across brain regions. The sequence also enabled highly repeatable, high-resolution T1 and T2 mapping of the whole mouse brain (192 × 192 × 250 μm3) in 30 min. CONCLUSION We present the first dynamic and multi-parametric approach for quantitatively tracking contrast agent transport in the mouse brain using 3D MRF.
Collapse
Affiliation(s)
- Yuran Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Guanhua Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Walter Zhao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jiahao Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christina J. MacAskill
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew Dupuis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A. Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chris A. Flask
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Scholten H, Wech T, Köhler S, Smart SS, Boyle JH, Teh I, Köstler H, Schneider JE. On the correction of spiral trajectories on a preclinical MRI scanner with a high-performance gradient insert. NMR IN BIOMEDICINE 2024:e5249. [PMID: 39267310 DOI: 10.1002/nbm.5249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 09/17/2024]
Abstract
This study aimed to examine different trajectory correction methods for spiral imaging on a preclinical scanner with high-performance gradients with respect to image quality in a phantom and in vivo. The gold standard method of measuring the trajectories in a separate experiment is compared to an isotropic delay-correction, a correction using the gradient system transfer function (GSTF), and a combination of the two. Three different spiral trajectories, with 96, 16, and three interleaves, are considered. The best image quality is consistently achieved when determining the trajectory in a separate phantom measurement. However, especially for the spiral with 96 interleaves, the other correction methods lead to almost comparable results. Remaining imperfections in the corrected gradient waveforms and trajectories are attributed to asymmetrically occurring undulations in the actual, generated gradients, suggesting that the underlying assumption of linearity is violated. In conclusion, images of sufficient quality can be acquired on preclinical small-animal scanners using spiral k-space trajectories without the need to carry out separate trajectory measurements each time. Depending on the trajectory, a simple isotropic delay-correction or a GSTF-based correction can provide images of similar quality.
Collapse
Affiliation(s)
- Hannah Scholten
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Tobias Wech
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | | | - Sean S Smart
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Jordan H Boyle
- Faculty of Industrial Design Engineering, Delft University of Technology, Delft, The Netherlands
| | - Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen E Schneider
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Perera-Gonzalez M, MacAskill CJ, Clark HA, Flask CA. Fast quantitative MRI: Spiral Acquisition Matching-Based Algorithm (SAMBA) for Robust T 1 and T 2 Mapping. JOURNAL OF MAGNETIC RESONANCE OPEN 2024; 20:100157. [PMID: 39324129 PMCID: PMC11423800 DOI: 10.1016/j.jmro.2024.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Conventional diagnostic images from Magnetic Resonance Imaging (MRI) are typically qualitative and require subjective interpretation. Alternatively, quantitative MRI (qMRI) methods have become more prevalent in recent years with multiple clinical and preclinical imaging applications. Quantitative MRI studies on preclinical MRI scanners are being used to objectively assess tissues and pathologies in animal models and to evaluate new molecular MRI contrast agents. Low-field preclinical MRI scanners (≤3.0T) are particularly important in terms of evaluating these new MRI contrast agents at human MRI field strengths. Unfortunately, these low-field preclinical qMRI methods are challenged by long acquisition times, intrinsically low MRI signal levels, and susceptibility to motion artifacts. In this study, we present a new rapid qMRI method for a preclinical 3.0T MRI scanner that combines a Spiral Acquisition with a Matching-Based Algorithm (SAMBA) to rapidly and quantitatively evaluate MRI contrast agents. In this initial development, we compared SAMBA with gold-standard Spin Echo MRI methods using Least Squares Fitting (SELSF) in vitro phantoms and demonstrated shorter scan times without compromising measurement accuracy or repeatability. These initial results will pave the way for future in vivo qMRI studies using state-of-the-art chemical probes.
Collapse
Affiliation(s)
| | | | - Heather A. Clark
- School of Biological and Health Systems Engineering, Arizona State University, Tempe AZ, USA
| | - Chris A. Flask
- Department of Radiology, Case Western Reserve University, Cleveland OH, USA
- Departments of Biomedical Engineering and Pediatrics, Case Western Reserve University, Cleveland OH, USA
| |
Collapse
|
4
|
Zhu Y, Wang G, Gu Y, Zhao W, Lu J, Zhu J, MacAskill CJ, Dupuis A, Griswold MA, Ma D, Flask CA, Yu X. 3D MR Fingerprinting for Dynamic Contrast-Enhanced Imaging of Whole Mouse Brain. ARXIV 2024:arXiv:2405.00513v2. [PMID: 38745701 PMCID: PMC11092875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Purpose Quantitative MRI enables direct quantification of contrast agent concentrations in contrast-enhanced scans. However, the lengthy scan times required by conventional methods are inadequate for tracking contrast agent transport dynamically in mouse brain. We developed a 3D MR fingerprinting (MRF) method for simultaneous T1 and T2 mapping across the whole mouse brain with 4.3-min temporal resolution. Method We designed a 3D MRF sequence with variable acquisition segment lengths and magnetization preparations on a 9.4T preclinical MRI scanner. Model-based reconstruction approaches were employed to improve the accuracy and speed of MRF acquisition. The method's accuracy for T1 and T2 measurements was validated in vitro, while its repeatability of T1 and T2 measurements was evaluated in vivo (n=3). The utility of the 3D MRF sequence for dynamic tracking of intracisternally infused Gd-DTPA in the whole mouse brain was demonstrated (n=5). Results Phantom studies confirmed accurate T1 and T2 measurements by 3D MRF with an undersampling factor up to 48. Dynamic contrast-enhanced (DCE) MRF scans achieved a spatial resolution of 192 ✕ 192 ✕ 500 μm3 and a temporal resolution of 4.3 min, allowing for the analysis and comparison of dynamic changes in concentration and transport kinetics of intracisternally infused Gd-DTPA across brain regions. The sequence also enabled highly repeatable, high-resolution T1 and T2 mapping of the whole mouse brain (192 ✕ 192 ✕ 250 μm3) in 30 min. Conclusion We present the first dynamic and multi-parametric approach for quantitatively tracking contrast agent transport in the mouse brain using 3D MRF.
Collapse
Affiliation(s)
- Yuran Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Guanhua Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Walter Zhao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jiahao Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christina J. MacAskill
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew Dupuis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A. Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chris A. Flask
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Lee YS, Choi MH, Lee YJ, Han D, Kim DH. Magnetic resonance fingerprinting in prostate cancer before and after contrast enhancement. Br J Radiol 2022; 95:20210479. [PMID: 34415785 PMCID: PMC8978224 DOI: 10.1259/bjr.20210479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To assess the apparent diffusion coefficient (ADC) values and the T1 and T2 values derived from nonenhanced (NE) and contrast-enhanced (CE) magnetic resonance fingerprinting (MRF) in the prostate gland and to evaluate differences in values among prostate cancer, the normal peripheral zone (PZ) and the normal transition zone (TZ). METHODS Fifty-seven patients (median age, 73 years; range, 48-86) with prostate cancer who underwent multiparametric MRI including NE and CE MRF were included in this study. T1 and T2 values were extracted from NE and CE MRF, respectively. Five quantitative values (the ADC, NE T1, NE T2, CE T1 and CE T2 values) were measured in three areas: prostate cancer, PZ and TZ. We compared the values among the three areas and evaluated the differences between NE MRF and CE MRF values. RESULTS ADC values and MRF-derived values were significantly higher in PZ than prostate cancer or TZ (p < 0.001). TZ had a significantly lower CE T1 but significantly higher values of the other variables than prostate cancer (p < 0.001). The T1 values in all three areas and the T2 values in prostate cancer and TZ were significantly lower on CE MRF than on NE MRF (p < 0.001). CONCLUSIONS Quantitative analysis of NE and CE MRI can be conducted by using the MRF technique. The ADC value and the T1 and T2 values from CE MRF and NE MRF were found to be significantly different between prostate cancer and normal prostate tissue. ADVANCES IN KNOWLEDGE The T1 and T2 values from contrast-enhanced MR fingerprinting are significantly different between prostate cancer and normal prostate tissue.
Collapse
Affiliation(s)
- Young Sub Lee
- Department of Hospital Pathology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Moon Hyung Choi
- Department of Radiology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Joon Lee
- Department of Radiology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dongyeob Han
- Siemens Healthineers Ltd., Seoul, Republic of Korea
| | - Dong-Hyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| |
Collapse
|
6
|
Malmberg MA, Odéen H, Parker DL. Effects of T 2 * on accuracy and precision of dynamic T 1 measurements using the single reference variable flip angle method - a simulation study. Med Phys 2022; 49:2396-2412. [PMID: 35066898 PMCID: PMC9007881 DOI: 10.1002/mp.15476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To study in simulation and in theory the accuracy and precision of dynamic T1 measurements obtained using the previously published single-reference variable flip angle (SR-VFA) technique, with a focus on the effects of dynamic changes in T2 * on the calculation. METHODS Monte Carlo simulations were performed over 1000 noisy iterations for the VFA method, the SR-VFA method, and a proposed method, SR-VFA with a T2 * correction (SR-VFA-T2 *). Dynamic T1 estimates were calculated analytically for each method, with signals modeled by the steady-state spoiled gradient echo equation. The mean and standard deviation of these estimates were calculated and compared to truth, while varying repetition time (TR), baseline and dynamic T1 , echo time (TE), baseline and dynamic T2 *, flip angles, and the number of averages on baseline scans. Additionally, the variance of T1 in the SR-VFA and SR-VFA-T2 * methods was derived analytically based on the theory of propagation of errors. This equation was used to produce an inverse-variance weighted linear combination to improve T1 mapping precision in the SR-VFA-T2 * method. Flip angle sensitivity of dynamic T1 precision in the SR-VFA and SR-VFA-T2 * methods was also performed. RESULTS Substantial bias can be produced by the SR-VFA method when the ratio of the T2 * decay of the dynamic signal versus that of the baseline signals deviates from 1, with a 0.01 deviation leading to approximately a 1% bias in cases of high SNR and TR ≫ T1 . This bias can be corrected by estimating the baseline and dynamic T2 * values in this ratio via multi-echo measurements. The bias and precision of the SR-VFA-T2 * method, when normalized to scan time, is found to rival and sometimes improve upon the two flip angle VFA method when an inverse variance weighted linear combination is applied across its multi-echo T1 maps. The analytic variance equation presented is found to be accurate within 1% relative to the Monte Carlo simulations over a broad parameter space. Flip angle ranges that maximize SR-VFA and SR-VFA-T2 * T1 precision over a broad parameter space are given, and each is defined relative to TR and T1 . CONCLUSIONS Multi-echo SR-VFA-T2 * T1 mapping is found in simulation and theory to be a promising alternative to the VFA method that maintains speed of the SR-VFA method with accuracy and precision similar to the VFA method. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michael A Malmberg
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.,Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Wang C, Kim K, Yu X. Rapid In Vivo Quantification of Creatine Kinase Activity by Phosphorous-31 Magnetic Resonance Spectroscopic Fingerprinting ( 31P-MRSF). Methods Mol Biol 2022; 2393:597-609. [PMID: 34837201 DOI: 10.1007/978-1-0716-1803-5_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Creatine kinase (CK) plays an important role in tissue metabolism by providing a buffering mechanism for maintaining a constant supply of adenosine triphosphate (ATP) during metabolic perturbations. Phosphorous-31 magnetic resonance spectroscopy (31P-MRS) employing magnetization transfer techniques is the only noninvasive method for measuring the rate of ATP synthesis via creatine kinase. However, due to the low concentrations of phosphate metabolites, current 31P-MRS methods require long acquisition time to achieve adequate measurement accuracy. In this chapter, we present a new framework of data acquisition and parameter estimation, the 31P magnetic resonance spectroscopic fingerprinting (31P-MRSF) method, for rapid quantification of CK reaction rate constant in the hindlimb of small laboratory animals.
Collapse
Affiliation(s)
- Charlie Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Kihwan Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
8
|
Abstract
ABSTRACT In this review article, we present the latest developments in quantitative imaging biomarkers based on magnetic resonance imaging (MRI), applied to the diagnosis, assessment of response to therapy, and assessment of prognosis of Crohn disease. We also discuss the biomarkers' limitations and future prospects. We performed a literature search of clinical and translational research in Crohn disease using diffusion-weighted MRI (DWI-MRI), dynamic contrast-enhanced MRI (DCE-MRI), motility MRI, and magnetization transfer MRI, as well as emerging topics such as T1 mapping, radiomics, and artificial intelligence. These techniques are integrated in and combined with qualitative image assessment of magnetic resonance enterography (MRE) examinations. Quantitative MRI biomarkers add value to MRE qualitative assessment, achieving substantial diagnostic performance (area under receiver-operating curve = 0.8-0.95). The studies reviewed show that the combination of multiple MRI sequences in a multiparametric quantitative fashion provides rich information that may help for better diagnosis, assessment of severity, prognostication, and assessment of response to biological treatment. However, the addition of quantitative sequences to MRE examinations has potential drawbacks, including increased scan time and the need for further validation before being used in therapeutic drug trials as well as the clinic.
Collapse
|
9
|
Marriott A, Bowen C, Rioux J, Brewer K. Simultaneous quantification of SPIO and gadolinium contrast agents using MR fingerprinting. Magn Reson Imaging 2021; 79:121-129. [PMID: 33774098 DOI: 10.1016/j.mri.2021.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Develop a magnetic resonance fingerprinting (MRF) methodology with R2∗ quantification, intended for use with simultaneous contrast agent concentration mapping, particularly gadolinium (Gd) and iron labelled CD8+ T cells. METHODS Variable-density spiral SSFP MRF was used, modified to allow variable TE, and with an exp.(-TE·R2∗) dictionary modulation. In vitro phantoms containing SPIO labelled cells and/or gadolinium were used to validate parameter maps, probe undersampling capacity, and verify dual quantification capabilities. A C57BL/6 mouse was imaged using MRF to demonstrate acceptable in vivo resolution and signal at 8× undersampling necessary for a 25-min scan. RESULTS Strong agreement was found between conventional and MRF-derived values for R1, R2, and R2∗. Expanded MRF allowed quantification of iron-loaded CD8+ T cells. Results were robust to 8× undersampling and enabled recreation of relaxation profiles for both a Gd agent and iron labelled cells simultaneously. In vivo data demonstrated sufficient SNR in undersampled data for parameter mapping to visualise key features. CONCLUSION MRF can be expanded to include R1, R2, and R2∗ mapping required for simultaneous quantification of gadolinium and SPIO in vitro, allowing for potential implementation of a variety of future in vivo studies using dual MR contrast agents, including molecular imaging of labelled cells.
Collapse
Affiliation(s)
- Anna Marriott
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, NS, Canada; Dalhousie University, Halifax, NS, Canada
| | - Chris Bowen
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, NS, Canada; Dalhousie University, Halifax, NS, Canada
| | - James Rioux
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, NS, Canada; Dalhousie University, Halifax, NS, Canada
| | - Kimberly Brewer
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, NS, Canada; Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
10
|
Kim K, Gu Y, Wang CY, Clifford B, Huang S, Liang ZP, Yu X. Quantification of creatine kinase reaction rate in mouse hindlimb using phosphorus-31 magnetic resonance spectroscopic fingerprinting. NMR IN BIOMEDICINE 2021; 34:e4435. [PMID: 33111456 PMCID: PMC8324327 DOI: 10.1002/nbm.4435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/10/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
The goal of this study was to evaluate the accuracy, reproducibility, and efficiency of a 31 P magnetic resonance spectroscopic fingerprinting (31 P-MRSF) method for fast quantification of the forward rate constant of creatine kinase (CK) in mouse hindlimb. The 31 P-MRSF method acquired spectroscopic fingerprints using interleaved acquisition of phosphocreatine (PCr) and γATP with ramped flip angles and a saturation scheme sensitive to chemical exchange between PCr and γATP. Parameter estimation was performed by matching the acquired fingerprints to a dictionary of simulated fingerprints generated from the Bloch-McConnell model. The accuracy of 31 P-MRSF measurements was compared with the magnetization transfer (MT-MRS) method in mouse hindlimb at 9.4 T (n = 8). The reproducibility of 31 P-MRSF was also assessed by repeated measurements. Estimation of the CK rate constant using 31 P-MRSF (0.39 ± 0.03 s-1 ) showed a strong agreement with that using MT-MRS measurements (0.40 ± 0.05 s-1 ). Variations less than 10% were achieved with 2 min acquisition of 31 P-MRSF data. Application of the 31 P-MRSF method to mice subjected to an electrical stimulation protocol detected an increase in CK rate constant in response to stimulation-induced muscle contraction. These results demonstrated the potential of the 31 P-MRSF framework for rapid, accurate, and reproducible quantification of the chemical exchange rate of CK in vivo.
Collapse
Affiliation(s)
- Kihwan Kim
- Department of Biomedical Engineering and Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| | - Yuning Gu
- Department of Biomedical Engineering and Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| | - Charlie Y. Wang
- Department of Biomedical Engineering and Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| | - Bryan Clifford
- Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sherry Huang
- Department of Biomedical Engineering and Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| | - Zhi-Pei Liang
- Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Xin Yu
- Department of Biomedical Engineering and Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
11
|
Hsieh JJL, Svalbe I. Magnetic resonance fingerprinting: from evolution to clinical applications. J Med Radiat Sci 2020; 67:333-344. [PMID: 32596957 PMCID: PMC7754037 DOI: 10.1002/jmrs.413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
In 2013, Magnetic Resonance Fingerprinting (MRF) emerged as a method for fast, quantitative Magnetic Resonance Imaging. This paper reviews the current status of MRF up to early 2020 and aims to highlight the advantages MRF can offer medical imaging professionals. By acquiring scan data as pseudorandom samples, MRF elicits a unique signal evolution, or 'fingerprint', from each tissue type. It matches 'randomised' free induction decay acquisitions against pre-computed simulated tissue responses to generate a set of quantitative images of T1 , T2 and proton density (PD) with co-registered voxels, rather than as traditional relative T1 - and T2 -weighted images. MRF numeric pixel values retain accuracy and reproducibility between 2% and 8%. MRF acquisition is robust to strong undersampling of k-space. Scan sequences have been optimised to suppress sub-sampling artefacts, while artificial intelligence and machine learning techniques have been employed to increase matching speed and precision. MRF promises improved patient comfort with reduced scan times and fewer image artefacts. Quantitative MRF data could be used to define population-wide numeric biomarkers that classify normal versus diseased tissue. Certification of clinical centres for MRF scan repeatability would permit numeric comparison of sequential images for any individual patient and the pooling of multiple patient images across large, cross-site imaging studies. MRF has to date shown promising results in early clinical trials, demonstrating reliable differentiation between malignant and benign prostate conditions, and normal and sclerotic hippocampal tissue. MRF is now undergoing small-scale trials at several sites across the world; moving it closer to routine clinical application.
Collapse
Affiliation(s)
- Jean J. L. Hsieh
- Department of Diagnostic RadiologyTan Tock Seng HospitalSingaporeSingapore
- Department of Medical Imaging and Radiation SciencesMonash UniversityClaytonVictoriaAustralia
| | - Imants Svalbe
- School of Physics and AstronomyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
12
|
Sushentsev N, Kaggie JD, Buonincontri G, Schulte RF, Graves MJ, Gnanapragasam VJ, Barrett T. The effect of gadolinium-based contrast agent administration on magnetic resonance fingerprinting-based T 1 relaxometry in patients with prostate cancer. Sci Rep 2020; 10:20475. [PMID: 33235229 PMCID: PMC7686305 DOI: 10.1038/s41598-020-77331-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Magnetic resonance fingerprinting (MRF) is a rapidly developing fast quantitative mapping technique able to produce multiple property maps with reduced sensitivity to motion. MRF has shown promise in improving the diagnosis of clinically significant prostate cancer but requires further validation as part of a prostate multiparametric (mp) MRI protocol. mpMRI protocol mandates the inclusion of dynamic contrast enhanced (DCE) imaging, known for its significant T1 shortening effect. MRF could be used to measure both pre- and post-contrast T1 values, but its utility must be assessed. In this proof-of-concept study, we sought to evaluate the variation in MRF T1 measurements post gadolinium-based contrast agent (GBCA) injection and the utility of such T1 measurements to differentiate peripheral and transition zone tumours from normal prostatic tissue. We found that the T1 variation in all tissues increased considerably post-GBCA following the expected significant T1 shortening effect, compromising the ability of MRF T1 to identify transition zone lesions. We, therefore, recommend performing MRF T1 prior to DCE imaging to maintain its benefit for improving detection of both peripheral and transition zone lesions while reducing additional scanning time. Demonstrating the effect of GBCA on MRF T1 relaxometry in patients also paves the way for future clinical studies investigating the added value of post-GBCA MRF in PCa, including its dynamic analysis as in DCE-MRF.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Joshua D Kaggie
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | | | | | - Martin J Graves
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Vincent J Gnanapragasam
- Department of Urology, Addenbrooke's Hospital, Cambridge, UK
- Academic Urology Group, Department of Surgery and Oncology, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, University of Cambridge, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK.
- CamPARI Prostate Cancer Group, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Kennedy P, Bane O, Hectors SJ, Fischman A, Schiano T, Lewis S, Taouli B. Noninvasive imaging assessment of portal hypertension. Abdom Radiol (NY) 2020; 45:3473-3495. [PMID: 32926209 PMCID: PMC10124623 DOI: 10.1007/s00261-020-02729-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/16/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Portal hypertension (PH) is a spectrum of complications of chronic liver disease (CLD) and cirrhosis, with manifestations including ascites, gastroesophageal varices, splenomegaly, hypersplenism, hepatic hydrothorax, hepatorenal syndrome, hepatopulmonary syndrome and portopulmonary hypertension. PH can vary in severity and is diagnosed via invasive hepatic venous pressure gradient measurement (HVPG), which is considered the reference standard. Accurate diagnosis of PH and assessment of severity are highly relevant as patients with clinically significant portal hypertension (CSPH) are at higher risk for developing acute variceal bleeding and mortality. In this review, we discuss current and upcoming noninvasive imaging methods for diagnosis and assessment of severity of PH.
Collapse
|
14
|
Meng Y, Cheung J, Sun PZ. Improved MR fingerprinting for relaxation measurement in the presence of semisolid magnetization transfer. Magn Reson Med 2020; 84:727-737. [PMID: 31898839 PMCID: PMC7180097 DOI: 10.1002/mrm.28159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To characterize and minimize the magnetization transfer (MT) effect in MR fingerprinting (MRF) relaxation measurements with a 2-pool (2P) MT model of multiple tissue types. THEORY AND METHODS Semisolid MT effect in MRF was modeled using 2P Bloch-McConnell equations. The combinations of MT parameters of multiple tissues (white [WM] and gray matter [GM]) were used to build the MRF dictionary. Both 1-pool (1P) and 2P models were simulated to characterize the dependence on MT. Relaxations measured using MRF with spin-echo saturation-recovery (SR) or inversion-recovery preparations were compared with conventional SR-prepared T1 and multiple spin-echo T2 measurements. The simulations results were validated with phantoms and brain tissue samples. RESULTS The MRF signal was different from the 1P and 2P models. 1P MRF produced significantly (P < .05) underestimated T1 in WM (20-30%) and GM (7-10%), while 2P MRF measured consistent T1 and T2 in both WM and GM with conventional measurements (pairwise test P > .1; correlated P < .05). Simulations showed that SR-prepared MRF measuring T1 had much less errors against the variation of the macromolecular fraction. Compared with inversion-recovery preparation, SR-prepared MRF produced higher relaxation correlations (R > 0.9) with conventional measurements in both WM and GM across samples, suggesting that SR-prepared MRF was less sensitive to the compositive effect of multiple MT parameters variations. CONCLUSIONS 2P MRF using a combination of MT parameters for multiple tissue types can measure consistent relaxations with conventional methods. With the 2P models, SR-prepared MRF would provide an option for robust relaxation measurement under heterogeneous MT.
Collapse
Affiliation(s)
- Yuguang Meng
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jesse Cheung
- Department of Anthropology and Human Biology, Emory University, Atlanta, GA, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
15
|
Alambyan V, Pace J, Sukpornchairak P, Yu X, Alnimir H, Tatton R, Chitturu G, Yarlagadda A, Ramos-Estebanez C. Imaging Guidance for Therapeutic Delivery: The Dawn of Neuroenergetics. Neurotherapeutics 2020; 17:522-538. [PMID: 32240530 PMCID: PMC7283376 DOI: 10.1007/s13311-020-00843-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Modern neurocritical care relies on ancillary diagnostic testing in the form of multimodal monitoring to address acute changes in the neurological homeostasis. Much of our armamentarium rests upon physiological and biochemical surrogates of organ or regional level metabolic activity, of which a great deal is invested at the metabolic-hemodynamic-hydrodynamic interface to rectify the traditional intermediaries of glucose consumption. Despite best efforts to detect cellular neuroenergetics, current modalities cannot appreciate the intricate coupling between astrocytes and neurons. Invasive monitoring is not without surgical complication, and noninvasive strategies do not provide an adequate spatial or temporal resolution. Without knowledge of the brain's versatile behavior in specific metabolic states (glycolytic vs oxidative), clinical practice would lag behind laboratory empiricism. Noninvasive metabolic imaging represents a new hope in delineating cellular, nigh molecular level energy exchange to guide targeted management in a diverse array of neuropathology.
Collapse
Affiliation(s)
- Vilakshan Alambyan
- Department of Neurology, Albert Einstein Medical Center, Philadelphia, Pennsylvania, USA
| | - Jonathan Pace
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Persen Sukpornchairak
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hamza Alnimir
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ryan Tatton
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gautham Chitturu
- Department of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anisha Yarlagadda
- Department of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ciro Ramos-Estebanez
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
16
|
Anderson CE, Johansen M, Erokwu BO, Hu H, Gu Y, Zhang Y, Kavran M, Vincent J, Drumm ML, Griswold MA, Steinmetz NF, Li M, Clark H, Darrah RJ, Yu X, Brady-Kalnay SM, Flask CA. Dynamic, Simultaneous Concentration Mapping of Multiple MRI Contrast Agents with Dual Contrast - Magnetic Resonance Fingerprinting. Sci Rep 2019; 9:19888. [PMID: 31882792 PMCID: PMC6934650 DOI: 10.1038/s41598-019-56531-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022] Open
Abstract
Synchronous assessment of multiple MRI contrast agents in a single scanning session would provide a new "multi-color" imaging capability similar to fluorescence imaging but with high spatiotemporal resolution and unlimited imaging depth. This multi-agent MRI technology would enable a whole new class of basic science and clinical MRI experiments that simultaneously explore multiple physiologic/molecular events in vivo. Unfortunately, conventional MRI acquisition techniques are only capable of detecting and quantifying one paramagnetic MRI contrast agent at a time. Herein, the Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF) methodology was extended for in vivo application and evaluated by simultaneously and dynamically mapping the intra-tumoral concentration of two MRI contrast agents (Gd-BOPTA and Dy-DOTA-azide) in a mouse glioma model. Co-registered gadolinium and dysprosium concentration maps were generated with sub-millimeter spatial resolution and acquired dynamically with just over 2-minute temporal resolution. Mean tumor Gd and Dy concentration measurements from both single agent and dual agent DC-MRF studies demonstrated significant correlations with ex vivo mass spectrometry elemental analyses. This initial in vivo study demonstrates the potential for DC-MRF to provide a useful dual-agent MRI platform.
Collapse
Affiliation(s)
- Christian E Anderson
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Mette Johansen
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Bernadette O Erokwu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - He Hu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Yifan Zhang
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Kavran
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Jason Vincent
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Mark A Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole F Steinmetz
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, USA
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California-San Diego, La Jolla, CA, USA
| | - Ming Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Heather Clark
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Institute of Systems Bioanalysis and Chemical Imaging, Northeastern University, Boston, MA, USA
| | - Rebecca J Darrah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Francis Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Susann M Brady-Kalnay
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Chris A Flask
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
17
|
Sinigaglia M, Assi T, Besson FL, Ammari S, Edjlali M, Feltus W, Rozenblum-Beddok L, Zhao B, Schwartz LH, Mokrane FZ, Dercle L. Imaging-guided precision medicine in glioblastoma patients treated with immune checkpoint modulators: research trend and future directions in the field of imaging biomarkers and artificial intelligence. EJNMMI Res 2019; 9:78. [PMID: 31432278 PMCID: PMC6702257 DOI: 10.1186/s13550-019-0542-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Immunotherapies that employ immune checkpoint modulators (ICMs) have emerged as an effective treatment for a variety of solid cancers, as well as a paradigm shift in the treatment of cancers. Despite this breakthrough, the median survival time of glioblastoma patients has remained at about 2 years. Therefore, the safety and anti-cancer efficacy of combination therapies that include ICMs are being actively investigated. Because of the distinct mechanisms of ICMs, which restore the immune system’s anti-tumor capacity, unconventional immune-related phenomena are increasingly being reported in terms of tumor response and progression, as well as adverse events. Indeed, immunotherapy response assessments for neuro-oncology (iRANO) play a central role in guiding cancer patient management and define a “wait and see strategy” for patients treated with ICMs in monotherapy with progressive disease on MRI. This article deciphers emerging research trends to ameliorate four challenges unaddressed by the iRANO criteria: (1) patient selection, (2) identification of immune-related phenomena other than pseudoprogression (i.e., hyperprogression, the abscopal effect, immune-related adverse events), (3) response assessment in combination therapies including ICM, and (4) alternatives to MRI. To this end, our article provides a structured approach for standardized selection and reporting of imaging modalities to enable the use of precision medicine by deciphering the characteristics of the tumor and its immune environment. Emerging preclinical or clinical innovations are also discussed as future directions such as immune-specific targeting and implementation of artificial intelligence algorithms.
Collapse
Affiliation(s)
- Mathieu Sinigaglia
- Department of Imaging Nuclear Medicine, Institut Claudius Regaud-Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Tarek Assi
- Département de médecine oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Florent L Besson
- Department of Biophysics and Nuclear Medicine, Bicêtre University Hospital, Assistance Publique-Hôpitaux de Paris, 78 rue du Général Leclerc, 94275, Le Kremlin-Bicêtre, France.,IR4M-UMR 8081, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France
| | - Samy Ammari
- Département d'imagerie médicale, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Myriam Edjlali
- INSERM U894, Service d'imagerie morphologique et fonctionnelle, Hôpital Sainte-Anne, Université Paris Descartes, 1, rue Cabanis, 75014, Paris, France
| | - Whitney Feltus
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA
| | - Laura Rozenblum-Beddok
- Service de Médecine Nucléaire, AP-HP, Hôpital La Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Binsheng Zhao
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA
| | - Lawrence H Schwartz
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA
| | - Fatima-Zohra Mokrane
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA.,Département d'imagerie médicale, CHU Rangueil, Université Toulouse Paul Sabatier, Toulouse, France
| | - Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA. .,UMR1015, Institut Gustave Roussy, Université Paris Saclay, 94800, Villejuif, France.
| |
Collapse
|
18
|
Poorman ME, Martin MN, Ma D, McGivney DF, Gulani V, Griswold MA, Keenan KE. Magnetic resonance fingerprinting Part 1: Potential uses, current challenges, and recommendations. J Magn Reson Imaging 2019; 51:675-692. [PMID: 31264748 DOI: 10.1002/jmri.26836] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance fingerprinting (MRF) is a powerful quantitative MRI technique capable of acquiring multiple property maps simultaneously in a short timeframe. The MRF framework has been adapted to a wide variety of clinical applications, but faces challenges in technical development, and to date has only demonstrated repeatability and reproducibility in small studies. In this review, we discuss the current implementations of MRF and their use in a clinical setting. Based on this analysis, we highlight areas of need that must be addressed before MRF can be fully adopted into the clinic and make recommendations to the MRF community on standardization and validation strategies of MRF techniques. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:675-692.
Collapse
Affiliation(s)
- Megan E. Poorman
- Department of PhysicsUniversity of Colorado Boulder Boulder Colorado USA
- Physical Measurement LaboratoryNational Institute of Standards and Technology Boulder Colorado USA
| | - Michele N. Martin
- Physical Measurement LaboratoryNational Institute of Standards and Technology Boulder Colorado USA
| | - Dan Ma
- Department of RadiologyCase Western Reserve University Cleveland Ohio USA
| | - Debra F. McGivney
- Department of RadiologyCase Western Reserve University Cleveland Ohio USA
| | - Vikas Gulani
- Department of RadiologyCase Western Reserve University Cleveland Ohio USA
| | - Mark A. Griswold
- Department of RadiologyCase Western Reserve University Cleveland Ohio USA
| | - Kathryn E. Keenan
- Physical Measurement LaboratoryNational Institute of Standards and Technology Boulder Colorado USA
| |
Collapse
|