1
|
Tensaouti F, Courbière N, Cabarrou B, Pollidoro L, Roques M, Sévely A, Péran P, Baudou E, Laprie A. Metabolic Profile of Cerebellum in Posterior Fossa Tumor Survivors: Correlation With Memory Impairment. Clin Oncol (R Coll Radiol) 2024; 36:e439-e447. [PMID: 39107208 DOI: 10.1016/j.clon.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/16/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024]
Abstract
AIMS The cerebellum is a key structure in working and procedural memory. The aim of the present prospective exploratory study was to investigate, the metabolic characteristics of the cerebellum in posterior fossa tumor (PFT) survivors using 3D proton magnetic resonance spectroscopy imaging (3D MRSI), to determine whether metabolites could be useful biomarkers of memory impairment. MATERIALS AND METHODS Sixty participants were included in the IMPALA study, divided into three groups: 22 irradiated PFT, 17 nonirradiated PFT, and 21 healthy controls matched with irradiated PFT for age, sex, and handedness. PFT survivors were treated at least 5 years ago, either by surgery or a combination of surgery, chemotherapy, and radiotherapy. All participants underwent working and procedural memory tests and multimodal MRI including a 3D MRSI sequence. N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and lactate (Lac) metabolite values were extracted from the cerebellum for comparisons between groups, correlations with neurocognitive test scores, and radiotherapy doses. RESULTS Median (range) age at neurocognitive tests was 18 (7-26) years. Median Cho, Cr, NAA, and Lac values, and the ratio of NAA to the sum of metabolites were significantly lower for PFT survivors than for healthy controls (p < 0.05). Scores on working and procedural memory tests were significantly lower for PFT survivors (p < 0.004) and correlated with median and maximum Cho and NAA values (0.28 CONCLUSION Results revealed changes in cerebellar metabolic values in PFT survivors that were closely correlated with memory deficits, suggesting that some metabolites could be used as markers of cognitive decline, but this will require validation on a larger sample size.
Collapse
Affiliation(s)
- F Tensaouti
- Radiation Oncology Department, Oncopole Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.
| | - N Courbière
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - B Cabarrou
- Biostatistics & Health Data Science Unit, Oncopole Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopôle, Toulouse, France
| | - L Pollidoro
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - M Roques
- Radiology Department, Toulouse University Hospital, Toulouse, France
| | - A Sévely
- Radiology Department, Toulouse University Hospital, Toulouse, France
| | - P Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - E Baudou
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - A Laprie
- Radiation Oncology Department, Oncopole Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| |
Collapse
|
2
|
Simicic D, Rackayova V, Xin L, Tkáč I, Borbath T, Starcuk Z, Starcukova J, Lanz B, Cudalbu C. In vivo macromolecule signals in rat brain 1 H-MR spectra at 9.4T: Parametrization, spline baseline estimation, and T 2 relaxation times. Magn Reson Med 2021; 86:2384-2401. [PMID: 34268821 PMCID: PMC8596437 DOI: 10.1002/mrm.28910] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Reliable detection and fitting of macromolecules (MM) are crucial for accurate quantification of brain short-echo time (TE) 1 H-MR spectra. An experimentally acquired single MM spectrum is commonly used. Higher spectral resolution at ultra-high field (UHF) led to increased interest in using a parametrized MM spectrum together with flexible spline baselines to address unpredicted spectroscopic components. Herein, we aimed to: (1) implement an advanced methodological approach for post-processing, fitting, and parametrization of 9.4T rat brain MM spectra; (2) assess the concomitant impact of the LCModel baseline and MM model (ie, single vs parametrized); and (3) estimate the apparent T2 relaxation times for seven MM components. METHODS A single inversion recovery sequence combined with advanced AMARES prior knowledge was used to eliminate the metabolite residuals, fit, and parametrize 10 MM components directly from 9.4T rat brain in vivo 1 H-MR spectra at different TEs. Monte Carlo simulations were also used to assess the concomitant influence of parametrized MM and DKNTMN parameter in LCModel. RESULTS A very stiff baseline (DKNTMN ≥ 1 ppm) in combination with a single MM spectrum led to deviations in metabolite concentrations. For some metabolites the parametrized MM showed deviations from the ground truth for all DKNTMN values. Adding prior knowledge on parametrized MM improved MM and metabolite quantification. The apparent T2 ranged between 12 and 24 ms for seven MM peaks. CONCLUSION Moderate flexibility in the spline baseline was required for reliable quantification of real/experimental spectra based on in vivo and Monte Carlo data. Prior knowledge on parametrized MM improved MM and metabolite quantification.
Collapse
Affiliation(s)
- Dunja Simicic
- CIBM Center for Biomedical Imaging, Switzerland.,Animal Imaging and Technology, EPFL, Lausanne, Switzerland.,Laboratory for functional and metabolic imaging (LIFMET), EPFL, Lausanne, Switzerland
| | - Veronika Rackayova
- CIBM Center for Biomedical Imaging, Switzerland.,Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Switzerland.,Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Ivan Tkáč
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tamas Borbath
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Zenon Starcuk
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Starcukova
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
| | - Bernard Lanz
- Laboratory for functional and metabolic imaging (LIFMET), EPFL, Lausanne, Switzerland
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Switzerland.,Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| |
Collapse
|
3
|
Cudalbu C, Behar KL, Bhattacharyya PK, Bogner W, Borbath T, de Graaf RA, Gruetter R, Henning A, Juchem C, Kreis R, Lee P, Lei H, Marjańska M, Mekle R, Murali-Manohar S, Považan M, Rackayová V, Simicic D, Slotboom J, Soher BJ, Starčuk Z, Starčuková J, Tkáč I, Williams S, Wilson M, Wright AM, Xin L, Mlynárik V. Contribution of macromolecules to brain 1 H MR spectra: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4393. [PMID: 33236818 PMCID: PMC10072289 DOI: 10.1002/nbm.4393] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 05/08/2023]
Abstract
Proton MR spectra of the brain, especially those measured at short and intermediate echo times, contain signals from mobile macromolecules (MM). A description of the main MM is provided in this consensus paper. These broad peaks of MM underlie the narrower peaks of metabolites and often complicate their quantification but they also may have potential importance as biomarkers in specific diseases. Thus, separation of broad MM signals from low molecular weight metabolites enables accurate determination of metabolite concentrations and is of primary interest in many studies. Other studies attempt to understand the origin of the MM spectrum, to decompose it into individual spectral regions or peaks and to use the components of the MM spectrum as markers of various physiological or pathological conditions in biomedical research or clinical practice. The aim of this consensus paper is to provide an overview and some recommendations on how to handle the MM signals in different types of studies together with a list of open issues in the field, which are all summarized at the end of the paper.
Collapse
Affiliation(s)
- Cristina Cudalbu
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland
| | - Kevin L Behar
- Magnetic Resonance Research Center and Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | | | - Wolfgang Bogner
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Tamas Borbath
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- Faculty of Science, Eberhard-Karls Universität Tübingen, Tübingen, Germany
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anke Henning
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, Germany
| | - Christoph Juchem
- Departments of Biomedical Engineering and Radiology, Columbia University, New York, USA
| | - Roland Kreis
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| | - Phil Lee
- Department of Radiology, Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hongxia Lei
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ralf Mekle
- Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Saipavitra Murali-Manohar
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- Faculty of Science, Eberhard-Karls Universität Tübingen, Tübingen, Germany
| | - Michal Považan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Veronika Rackayová
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dunja Simicic
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johannes Slotboom
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern and Inselspital, Bern, Switzerland
| | - Brian J Soher
- Center for Advanced MR Development, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Zenon Starčuk
- Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| | - Jana Starčuková
- Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| | - Ivan Tkáč
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen Williams
- Division of Informatics, Imaging and Data Science, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Andrew Martin Wright
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls Universität Tübingen, Tübingen, Germany
| | - Lijing Xin
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland
| | - Vladimír Mlynárik
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| |
Collapse
|
4
|
Julià-Sapé M, Candiota AP, Arús C. Cancer metabolism in a snapshot: MRS(I). NMR IN BIOMEDICINE 2019; 32:e4054. [PMID: 30633389 DOI: 10.1002/nbm.4054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The contribution of MRS(I) to the in vivo evaluation of cancer-metabolism-derived metrics, mostly since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly glycolytic, is now being sampled by 13 C magnetic resonance spectroscopic imaging (MRSI) following the injection of hyperpolarized [1-13 C] pyruvate (Pyr). Hot-spots of, mostly, increased lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. Therapy response is usually signalled by decreased Lac/Pyr 13 C-labelled ratio with respect to untreated or non-responding tumour. For therapeutic agents inducing tumour hypoxia, the 13 C-labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. 31 P MRSI may sample intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites (such as 2-hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such as total choline to N-acetylaspartate (plain ratio or CNI index)) or the whole 1 H MRSI(I) pattern through pattern recognition analysis. These approaches have been applied to address different questions such as tumour subtype definition, following/predicting the response to therapy or defining better resection or radiosurgery limits.
Collapse
Affiliation(s)
- Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Pedrosa de Barros N, Meier R, Pletscher M, Stettler S, Knecht U, Reyes M, Gralla J, Wiest R, Slotboom J. Analysis of metabolic abnormalities in high-grade glioma using MRSI and convex NMF. NMR IN BIOMEDICINE 2019; 32:e4109. [PMID: 31131943 DOI: 10.1002/nbm.4109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Clinical use of MRSI is limited by the level of experience required to properly translate MRSI examinations into relevant clinical information. To solve this, several methods have been proposed to automatically recognize a predefined set of reference metabolic patterns. Given the variety of metabolic patterns seen in glioma patients, the decision on the optimal number of patterns that need to be used to describe the data is not trivial. In this paper, we propose a novel framework to (1) separate healthy from abnormal metabolic patterns and (2) retrieve an optimal number of reference patterns describing the most important types of abnormality. Using 41 MRSI examinations (1.5 T, PRESS, TE 135 ms) from 22 glioma patients, four different patterns describing different types of abnormality were detected: edema, healthy without Glx, active tumor and necrosis. The identified patterns were then evaluated on 17 MRSI examinations from nine different glioma patients. The results were compared against BraTumIA, an automatic segmentation method trained to identify different tumor compartments on structural MRI data. Finally, the ability to predict future contrast enhancement using the proposed approach was also evaluated.
Collapse
Affiliation(s)
- Nuno Pedrosa de Barros
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Raphael Meier
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Martin Pletscher
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Samuel Stettler
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Urspeter Knecht
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Mauricio Reyes
- Institute for Surgical Technology and Biomechanics (ISTB), University of Bern, Bern, Switzerland
| | - Jan Gralla
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Johannes Slotboom
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| |
Collapse
|