1
|
Güler S, Povaz̆an M, Zhurbenko V, Zivkovic I. An 8Tx/32Rx head-neck coil at 7T by combining 2Tx/32Rx Nova coil with 6Tx shielded coaxial cable elements. Magn Reson Med 2025; 93:864-872. [PMID: 39415491 PMCID: PMC11604854 DOI: 10.1002/mrm.30297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
PURPOSE Standard head coils used at 7T MRI suffer from high signal loss at lower brain regions and neck. This study aimed to increase the field of view (FOV) of a birdcage coil to image the lower brain regions and neck with a straightforward approach of using add-on transmit shielded coaxial cable coil (SCC) elements. METHODS A new head-neck coil was modeled as a combination of the 2Tx/32Rx Nova head coil and 6Tx SCC elements. The add-on transmit SCC elements have been produced. The full wave electromagnetic simulations were performed to analyze the coil geometry and estimate the local specific absorption ratio (SAR). TheB 1 + $$ {\mathrm{B}}_1^{+} $$ field maps and structural images were acquired in a phantom and in vivo on a 7T scanner. RESULTS The computed SAR histogram revealed a peakSAR 10 g $$ {\mathrm{SAR}}_{10g} $$ of 4.08 W/kg. The simulated and measuredB 1 + $$ {\mathrm{B}}_1^{+} $$ maps are in good agreement. The manufactured coil's S-parameters are below- $$ - $$ 10 dB. TheB 1 + $$ {\mathrm{B}}_1^{+} $$ field measurements on a subject presented the increase in the FOV. The T1-weighted structural images of three subjects acquired with the head-neck coil showed increased coverage compared to the head coil only. CONCLUSION Combining the 2Tx/32Rx Nova head coil and 6Tx SCC elements allowed imaging of the whole brain with an increased FOV down to the C4 spine. The coil stayed fully functional when different subjects were scanned. We conclude that the SCC transmit-only coils are a robust adjunct to conventional coil designs and can meaningfully enhance and expand their field of view.
Collapse
Affiliation(s)
- Sadri Güler
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital Amager and HvidovreCopenhagenDenmark
- Section for Magnetic Resonance, DTU Health TechTechnical University of DenmarkKgs. LyngbyDenmark
| | - Michal Povaz̆an
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital Amager and HvidovreCopenhagenDenmark
| | - Vitaliy Zhurbenko
- Department of Space Research and TechnologyTechnical University of DenmarkKgs. LyngbyDenmark
| | - Irena Zivkovic
- Electrical Engineering DepartmentTechnical University of EindhovenEindhovenThe Netherlands
| |
Collapse
|
2
|
Sun Y, Wang M, Du J, Wang W, Yang G, Wang W, Ren Q. 16-channel sleeve antenna array based on passive decoupling method at 14 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 369:107796. [PMID: 39577232 DOI: 10.1016/j.jmr.2024.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
At ultra-high fields, especially at 14 T, head coil arrays face significant challenges with coupling between elements. Although passive decoupling methods can reduce this coupling, the decoupling elements can cause destructive interference to the RF field of the head array, thus reducing the B1+ efficiency. The B1+ loss due to this effect can be even higher than that due to inter-element coupling. In this study, we develop a novel passive decoupling method to improve the performance of head coil arrays at 14 T. Specifically, passive dipole antennas were utilized to decouple the 16-channel sleeve antenna array, with their positioning optimized to minimize destructive interference with the array's RF field by increasing their distance from the active antennas. We used electromagnetic simulations to optimize the position of the passive dipoles to obtain the best performance of the array. In addition, we introduced a 16-channel dipole antenna array to compare the array performance when evaluating the sleeve antenna array performance using a human body model. We also constructed the optimized sleeve antenna array and measured its S-parameters to verify the effectiveness of the decoupling strategy. Our results show that the improved passive decoupling method can well reduce the destructive interference of the decoupling elements to the RF field. The sleeve antenna array developed under this method exhibits higher B1+ efficiency and better transmission performance.
Collapse
Affiliation(s)
- Youheng Sun
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Miutian Wang
- School of Electronics, Peking University, Beijing, 100871, China.
| | - Jianjun Du
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Wentao Wang
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Gang Yang
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Weimin Wang
- School of Electronics, Peking University, Beijing, 100871, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Vliem J, Xiao Y, Wenz D, Xin L, Teeuwise W, Ruytenberg T, Webb A, Zivkovic I. Twisted pair transmission line coil - a flexible, self-decoupled and robust element for 7 T MRI. Magn Reson Imaging 2024; 108:146-160. [PMID: 38364973 DOI: 10.1016/j.mri.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE This study evaluates the performance of a twisted pair transmission line coil as a transceive element for 7 T MRI in terms of physical flexibility, robustness to shape deformations, and interelement decoupling. METHODS Each coil element was created by shaping a twisted pair of wires into a circle. One wire was interrupted at the top, while the other was interrupted at the bottom, and connected to the matching circuit. Electromagnetic simulations were conducted to determine the optimal number of twists per length (in terms of B₁+ field efficiency, SAR efficiency, sensitivity to elongation, and interelement decoupling properties) and for investigating the fundamental operational principle of the coil through fields streamline visualisation. A comparison between the twisted pair coil and a conventional loop coil in terms of B₁+ fields, maxSAR₁₀g, and stability of S₁₁ when the coil was deformed was performed. Experimentally measured interelement coupling between individual elements of multichannel arrays was also investigated. RESULTS Increasing the number of twists per length resulted in a more physically robust coil. Poynting vector streamline visualisation showed that the twisted pair coil concentrated most of the energy in the near field. The twisted pair coil exhibited comparable B₁+ fields and improved maxSAR₁₀g to the conventional coil but demonstrated exceptional stability with respect to coil deformation and a strong self-decoupling nature when placed in an array configuration. DISCUSSION The findings highlight the robustness of the twisted pair coil, showcasing its stability under shape variations. This coil holds great potential as a flexible RF coil for various imaging applications using multiple-element arrays, benefiting from its inherent decoupling.
Collapse
Affiliation(s)
- Jules Vliem
- Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands
| | - Ying Xiao
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Animal Imaging and Technology, Lausanne, Switzerland
| | - Daniel Wenz
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Animal Imaging and Technology, Lausanne, Switzerland
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Animal Imaging and Technology, Lausanne, Switzerland
| | - Wouter Teeuwise
- C.J. Gorter MRI Centre, Department of Radiology, Leiden University Medical Center Leiden, the Netherlands
| | - Thomas Ruytenberg
- C.J. Gorter MRI Centre, Department of Radiology, Leiden University Medical Center Leiden, the Netherlands
| | - Andrew Webb
- C.J. Gorter MRI Centre, Department of Radiology, Leiden University Medical Center Leiden, the Netherlands
| | - Irena Zivkovic
- Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands.
| |
Collapse
|
4
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
5
|
Rios NL, Gilbert KM, Papp D, Cereza G, Foias A, Rangaprakash D, May MW, Guerin B, Wald LL, Keil B, Stockmann JP, Barry RL, Cohen-Adad J. An 8-channel Tx dipole and 20-channel Rx loop coil array for MRI of the cervical spinal cord at 7 Tesla. NMR IN BIOMEDICINE 2023; 36:e5002. [PMID: 37439129 PMCID: PMC10733907 DOI: 10.1002/nbm.5002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/10/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency (RF) coil solutions for ultrahigh field imaging; however, very few commercial and research 7-T RF coils currently exist for the spinal cord, and in particular, those with parallel transmission (pTx) capabilities. This work presents the design, testing, and validation of a pTx/Rx coil for the human neck and cervical/upper thoracic spinal cord. The pTx portion is composed of eight dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made up of twenty semiadaptable overlapping loops to produce high signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while also being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B1 + uniformity, power efficiency, and/or specific absorption rate efficiency. B1 + homogeneity, SNR, and g-factor were evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.
Collapse
Affiliation(s)
- Nibardo Lopez Rios
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - D. Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Markus W. May
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps University of Marburg, Marburg, Germany
| | - Jason P. Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Mila – Quebec AI Institute, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Nikulin AV, Bosch D, Solomakha GA, Glang F, Scheffler K, Avdievich NI. Double-row 16-element folded-end dipole transceiver array for 3D RF shimming of the whole human brain at 9.4 T. NMR IN BIOMEDICINE 2023; 36:e4981. [PMID: 37173759 DOI: 10.1002/nbm.4981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Homogeneity and longitudinal coverage of transmit (Tx) human head RF coils at ultrahigh field (UHF, ≥7 T) can be improved by 3D RF shimming, which requires using multi-row Tx arrays. Examples of 3D RF shimming using double-row UHF loop transceiver (TxRx) and Tx arrays have been described previously. Dipole antennas provide unique simplicity and robustness while offering comparable Tx efficiency and signal-to-noise ratio to conventional loop designs. Single-row Tx and TxRx human head UHF dipole arrays have been previously described by multiple groups. Recently, we developed a novel type of dipole antenna, a folded-end dipole, and presented single-row eight-element array prototypes for human head imaging at 7 and 9.4 T. These studies have shown that the novel antenna design can improve the longitudinal coverage and minimize peak local specific absorption rate (SAR) as compared with common unfolded dipoles. In this work, we developed, constructed, and evaluated a 16-element double-row TxRx folded-end dipole array for human head imaging at 9.4 T. To minimize cross-talk between neighboring dipoles located in different rows, we used transformer decoupling, which decreased coupling to a level below -20 dB. The developed array design was demonstrated to be capable of 3D static RF shimming and can be potentially used for dynamic shimming using parallel transmission. For optimal phase shifts between the rows, the array provides 11% higher SAR efficiency and 18% higher homogeneity than a folded-end dipole single-row array of the same length. The design also offers a substantially simpler and more robust alternative to the common double-row loop array with about 10% higher SAR efficiency and better longitudinal coverage.
Collapse
Affiliation(s)
- Anton V Nikulin
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Center of Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dario Bosch
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Georgiy A Solomakha
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Felix Glang
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
7
|
Wenz D, Dardano T. Multi-feed, loop-dipole combined dielectric resonator antenna arrays for human brain MRI at 7 T. MAGMA (NEW YORK, N.Y.) 2023; 36:227-243. [PMID: 37017828 PMCID: PMC10140138 DOI: 10.1007/s10334-023-01078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVE To determine whether a multi-feed, loop-dipole combined approach can be used to improve performance of rectangular dielectric resonator antenna (DRA) arrays human brain for MRI at 7 T. MATERIALS AND METHODS Electromagnetic field simulations in a spherical phantom and human voxel model "Duke" were conducted for different rectangular DRA geometries and dielectric constants εr. Three types of RF feed were investigated: loop-only, dipole-only and loop-dipole. Additionally, multi-channel array configurations up to 24-channels were simulated. RESULTS The loop-only coupling scheme provided the highest B1+ and SAR efficiency, while the loop-dipole showed the highest SNR in the center of a spherical phantom for both single- and multi-channel configurations. For Duke, 16-channel arrays outperformed an 8-channel bow-tie array with greater B1+ efficiency (1.48- to 1.54-fold), SAR efficiency (1.03- to 1.23-fold) and SNR (1.63- to 1.78). The multi-feed, loop-dipole combined approach enabled the number of channels increase to 24 with 3 channels per block. DISCUSSION This work provides novel insights into the rectangular DRA design for high field MRI and shows that the loop-only feed should be used instead of the dipole-only in transmit mode to achieve the highest B1+ and SAR efficiency, while the loop-dipole should be the best suited in receive mode to obtain the highest SNR in spherical samples of similar size and electrical properties as the human head.
Collapse
Affiliation(s)
- Daniel Wenz
- CIBM Center for Biomedical Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Animal Imaging and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Thomas Dardano
- CIBM Center for Biomedical Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Animal Imaging and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
8
|
Harrevelt SD, Roos THM, Klomp DWJ, Steensma BR, Raaijmakers AJE. Simulation-based evaluation of SAR and flip angle homogeneity for five transmit head arrays at 14 T. MAGMA (NEW YORK, N.Y.) 2023; 36:245-255. [PMID: 37000320 PMCID: PMC10140109 DOI: 10.1007/s10334-023-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Various research sites are pursuing 14 T MRI systems. However, both local SAR and RF transmit field inhomogeneity will increase. The aim of this simulation study is to investigate the trade-offs between peak local SAR and flip angle uniformity for five transmit coil array designs at 14 T in comparison to 7 T. METHODS Investigated coil array designs are: 8 dipole antennas (8D), 16 dipole antennas (16D), 8 loop coils (8D), 16 loop coils (16L), 8 dipoles/8 loop coils (8D8L) and for reference 8 dipoles at 7 T. Both RF shimming and kT-points were investigated by plotting L-curves of peak SAR levels vs flip angle homogeneity. RESULTS For RF shimming, the 16L array performs best. For kT-points, superior flip angle homogeneity is achieved at the expense of more power deposition, and the dipole arrays outperform the loop coil arrays. DISCUSSION AND CONCLUSION For most arrays and regular imaging, the constraint on head SAR is reached before constraints on peak local SAR are violated. Furthermore, the different drive vectors in kT-points alleviate strong peaks in local SAR. Flip angle inhomogeneity can be alleviated by kT-points at the expense of larger power deposition. For kT-points, the dipole arrays seem to outperform loop coil arrays.
Collapse
Affiliation(s)
- Seb D Harrevelt
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Thomas H M Roos
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander J E Raaijmakers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
9
|
Rios NL, Gilbert KM, Papp D, Cereza G, Foias A, Rangaprakash D, May MW, Guerin B, Wald LL, Keil B, Stockmann JP, Barry RL, Cohen-Adad J. 8-channel Tx dipole and 20-channel Rx loop coil array for MRI of the cervical spinal cord at 7 Tesla. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527664. [PMID: 36798276 PMCID: PMC9934596 DOI: 10.1101/2023.02.08.527664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency coil solutions for ultra-high field imaging; however, very few commercial and research 7 Tesla radiofrequency coils currently exist for the spinal cord, and in particular those with parallel transmit capabilities. This work presents the design, testing and validation of a pTx/Rx coil for the human neck and cervical/upper-thoracic spinal cord. The pTx portion is composed of 8 dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made of 20 semi-adaptable overlapping loops to produce high Signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B 1 + uniformity, power efficiency and/or specific absorption rate (SAR) efficiency. B 1 + homogeneity, SNR and g-factor was evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper-thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.
Collapse
Affiliation(s)
- Nibardo Lopez Rios
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - D. Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Markus W. May
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps University of Marburg, Marburg, Germany
| | - Jason P. Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Mila – Quebec AI Institute, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Lu M, Zhang X, Chai S, Yan X. Improving Specific Absorption Rate Efficiency and Coil Robustness of Self-Decoupled Transmit/Receive Coils by Elevating Feed and Mode Conductors. SENSORS (BASEL, SWITZERLAND) 2023; 23:1800. [PMID: 36850397 PMCID: PMC9960379 DOI: 10.3390/s23041800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Self-decoupling technology was recently proposed for radio frequency (RF) coil array designs. Here, we propose a novel geometry to reduce the peak local specific absorption rate (SAR) and improve the robustness of the self-decoupled coil. We first demonstrate that B1 is determined by the arm conductors, while the maximum E-field and local SAR are determined by the feed conductor in a self-decoupled coil. Then, we investigate how the B1, E-field, local SAR, SAR efficiency, and coil robustness change with respect to different lift-off distances for feed and mode conductors. Next, the simulation of self-decoupled coils with optimal lift-off distances on a realistic human body is performed. Finally, self-decoupled coils with optimal lift-off distances are fabricated and tested on the workbench and MRI experiments. The peak 10 g-averaged SAR of the self-decoupled coil on the human body can be reduced by 34% by elevating the feed conductor. Less coil mismatching and less resonant frequency shift with respect to loadings were observed by elevating the mode conductor. Both the simulation and experimental results show that the coils with elevated conductors can preserve the high interelement isolation, B1+ efficiency, and SNR of the original self-decoupled coils.
Collapse
Affiliation(s)
- Ming Lu
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyang Zhang
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China
| | - Shuyang Chai
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
12
|
Clément J, Tomi-Tricot R, Malik SJ, Webb A, Hajnal JV, Ipek Ö. Towards an integrated neonatal brain and cardiac examination capability at 7 T: electromagnetic field simulations and early phantom experiments using an 8-channel dipole array. MAGMA (NEW YORK, N.Y.) 2022; 35:765-778. [PMID: 34997396 PMCID: PMC9463228 DOI: 10.1007/s10334-021-00988-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Neonatal brain and cardiac imaging would benefit from the increased signal-to-noise ratio levels at 7 T compared to lower field. Optimal performance might be achieved using purpose designed RF coil arrays. In this study, we introduce an 8-channel dipole array and investigate, using simulations, its RF performances for neonatal applications at 7 T. METHODS The 8-channel dipole array was designed and evaluated for neonatal brain/cardiac configurations in terms of SAR efficiency (ratio between transmit-field and maximum specific-absorption-rate level) using adjusted dielectric properties for neonate. A birdcage coil operating in circularly polarized mode was simulated for comparison. Validation of the simulation model was performed on phantom for the coil array. RESULTS The 8-channel dipole array demonstrated up to 46% higher SAR efficiency levels compared to the birdcage coil in neonatal configurations, as the specific-absorption-rate levels were alleviated. An averaged normalized root-mean-square-error of 6.7% was found between measured and simulated transmit field maps on phantom. CONCLUSION The 8-channel dipole array design integrated for neonatal brain and cardiac MR was successfully demonstrated, in simulation with coverage of the baby and increased SAR efficiency levels compared to the birdcage. We conclude that the 8Tx-dipole array promises safe operating procedures for MR imaging of neonatal brain and heart at 7 T.
Collapse
Affiliation(s)
- Jérémie Clément
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | - Shaihan J Malik
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Centre for the Developing Brain, King's College London, London, UK
| | - Andrew Webb
- Department of Radiology, C. J Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Joseph V Hajnal
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Centre for the Developing Brain, King's College London, London, UK
| | - Özlem Ipek
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
13
|
Avdievich NI, Nikulin AV, Ruhm L, Magill AW, Glang F, Henning A, Scheffler K. A 32-element loop/dipole hybrid array for human head imaging at 7 T. Magn Reson Med 2022; 88:1912-1926. [PMID: 35766426 DOI: 10.1002/mrm.29347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To improve whole-brain SNR at 7 Tesla, a novel 32-element hybrid human head array coil was developed, constructed, and tested. METHODS Our general design strategy is based on 2 major ideas: Firstly, following suggestions of previous works based on the ultimate intrinsic SNR theory, we combined loops and dipoles for improvement of SNR near the head center. Secondly, we minimized the total number of array elements by using a hybrid combination of transceive (TxRx) and receive (Rx) elements. The new hybrid array consisted of 8 folded-end TxRx-dipole antennas and 3 rows of 24 Rx-loops all placed in a single layer on the surface of a tight-fit helmet. RESULTS The developed array significantly improved SNR in vivo both near the center (∼20%) and at the periphery (∼20% to 80%) in comparison to a common commercial array coil with 8 transmit (Tx) and 32 Rx-elements. Whereas 24 loops alone delivered central SNR very similar to that of the commercial coil, the addition of complementary dipole structures provided further improvement. The new array also provided ∼15% higher Tx efficiency and better longitudinal coverage than that of the commercial array. CONCLUSION The developed array coil demonstrated advantages in combining complementary TxRx and Rx resonant structures, that is, TxRx-dipoles and Rx-loops all placed in a single layer at the same distance to the head. This strategy improved both SNR and Tx-performance, as well as simplified the total head coil design, making it more robust.
Collapse
Affiliation(s)
- Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anton V Nikulin
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Arthur W Magill
- Department for Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Glang
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Woo MK, DelaBarre L, Waks M, Lagore R, Radder J, Jungst S, Kang CK, Ugurbil K, Adriany G. A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 2022; 21:1857-1861. [PMID: 37020750 PMCID: PMC10072856 DOI: 10.1109/lawp.2022.3183206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this letter, we evaluate antenna designs for ultra-high frequency and field (UHF) human brain magnetic resonance imaging (MRI) at 10.5 tesla (T). Although MRI at such UHF is expected to provide major signal-to-noise gains, the frequency of interest, 447 MHz, presents us with challenges regarding improved B1 + efficiency, image homogeneity, specific absorption rate (SAR), and antenna element decoupling for array configurations. To address these challenges, we propose the use of both monopole and dipole antennas in a novel hybrid configuration, which we refer to as a mono-dipole hybrid antenna (MDH) array. Compared to an 8-channel dipole antenna array of the same dimensions, the 8-channel MDH array showed an improvement in decoupling between adjacent array channels, as well as ~18% higher B1 + and SAR efficiency near the central region of the phantom based on simulation and experiment. However, the performances of the MDH and dipole antenna arrays were overall similar when evaluating a human model in terms of peak B1 + efficiency, 10 g SAR, and SAR efficiency. Finally, the concept of an MDH array showed an advantage in improved decoupling, SAR, and B1 + near the superior region of the brain for human brain imaging.
Collapse
Affiliation(s)
- Myung Kyun Woo
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan 44005, South Korea
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Matt Waks
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Russell Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Jerahmie Radder
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Chang-Ki Kang
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 1342, South Korea
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
15
|
Elabyad IA, Terekhov M, Lohr D, Bille M, Hock M, Schreiber LM. A novel antisymmetric 16-element transceiver dipole antenna array for parallel transmit cardiac MRI in pigs at 7 T. NMR IN BIOMEDICINE 2022; 35:e4726. [PMID: 35277907 DOI: 10.1002/nbm.4726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
To improve parallel transmit (pTx) and receive performance for cardiac MRI (cMRI) in pigs at 7 T, a dedicated transmit/receive (Tx/Rx), 16-element antisymmetric dipole antenna array, which combines L-shaped and straight dipoles, was designed, implemented, and evaluated in both cadavers and animals in vivo. Electromagnetic-field simulations were performed with the new 16-element dipole antenna array loaded with a pig thorax-shaped phantom and compared with an eight-element array of straight dipoles. The new dipole array was interfaced to a 7 T scanner in pTx mode (8Tx/16Rx). Imaging performance of the novel array was validated through MRI measurements in a pig phantom, an 85 kg pig cadaver, and two pigs in vivo (74 and 81 kg). Due to the improved decoupling between interleaved L-shaped and straight dipole elements, the 16-element dipole array fits within the same outer dimensions as an eight-element array of straight dipoles. This provides improvement of both transmit and receive characteristics and additional degrees of freedom for B1+ shimming. The antisymmetric dipole array demonstrated efficient suppression of destructive interferences in the B1+ field, with up to 25% improvement in the B1+ homogeneity achieved using static pTx-RFPA B1+ shimming in comparison with the hardware-adjusted state, which was optimized for single transmit. High-resolution (0.5 × 0.5 × 4 mm3 ) anatomical images of the heart after cardiac arrest proved good transmit and receive characteristics of the novel array design. Parallel imaging with an acceleration factor up to R = 6 was possible while maintaining a mean g factor of 1.55 within the pig heart. CINE images acquired in vivo in two pigs demonstrated SNR and parallel imaging capabilities similar to those of a reference 8Tx/16Rx dedicated loop array for cMRI in pigs.
Collapse
Affiliation(s)
- Ibrahim A Elabyad
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maxim Terekhov
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - David Lohr
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maya Bille
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Hock
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura M Schreiber
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
16
|
Priovoulos N, Roos T, Ipek Ö, Meliado EF, Nkrumah RO, Klomp DWJ, van der Zwaag W. A local multi-transmit coil combined with a high-density receive array for cerebellar fMRI at 7 T. NMR IN BIOMEDICINE 2021; 34:e4586. [PMID: 34231292 PMCID: PMC8519055 DOI: 10.1002/nbm.4586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The human cerebellum is involved in a wide array of functions, ranging from motor control to cognitive control, and as such is of great neuroscientific interest. However, its function is underexplored in vivo, due to its small size, its dense structure and its placement at the bottom of the brain, where transmit and receive fields are suboptimal. In this study, we combined two dense coil arrays of 16 small surface receive elements each with a transmit array of three antenna elements to improve BOLD sensitivity in the human cerebellum at 7 T. Our results showed improved B1+ and SNR close to the surface as well as g-factor gains compared with a commercial coil designed for whole-head imaging. This resulted in improved signal stability and large gains in the spatial extent of the activation close to the surface (<3.5 cm), while good performance was retained deeper in the cerebellum. Modulating the phase of the transmit elements of the head coil to constructively interfere in the cerebellum improved the B1+ , resulting in a temporal SNR gain. Overall, our results show that a dedicated transmit array along with the SNR gains of surface coil arrays can improve cerebellar imaging, at the cost of a decreased field of view and increased signal inhomogeneity.
Collapse
Affiliation(s)
- Nikos Priovoulos
- Spinoza Center for NeuroimagingRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Thomas Roos
- Spinoza Center for NeuroimagingRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Özlem Ipek
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Ettore F. Meliado
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtNetherlands
| | - Richard O. Nkrumah
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Dennis W. J. Klomp
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtNetherlands
| | - Wietske van der Zwaag
- Spinoza Center for NeuroimagingRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| |
Collapse
|
17
|
Avdievich NI, Solomakha G, Ruhm L, Henning A, Scheffler K. 9.4 T double-tuned 13 C/ 1 H human head array using a combination of surface loops and dipole antennas. NMR IN BIOMEDICINE 2021; 34:e4577. [PMID: 34169590 DOI: 10.1002/nbm.4577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
MRI at ultra-high field (UHF, ≥7 T) provides a natural strategy for improving the quality of X-nucleus magnetic resonance spectroscopy and imaging due to the intrinsic benefit of increased signal-to-noise ratio. Considering that RF coils require both local transmission and reception at UHF, the designs of double-tuned coils, which often consist of several layers of transmit and receive resonant elements, become quite complex. A few years ago, a new type of RF coil, ie a dipole antenna, was developed and used for human body and head imaging at UHF. Due to the mechanical and electrical simplicity of dipole antennas, combining an X-nucleus surface loop array with 1 H dipoles can substantially simplify the design of a double-tuned UHF human head array coil. Recently, we developed a novel bent folded-end dipole transceiver array for human head imaging at 9.4 T. The new eight-element dipole array demonstrated full brain coverage, and transmit efficiency comparable to that of the substantially more complex 16-element surface loop array. In this work, we developed, constructed and evaluated a double-tuned 13 C/1 H human head 9.4 T array consisting of eight 13 C transceiver surface loops and eight 1 H transceiver bent folded-end dipole antennas all placed in a single layer. We showed that interaction between loops and dipoles can be minimized by placing four 1 H traps into each 13 C loop. The presented double-tuned RF array coil substantially simplifies the design as compared with the common double-tuned surface loop arrays. At the same time, the coil demonstrated an improved 1 H longitudinal coverage and good transmit efficiency.
Collapse
Affiliation(s)
- Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Georgiy Solomakha
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Evaluation of the whole auditory pathway using high-resolution and functional MRI at 7T parallel-transmit. PLoS One 2021; 16:e0254378. [PMID: 34492032 PMCID: PMC8423236 DOI: 10.1371/journal.pone.0254378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose The aim of the present study is to show a MR procedure for the evaluation of simultaneous left and right auditory functions with functional MRI, and high-resolution acquisition of anatomical auditory pathway using parallel-transmit (pTx) methods at 7T. Methods The time-efficient MR acquisition included two steps: RF weights were optimized for the regions-of-interest and high-resolution MR images of the inner-ear were acquired for the first 30 min (400 μm-iso resolution) followed by functional MRI acquisitions along the whole auditory pathway during the next 20 minutes. Data was processed with a linear cross-correlation analysis to define frequency preferences for each voxel in the auditory relays. Results Tonotopic maps revealed ordered bilateral frequency gradients in the auditory relays whereas at the level of the cochlear nuclei and superior olivary complexes the frequency gradients were less evident. A 21% increase in transmit-field efficiency was achieved over the left/right inner-ear regions and thus its main structures were clearly discernible using the pTx methods, compared to a single transmit RF coil. Conclusion Using 7T pTx allows a fast (less than 60 min in total) and qualitative evaluation of the simultaneous left and right auditory response along the entire auditory pathway, together with high-resolution anatomical images of the inner-ear. This could be further used for patient examination at 7T.
Collapse
|
19
|
Avdievich NI, Solomakha G, Ruhm L, Nikulin AV, Magill AW, Scheffler K. Folded-end dipole transceiver array for human whole-brain imaging at 7 T. NMR IN BIOMEDICINE 2021; 34:e4541. [PMID: 33978270 DOI: 10.1002/nbm.4541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The advancement of clinical applications of ultrahigh field (UHF) MRI depends heavily on advances in technology, including the development of new radiofrequency (RF) coil designs. Currently, the number of commercially available 7 T head RF coils is rather limited, implying a need to develop novel RF head coil designs that offer superior transmit and receive performance. RF coils to be used for clinical applications must be robust and reliable. In particular, for transmit arrays, if a transmit channel fails the local specific absorption rate may increase, significantly increasing local tissue heating. Recently, dipole antennas have been proposed and used to design UHF head transmit and receive arrays. The dipole provides a unique simplicity while offering comparable transmit efficiency and signal-to-noise ratio with the conventional loop design. Recently, we developed a novel array design in our laboratory using a folded-end dipole antenna. In this work, we developed, constructed and evaluated an eight-element transceiver bent folded-end dipole array for human head imaging at 7 T. Driven in the quadrature circularly polarized mode, the array demonstrated more than 20% higher transmit efficiency and significantly better whole-brain coverage than that provided by a widely used commercial array. In addition, we evaluated passive dipole antennas for decoupling the proposed array. We demonstrated that in contrast to the common unfolded dipole array, the passive dipoles moved away from the sample not only minimize coupling between the adjacent folded-end active dipoles but also produce practically no destructive interference with the quadrature mode of the array.
Collapse
Affiliation(s)
- Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Georgiy Solomakha
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anton V Nikulin
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Arthur W Magill
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Woo MK, Delabarre L, Waks M, Lee J, Lagore RL, Jungst S, Grant A, Eryaman Y, Ugurbil K, Adriany G. Comparison of 16-Channel Asymmetric Sleeve Antenna and Dipole Antenna Transceiver Arrays at 10.5 Tesla MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1147-1156. [PMID: 33360987 PMCID: PMC8078892 DOI: 10.1109/tmi.2020.3047354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multi-element transmit arrays with low peak 10 g specific absorption rate (SAR) and high SAR efficiency (defined as ( [Formula: see text]SAR [Formula: see text] are essential for ultra-high field (UHF) magnetic resonance imaging (MRI) applications. Recently, the adaptation of dipole antennas used as MRI coil elements in multi-channel arrays has provided the community with a technological solution capable of producing uniform images and low SAR efficiency at these high field strengths. However, human head-sized arrays consisting of dipole elements have a practical limitation to the number of channels that can be used due to radiofrequency (RF) coupling between the antenna elements, as well as, the coaxial cables necessary to connect them. Here we suggest an asymmetric sleeve antenna as an alternative to the dipole antenna. When used in an array as MRI coil elements, the asymmetric sleeve antenna can generate reduced peak 10 g SAR and improved SAR efficiency. To demonstrate the advantages of an array consisting of our suggested design, we compared various performance metrics produced by 16-channel arrays of asymmetric sleeve antennas and dipole antennas with the same dimensions. Comparison data were produced on a phantom in electromagnetic (EM) simulations and verified with experiments at 10.5 Tesla (T). The results produced by the 16-channel asymmetric sleeve antenna array demonstrated 28 % lower peak 10 g SAR and 18.6 % higher SAR efficiency when compared to the 16-channel dipole antenna array.
Collapse
|
21
|
Gilbert KM, Klassen LM, Mashkovtsev A, Zeman P, Menon RS, Gati JS. Radiofrequency coil for routine ultra-high-field imaging with an unobstructed visual field. NMR IN BIOMEDICINE 2021; 34:e4457. [PMID: 33305466 DOI: 10.1002/nbm.4457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Many neuroscience applications have adopted functional MRI as a tool to investigate the healthy and diseased brain during the completion of a task. While ultra-high-field MRI has allowed for improved contrast and signal-to-noise ratios during functional MRI studies, it remains a challenge to create local radiofrequency coils that can accommodate an unobstructed visual field and be suitable for routine use, while at the same time not compromise performance. Performance (both during transmission and reception) can be improved by using close-fitting coils; however, maintaining sensitivity over the whole brain often requires the introduction of coil elements proximal to the eyes, thereby partially occluding the subject's visual field. This study presents a 7 T head coil, with eight transmit dipoles and 32 receive loops, that is designed to remove visual obstructions from the subject's line of sight, allowing for an unencumbered view of visual stimuli, the reduction of anxiety induced from small enclosures, and the potential for eye-tracking measurements. The coil provides a practical solution for routine imaging, including a split design (anterior and posterior halves) that facilitates subject positioning, including those with impaired mobility, and the placement of devices required for patient comfort and motion reduction. The transmit and receive coils displayed no degradation of performance due to adaptions to the design topology (both mechanical and electrical) required to create an unobstructed visual field. All computer-aided design files, electromagnetic simulation models, transmit field maps and local specific absorption rate matrices are provided to promote reproduction.
Collapse
Affiliation(s)
- Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - L Martyn Klassen
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Alexander Mashkovtsev
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Peter Zeman
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
22
|
Avdievich NI, Solomakha G, Ruhm L, Henning A, Scheffler K. Unshielded bent folded-end dipole 9.4 T human head transceiver array decoupled using modified passive dipoles. Magn Reson Med 2021; 86:581-597. [PMID: 33629436 DOI: 10.1002/mrm.28711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop an unshielded dipole transceiver array for human head imaging at 9.4 Tesla and to improve decoupling of adjacent dipole elements, a novel array design with modified passive dipole antennas was developed, evaluated, and tested. METHODS The new array consisted of 8 bent folded-end dipole elements placed in a single row and surrounding the head. Adjacent elements of RF transceiver arrays are usually decoupled by introducing circuits electrically connected to elements. These methods are difficult to use for dipole arrays because of the distant location of the adjacent antennas. A recently developed decoupling technique using passive dipoles is simple and does not require any electrical connection. However, common parallel passive dipoles can produce destructive interference with the RF field of the array itself. To minimize this interference, we placed the passive dipoles perpendicularly to the active dipoles and positioned them at the ends of the array. We also evaluated the effect of different passive dipoles on the array transmit performance. Finally, we optimized the array transmit performance by varying the length of the dipole folded portion. RESULTS By rotating the passive dipoles 90º and moving them toward the ends of the array, we minimized the destructive interference to an acceptable level without compromising decoupling and the transmit efficiency. CONCLUSION While keeping the benefits of the passive dipole decoupling method, the new modified dipoles produce substantially less destructive interference with the RF field of the array than the common design. The constructed transceiver array demonstrated good decoupling and whole-brain coverage.
Collapse
Affiliation(s)
- Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Georgiy Solomakha
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Improved 7 Tesla transmit field homogeneity with reduced electromagnetic power deposition using coupled Tic Tac Toe antennas. Sci Rep 2021; 11:3370. [PMID: 33564013 PMCID: PMC7873125 DOI: 10.1038/s41598-020-79807-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022] Open
Abstract
Recently cleared by the FDA, 7 Tesla (7 T) MRI is a rapidly growing technology that can provide higher resolution and enhanced contrast in human MRI images. However, the increased operational frequency (~ 297 MHz) hinders its full potential since it causes inhomogeneities in the images and increases the power deposition in the tissues. This work describes the optimization of an innovative radiofrequency (RF) head coil coupled design, named Tic Tac Toe, currently used in large scale human MRI scanning at 7 T; to date, this device was used in more than 1,300 neuro 7 T MRI scans. Electromagnetic simulations of the coil were performed using the finite-difference time-domain method. Numerical optimizations were used to combine the calculated electromagnetic fields produced by these antennas, based on the superposition principle, resulting in homogeneous magnetic field distributions at low levels of power deposition in the tissues. The simulations were validated in-vivo using the Tic Tac Toe RF head coil system on a 7 T MRI scanner.
Collapse
|
24
|
Woo MK, DelaBarre L, Lee BY, Waks M, Lagore RL, Radder J, Eryaman Y, Ugurbil K, Adriany G. Evaluation of a 16-channel transceiver loop + dipole antenna array for human head imaging at 10.5 tesla. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:203555-203563. [PMID: 33747679 PMCID: PMC7978235 DOI: 10.1109/access.2020.3036598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We evaluated a 16-channel loop + dipole (LD) transceiver antenna array with improved specific absorption rate (SAR) efficiency for 10.5 Tesla (T) human head imaging apsplications. Three different array designs with equal inner dimensions were considered: an 8-channel dipole antenna, an 8-channel loop, and a 16-channel LD antenna arrays. Signal-to-noise ratio (SNR) and B1 + efficiency (in units of μT per √W) were simulated and measured in 10.5 T magnetic resonance imaging (MRI) experiments. For the safety validation, 10 g SAR and SAR efficiency (defined as the B1 + over √ (peak 10 g SAR)) were calculated through simulation. Finally, high resolution porcine brain images were acquired with the 16-channel LD antenna array, including a fast turbo-spin echo (TSE) sequence incorporating B1 shimming techniques. Both the simulation and experiments demonstrated that the combined 16-channel LD antenna array showed similar B1 + efficiency compared to the 8-channel dipole antenna and the 8-channel loop arrays in a circular polarized (CP) mode. In a central 2 mm × 2 mm region of the phantom, however, the 16-channel LD antenna array showed an improvement in peak 10 g SAR of 27.5 % and 32.5 % over the 8-channel dipole antenna and the 8-channel loop arrays, respectively. We conclude that the proposed 16-channel head LD antenna array design is capable of achieving ~7% higher SAR efficiency at 10.5 T compared to either the 8-channel loop-only or the 8-channel dipole-only antenna arrays of the same dimensions.
Collapse
Affiliation(s)
- Myung Kyun Woo
- Center for Magnetic Resonance and Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance and Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Byeong-Yeul Lee
- National Institute of Allergy and Infectious Diseases (NIAID), Integrated Research Facility (IRF), Frederick, Maryland, USA
| | - Matt Waks
- Center for Magnetic Resonance and Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell Luke Lagore
- Center for Magnetic Resonance and Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jerahmie Radder
- Center for Magnetic Resonance and Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yigitcan Eryaman
- Center for Magnetic Resonance and Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance and Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance and Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
25
|
Avdievich NI, Solomakha G, Ruhm L, Scheffler K, Henning A. Decoupling of folded-end dipole antenna elements of a 9.4 T human head array using an RF shield. NMR IN BIOMEDICINE 2020; 33:e4351. [PMID: 32618047 DOI: 10.1002/nbm.4351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Dipole antennas have recently been introduced to the field of MRI and successfully used, mostly as elements of ultra-high field (UHF, ≥ 7 T) human body arrays. Usage of dipole antennas for UHF human head transmit (Tx) arrays is still under development. Due to the substantially smaller size of the sample, dipoles must be made significantly shorter than in the body array. Additionally, head Tx arrays are commonly placed on the surface of rigid helmets made sufficiently large to accommodate tight-fit receive arrays. As a result, dipoles are not well loaded and are often poorly decoupled, which compromises Tx efficiency. Commonly, adjacent array elements are decoupled by circuits electrically connected to them. Placement of such circuits between distantly located dipoles is difficult. Alternatively, decoupling is provided by placing passive antennas between adjacent dipole elements. This method only works when these additional components are sufficiently small (compared with the size of active dipoles). Otherwise, RF fields produced by passive elements interfere destructively with the RF field of the array itself, and previously reported designs have used passive dipoles of about the size of array dipoles. In this work, we developed a novel method of decoupling for adjacent dipole antennas, and used this technique while constructing a 9.4 T human head eight-element transceiver array. Decoupling is provided without any additional circuits by simply folding the dipoles and using an RF shield located close to the folded portion of the dipoles. The array reported in this work demonstrates good decoupling and whole-brain coverage.
Collapse
Affiliation(s)
- Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Georgiy Solomakha
- Department of Physics and Engineering, ITMO University, Saint Petersburg, Russia
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
26
|
Felder J, Choi CH, Ko Y, Shah NJ. Optimization of high-channel count, switch matrices for multinuclear, high-field MRI. PLoS One 2020; 15:e0237494. [PMID: 32804972 PMCID: PMC7430713 DOI: 10.1371/journal.pone.0237494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Modern magnetic resonance imaging systems are equipped with a large number of receive connectors in order to optimally support a large field-of-view and/or high acceleration in parallel imaging using high-channel count, phased array coils. Given that the MR system is equipped with a limited number of digitizing receivers and in order to support operation of multinuclear coil arrays, these connectors need to be flexibly routed to the receiver outside the RF shielded examination room. However, for a number of practical, economic and safety reasons, it is better to only route a subset of the connectors. This is usually accomplished with the use of switch matrices. These exist in a variety of topologies and differ in routing flexibility and technological implementation. A highly flexible implementation is a crossbar topology that allows to any one input to be routed to any one output and can use single PIN diodes as active elements. However, in this configuration, long open-ended transmission lines can potentially remain connected to the signal path leading to high transmission losses. Thus, especially for high-field systems compensation mechanisms are required to remove the effects of open-ended transmission line stubs. The selection of a limited number of lumped element reactance values to compensate for the for the effect of transmission line stubs in large-scale switch matrices capable of supporting multi-nuclear operation is non-trivial and is a combinatorial problem of high order. Here, we demonstrate the use of metaheuristic approaches to optimize the circuit design of these matrices that additionally carry out the optimization of distances between the parallel transmission lines. For a matrix with 128 inputs and 64 outputs a realization is proposed that displays a worst-case insertion loss of 3.8 dB.
Collapse
Affiliation(s)
- Jörg Felder
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
| | - Yunkyoung Ko
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine -11, Forschungszentrum Jülich, Jülich, Germany
- JARA—BRAIN—Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
27
|
Avdievich NI, Solomakha G, Ruhm L, Bause J, Scheffler K, Henning A. Bent folded‐end dipole head array for ultrahigh‐field MRI turns “dielectric resonance” from an enemy to a friend. Magn Reson Med 2020; 84:3453-3467. [DOI: 10.1002/mrm.28336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Nikolai I. Avdievich
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
| | - Georgiy Solomakha
- Department of Physics and Engineering ITMO University St. Petersburg Russia
| | - Loreen Ruhm
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
| | - Jonas Bause
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
- Graduate School of Neural and Behavioral Sciences Tübingen Germany
| | - Klaus Scheffler
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
- Department for Biomedical Magnetic Resonance University of Tübingen Tübingen Germany
| | - Anke Henning
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
- Advanced Imaging Research Center University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
28
|
Maunder A, Rao M, Robb F, Wild JM. An 8-element Tx/Rx array utilizing MEMS detuning combined with 6 Rx loops for 19 F and 1 H lung imaging at 1.5T. Magn Reson Med 2020; 84:2262-2277. [PMID: 32281139 DOI: 10.1002/mrm.28260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To firstly improve the attainable image SNR of 19 F and 1 H C3 F8 lung imaging at 1.5 tesla using an 8-element transmit/receive (Tx/Rx) flexible vest array combined with a 6-element Rx-only array, and to secondly evaluate microelectromechanical systems for switching the array elements between the 2 resonant frequencies. METHODS The Tx efficiency and homogeneity of the 8-element array were measured and simulated for 1 H imaging in a cylindrical phantom and then evaluated for in vivo 19 F/1 H imaging. The added improvement provided by the 6-element Rx-only array was quantified through simulation and measurement and compared to the ultimate SNR. It was verified through the measurement of isolation that microelectromechanical systems switches provided broadband isolation of Tx/Rx circuitry such that the 19 F tuned Tx/Rx array could be effectively used for both 19 F and 1 H nuclei. RESULTS For 1 H imaging, the measured Tx efficiency/homogeneity (mean ± percent SD; 6.79 μ T / kW ± 26 % ) was comparable to that simulated ( 7.57 μ T / kW ± 20 % ). The 6 additional Rx-only loops increased the mean Rx sensitivity when compared to the 8-element array by a factor of 1.41× and 1.45× in simulation and measurement, respectively. In regions central to the thorax, the simulated SNR of the 14-element array achieves ≥70% of the ultimate SNR when including noise from the matching circuits and preamplifiers. A measured microelectromechanical systems switching speed of 12 µs and added minimum 22 dB of isolation between Tx and Rx were sufficient for Tx/Rx switching in this application. CONCLUSION The described single-tuned array driven at 19 F and 1 H, utilizing microelectromechanical systems technology, provides excellent results for 19 F and 1 H dual-nuclear lung ventilation imaging.
Collapse
Affiliation(s)
- Adam Maunder
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Fraser Robb
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom.,GE Healthcare, Aurora, OH, USA
| | - Jim M Wild
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
29
|
Clément J, Gruetter R, Ipek Ö. A combined 32-channel receive-loops/8-channel transmit-dipoles coil array for whole-brain MR imaging at 7T. Magn Reson Med 2019; 82:1229-1241. [PMID: 31081176 PMCID: PMC6618274 DOI: 10.1002/mrm.27808] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022]
Abstract
Purpose Multichannel receive arrays provide high SNR and parallel‐imaging capabilities, while transmit‐only dipole arrays have been shown to achieve a large coverage of the whole‐brain including the cerebellum. The aim of this study was to develop and characterize the performances of a 32‐channel receive‐only loop array combined with an 8‐channel dipole coil array at 7T for the first time. Methods The 8Tx‐dipoles/32Rx‐loops coil array was characterized by the SNR, g‐factors, noise correlation matrix, accelerated image quality, and B1+ maps, and compared with a commercial 1Tx‐birdcage/32Rx‐loops array. Simulated and measured B1+ maps were shown for the 8Tx‐dipoles/32Rx‐loops coil array and compared with the 8Tx/Rx dipole array. Results The in‐house built 32‐channel receive coil demonstrated a large longitudinal coverage of the brain, particularly the upper neck area. G‐factors and accelerated MR acquisitions demonstrated robust performances up to R = 4 in 2D, and R = 8 (4 × 2) in 3D. A 83% increase in SNR was measured over the cerebellum with the in‐house built 8Tx/32Rx coil array compared to the commercial 1Tx/32Rx, while similar performances were obtained in the cerebral cortex. Conclusions The combined 32‐channel receive/8‐channel transmit coil array demonstrated high transmit‐receive performances compared to the commercial receive array at 7T, notably in the cerebellum. We conclude that in combination with parallel transmit capabilities, this coil is particularly suitable for whole‐brain MR studies at 7T.
Collapse
Affiliation(s)
- Jérémie Clément
- LIFMET, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rolf Gruetter
- LIFMET, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland
| | - Özlem Ipek
- CIBM-AIT, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,School of Biomedical Engineering & Imaging, King's College London, London, United Kingdom
| |
Collapse
|