1
|
Versteeg E, Nam KM, Klomp DWJ, Bhogal AA, Siero JCW, Wijnen JP. A silent echo-planar spectroscopic imaging readout with high spectral bandwidth MRSI using an ultrasonic gradient axis. Magn Reson Med 2024; 91:2247-2256. [PMID: 38205917 DOI: 10.1002/mrm.30008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE We present a novel silent echo-planar spectroscopic imaging (EPSI) readout, which uses an ultrasonic gradient insert to accelerate MRSI while producing a high spectral bandwidth (20 kHz) and a low sound level. METHODS The ultrasonic gradient insert consisted of a single-axis (z-direction) plug-and-play gradient coil, powered by an audio amplifier, and produced 40 mT/m at 20 kHz. The silent EPSI readout was implemented in a phase-encoded MRSI acquisition. Here, the additional spatial encoding provided by this silent EPSI readout was used to reduce the number of phase-encoding steps. Spectroscopic acquisitions using phase-encoded MRSI, a conventional EPSI-readout, and the silent EPSI readout were performed on a phantom containing metabolites with resonance frequencies in the ppm range of brain metabolites (0-4 ppm). These acquisitions were used to determine sound levels, showcase the high spectral bandwidth of the silent EPSI readout, and determine the SNR efficiency and the scan efficiency. RESULTS The silent EPSI readout featured a 19-dB lower sound level than a conventional EPSI readout while featuring a high spectral bandwidth of 20 kHz without spectral ghosting artifacts. Compared with phase-encoded MRSI, the silent EPSI readout provided a 4.5-fold reduction in scan time. In addition, the scan efficiency of the silent EPSI readout was higher (82.5% vs. 51.5%) than the conventional EPSI readout. CONCLUSIONS We have for the first time demonstrated a silent spectroscopic imaging readout with a high spectral bandwidth and low sound level. This sound reduction provided by the silent readout is expected to have applications in sound-sensitive patient groups, whereas the high spectral bandwidth could benefit ultrahigh-field MR systems.
Collapse
Affiliation(s)
- Edwin Versteeg
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kyung Min Nam
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alex A Bhogal
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen C W Siero
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| | - Jannie P Wijnen
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Bauer J, Raum HN, Kugel H, Müther M, Mannil M, Heindel W. 2-Hydroxyglutarate as an MR spectroscopic predictor of an IDH mutation in gliomas. ROFO-FORTSCHR RONTG 2024. [PMID: 38648790 DOI: 10.1055/a-2285-4923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The mutated enzyme isocitrate dehydrogenase (IDH) 1 and 2 has been detected in various tumor entities such as gliomas and can convert α-ketoglutarate into the oncometabolite 2-hydroxyglutarate (2-HG). This neuro-oncologically significant metabolic product can be detected by MR spectroscopy and is therefore suitable for noninvasive glioma classification and therapy monitoring.This paper provides an up-to-date overview of the methodology and relevance of 1H-MR spectroscopy (MRS) in the oncological primary and follow-up diagnosis of gliomas. The possibilities and limitations of this MR spectroscopic examination are evaluated on the basis of the available literature.By detecting 2-HG, MRS can in principle offer a noninvasive alternative to immunohistological analysis thus avoiding surgical intervention in some cases. However, in addition to an adapted and optimized examination protocol, the individual measurement conditions in the examination region are of decisive importance. Due to the inherently small signal of 2-HG, unfavorable measurement conditions can influence the reliability of detection. · MR spectroscopy enables the non-invasive detection of 2-hydroxyglutarate.. · The measurement of this metabolite allows the detection of an IDH mutation in gliomas.. · The choice of MR examination method is particularly important.. · Detection reliability is influenced by glioma size, necrotic tissue and the existing measurement conditions.. · Bauer J, Raum HN, Kugel H et al. 2-Hydroxyglutarate as an MR spectroscopic predictor of an IDH mutation in gliomas. Fortschr Röntgenstr 2024; DOI 10.1055/a-2285-4923.
Collapse
Affiliation(s)
- Jochen Bauer
- Clinic for Radiology, University of Münster and University Hospital Münster, Münster, Germany
| | - Heiner N Raum
- Clinic for Radiology, University of Münster and University Hospital Münster, Münster, Germany
| | - Harald Kugel
- Clinic for Radiology, University of Münster and University Hospital Münster, Münster, Germany
| | - Michael Müther
- Department of Neurosurgery, University of Münster and University Hospital Münster, Münster, Germany
| | - Manoj Mannil
- Clinic for Radiology, University of Münster and University Hospital Münster, Münster, Germany
- Institute for Diagnostic and Interventional Radiology, Caritas Hospital Bad Mergentheim, Bad Mergentheim, Germany
| | - Walter Heindel
- Clinic for Radiology, University of Münster and University Hospital Münster, Münster, Germany
| |
Collapse
|
3
|
McCarthy L, Verma G, Hangel G, Neal A, Moffat BA, Stockmann JP, Andronesi OC, Balchandani P, Hadjipanayis CG. Application of 7T MRS to High-Grade Gliomas. AJNR Am J Neuroradiol 2022; 43:1378-1395. [PMID: 35618424 PMCID: PMC9575545 DOI: 10.3174/ajnr.a7502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/11/2022] [Indexed: 01/26/2023]
Abstract
MRS, including single-voxel spectroscopy and MR spectroscopic imaging, captures metabolites in high-grade gliomas. Emerging evidence indicates that 7T MRS may be more sensitive to aberrant metabolic activity than lower-field strength MRS. However, the literature on the use of 7T MRS to visualize high-grade gliomas has not been summarized. We aimed to identify metabolic information provided by 7T MRS, optimal spectroscopic sequences, and areas for improvement in and new applications for 7T MRS. Literature was found on PubMed using "high-grade glioma," "malignant glioma," "glioblastoma," "anaplastic astrocytoma," "7T," "MR spectroscopy," and "MR spectroscopic imaging." 7T MRS offers higher SNR, modestly improved spatial resolution, and better resolution of overlapping resonances. 7T MRS also yields reduced Cramér-Rao lower bound values. These features help to quantify D-2-hydroxyglutarate in isocitrate dehydrogenase 1 and 2 gliomas and to isolate variable glutamate, increased glutamine, and increased glycine with higher sensitivity and specificity. 7T MRS may better characterize tumor infiltration and treatment effect in high-grade gliomas, though further study is necessary. 7T MRS will benefit from increased sample size; reductions in field inhomogeneity, specific absorption rate, and acquisition time; and advanced editing techniques. These findings suggest that 7T MRS may advance understanding of high-grade glioma metabolism, with reduced Cramér-Rao lower bound values and better measurement of smaller metabolite signals. Nevertheless, 7T is not widely used clinically, and technical improvements are necessary. 7T MRS isolates metabolites that may be valuable therapeutic targets in high-grade gliomas, potentially resulting in wider ranging neuro-oncologic applications.
Collapse
Affiliation(s)
- L McCarthy
- From the Department of Neurosurgery (L.M., C.G.H.), Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York
| | - G Verma
- BioMedical Engineering and Imaging Institute (G.V., P.B.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - G Hangel
- Department of Neurosurgery (G.H.)
- High-field MR Center (G.H.), Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - A Neal
- Department of Medicine (A.N.), Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
- Department of Neurology (A.N.), Royal Melbourne Hospital, Melbourne, Australia
| | - B A Moffat
- The Melbourne Brain Centre Imaging Unit (B.A.M.), Department of Radiology, The University of Melbourne, Melbourne, Australia
| | - J P Stockmann
- A. A. Martinos Center for Biomedical Imaging (J.P.S., O.C.A.), Massachusetts General Hospital, Charlestown, Massachusetts
- Harvard Medical School (J.P.S., O.C.A.), Boston, Massachusetts
| | - O C Andronesi
- A. A. Martinos Center for Biomedical Imaging (J.P.S., O.C.A.), Massachusetts General Hospital, Charlestown, Massachusetts
- Harvard Medical School (J.P.S., O.C.A.), Boston, Massachusetts
| | - P Balchandani
- BioMedical Engineering and Imaging Institute (G.V., P.B.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - C G Hadjipanayis
- From the Department of Neurosurgery (L.M., C.G.H.), Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York
| |
Collapse
|
4
|
Strasser B, Arango NS, Stockmann JP, Gagoski B, Thapa B, Li X, Bogner W, Moser P, Small J, Cahill DP, Batchelor TT, Dietrich J, van der Kouwe A, White J, Adalsteinsson E, Andronesi OC. Improving D-2-hydroxyglutarate MR spectroscopic imaging in mutant isocitrate dehydrogenase glioma patients with multiplexed RF-receive/B 0 -shim array coils at 3 T. NMR IN BIOMEDICINE 2022; 35:e4621. [PMID: 34609036 PMCID: PMC8717863 DOI: 10.1002/nbm.4621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
MR spectroscopic imaging (MRSI) noninvasively maps the metabolism of human brains. In particular, the imaging of D-2-hydroxyglutarate (2HG) produced by glioma isocitrate dehydrogenase (IDH) mutations has become a key application in neuro-oncology. However, the performance of full field-of-view MRSI is limited by B0 spatial nonuniformity and lipid artifacts from tissues surrounding the brain. Array coils that multiplex RF-receive and B0 -shim electrical currents (AC/DC mixing) over the same conductive loops provide many degrees of freedom to improve B0 uniformity and reduce lipid artifacts. AC/DC coils are highly efficient due to compact design, requiring low shim currents (<2 A) that can be switched fast (0.5 ms) with high interscan reproducibility (10% coefficient of variation for repeat measurements). We measured four tumor patients and five volunteers at 3 T and show that using AC/DC coils in addition to the vendor-provided second-order spherical harmonics shim provides 19% narrower spectral linewidth, 6% higher SNR, and 23% less lipid content for unrestricted field-of-view MRSI, compared with the vendor-provided shim alone. We demonstrate that improvement in MRSI data quality led to 2HG maps with higher contrast-to-noise ratio for tumors that coincide better with the FLAIR-enhancing lesions in mutant IDH glioma patients. Smaller Cramér-Rao lower bounds for 2HG quantification are obtained in tumors by AC/DC shim, corroborating with simulations that predicted improved accuracy and precision for narrower linewidths. AC/DC coils can be used synergistically with optimized acquisition schemes to improve metabolic imaging for precision oncology of glioma patients. Furthermore, this methodology has broad applicability to other neurological disorders and neuroscience.
Collapse
Affiliation(s)
- Bernhard Strasser
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Vienna, Austria
| | - Nicolas S. Arango
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jason P. Stockmann
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bijaya Thapa
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA
| | - Xianqi Li
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA
| | - Wolfgang Bogner
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Vienna, Austria
| | - Philipp Moser
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Vienna, Austria
| | - Julia Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel P. Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tracy T. Batchelor
- Department Neurology, Division of Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jorg Dietrich
- Department Neurology, Division of Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andre van der Kouwe
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob White
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ovidiu C. Andronesi
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Askari P, Dimitrov IE, Ganji SK, Tiwari V, Levy M, Patel TR, Pan E, Mickey BE, Malloy CR, Maher EA, Choi C. Spectral fitting strategy to overcome the overlap between 2-hydroxyglutarate and lipid resonances at 2.25 ppm. Magn Reson Med 2021; 86:1818-1828. [PMID: 33977579 PMCID: PMC8295210 DOI: 10.1002/mrm.28829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE 1 H MRS provides a noninvasive tool for identifying mutations in isocitrate dehydrogenase (IDH). Quantification of the prominent 2-hydroxyglutarate (2HG) resonance at 2.25 ppm is often confounded by the lipid resonance at the same frequency in tumors with elevated lipids. We propose a new spectral fitting approach to separate these overlapped signals, therefore, improving 2HG evaluation. METHODS TE 97 ms PRESS was acquired at 3T from 42 glioma patients. New lipid basis sets were created, in which the small lipid 2.25-ppm signal strength was preset with reference to the lipid signal at 0.9 ppm, incorporating published fat relaxation data. LCModel fitting using the new lipid bases (Fitting method 2) was conducted along with fitting using the LCModel built-in lipid basis set (Fitting method 1), in which the lipid 2.25-ppm signal is assessed with reference to the lipid 1.3-ppm signal. In-house basis spectra of low-molecular-weight metabolites were used in both fitting methods. RESULTS Fitting method 2 showed marked improvement in identifying IDH mutational status compared with Fitting method 1. 2HG estimates from Fitting method 2 were overall smaller than those from Fitting method 1, which was because of differential assignment of the signal at 2.25 ppm to lipids. In receiver operating characteristic analysis, Fitting method 2 provided a complete distinction between IDH mutation and wild-type whereas Fitting method 1 did not. CONCLUSION The data suggest that 1 H MR spectral fitting using the new lipid basis set provides a robust fitting strategy that improves 2HG evaluation in brain tumors with elevated lipids.
Collapse
Affiliation(s)
- Pegah Askari
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Joint Graduate Program in Biomedical Engineering at University of Texas Arlington and University of Texas Southwestern Medical Center, Texas
| | - Ivan E. Dimitrov
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Philips Healthcare, Gainesville, Florida
| | - Sandeep K. Ganji
- Philips Healthcare, Andover, Massachusetts
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vivek Tiwari
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael Levy
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Toral R. Patel
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Edward Pan
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bruce E. Mickey
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
- Veterans Affairs North Texas Health Care System, Dallas, Texas
| | - Elizabeth A. Maher
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Changho Choi
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
6
|
Maudsley AA, Andronesi OC, Barker PB, Bizzi A, Bogner W, Henning A, Nelson SJ, Posse S, Shungu DC, Soher BJ. Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4309. [PMID: 32350978 PMCID: PMC7606742 DOI: 10.1002/nbm.4309] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 02/01/2020] [Accepted: 03/10/2020] [Indexed: 05/04/2023]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) offers considerable promise for monitoring metabolic alterations associated with disease or injury; however, to date, these methods have not had a significant impact on clinical care, and their use remains largely confined to the research community and a limited number of clinical sites. The MRSI methods currently implemented on clinical MRI instruments have remained essentially unchanged for two decades, with only incremental improvements in sequence implementation. During this time, a number of technological developments have taken place that have already greatly benefited the quality of MRSI measurements within the research community and which promise to bring advanced MRSI studies to the point where the technique becomes a true imaging modality, while making the traditional review of individual spectra a secondary requirement. Furthermore, the increasing use of biomedical MR spectroscopy studies has indicated clinical areas where advanced MRSI methods can provide valuable information for clinical care. In light of this rapidly changing technological environment and growing understanding of the value of MRSI studies for biomedical studies, this article presents a consensus from a group of experts in the field that reviews the state-of-the-art for clinical proton MRSI studies of the human brain, recommends minimal standards for further development of vendor-provided MRSI implementations, and identifies areas which need further technical development.
Collapse
Affiliation(s)
- Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ovidiu C Andronesi
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts
| | - Peter B Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, and the Kennedy Krieger Institute, F.M. Kirby Center for Functional Brain Imaging, Baltimore, Maryland
| | - Alberto Bizzi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Anke Henning
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Stefan Posse
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico
| | - Dikoma C Shungu
- Department of Neuroradiology, Weill Cornell Medical College, New York, New York
| | - Brian J Soher
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
7
|
Liu FM, Gao YF, Kong Y, Guan Y, Zhang J, Li SH, Ye D, Wen W, Zuo C, Hua W. The diagnostic value of lower glucose consumption for IDH1 mutated gliomas on FDG-PET. BMC Cancer 2021; 21:83. [PMID: 33472598 PMCID: PMC7816361 DOI: 10.1186/s12885-021-07797-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
Background Non-invasive diagnosis of IDH1 mutation for gliomas has great clinical significance, and PET has natural advantage to detect metabolism, as IDH mutated gliomas share lower glucose consumption. Methods Clinical data of patients with gliomas and 18F-FDG PET were retrospectively reviewed. Receiver operating characteristic curve (ROC) analysis was conducted, and standard uptake value (SUV) was estimated in combination with grades or IDH1 mutation. The glucose consumption was investigated with U251 cells expressing wild-type or mutated IDH1 by glucose assay. Quantification of glucose was determined by HPLC in clinical tissues. Meanwhile, bioinformatics and western blot were applied to analyze the expression level of metabolic enzymes (e.g. HK1, PKM2, PC) in gliomas. Results Seventy-one glioma cases were enrolled, including 30 carrying IDH1 mutation. The sensitivity and specificity dependent on SUVmax (3.85) predicting IDH1 mutation reached 73.2 and 86.7%, respectively. The sensitivity and specificity of differentiating grades by SUVmax (3.1) were 92.3 and 64.4%, respectively. Glucose consumption of U251 IDH1 mutant cells (0.209 ± 0.0472 mg/ml) was obviously lower than IDH1wild-type cells (0.978 ± 0.0773 mg/ml, P = 0.0001) and astrocyte controls (0.335 ± 0.0592 mg/ml, P = 0.0451). Meanwhile, the glucose quantity in IDH1mutant glioma samples were significantly lower than those in IDH1 wild-type tissues (1.033 ± 1.19608 vs 6.361 ± 4.3909 mg/g, P = 0.0051). Silico analysis and western blot confirmed that HK1 and PKM2 in IDH1 wild-type gliomas were significantly higher than in IDH1 mutant group, while PC was significantly higher in IDH1 mutant gliomas. Conclusion SUVmax on PET can predict IDH1 mutation with adequate sensitivity and specificity, as is supported by reduced glucose consumption in IDH1 mutant gliomas. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07797-6.
Collapse
Affiliation(s)
- Feng-Min Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.,Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, Jilin, China
| | - Yu-Fei Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, Jilin, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Shuai-Hong Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dan Ye
- The Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
8
|
Abstract
Significance: Cancer cells are stabilized in an undifferentiated state similar to stem cells. This leads to profound modifications of their metabolism, which further modifies their genetics and epigenetics as malignancy progresses. Specific metabolites and enzymes may serve as clinical markers of cancer progression. Recent Advances: Both 2-hydroxyglutarate (2HG) enantiomers are associated with reprogrammed metabolism, in grade III/IV glioma, glioblastoma, and acute myeloid leukemia cells, and numerous other cancer types, while acting also in the cross talk of tumors with immune cells. 2HG contributes to specific alternations in cancer metabolism and developed oxidative stress, while also inducing decisions on the differentiation of naive T lymphocytes, and serves as a signal messenger in immune cells. Moreover, 2HG inhibits chromatin-modifying enzymes, namely 2-oxoglutarate-dependent dioxygenases, and interferes with hypoxia-inducible factor (HIF) transcriptome reprogramming and mammalian target of rapamycin (mTOR) pathway, thus dysregulating gene expression and further promoting cancerogenesis. Critical Issues: Typically, heterozygous mutations within the active sites of isocitrate dehydrogenase isoform 1 (IDH1)R132H and mitochondrial isocitrate dehydrogenase isoform 2 (IDH2)R140Q provide cells with millimolar r-2-hydroxyglutarate (r-2HG) concentrations, whereas side activities of lactate and malate dehydrogenase form submillimolar s-2-hydroxyglutarate (s-2HG). However, even wild-type IDH1 and IDH2, notably under shifts toward reductive carboxylation glutaminolysis or changes in other enzymes, lead to "intermediate" 0.01-0.1 mM 2HG levels, for example, in breast carcinoma compared with 10-8M in noncancer cells. Future Directions: Uncovering further molecular metabolism details specific for given cancer cell types and sequence-specific epigenetic alternations will lead to the design of diagnostic approaches, not only for predicting patients' prognosis or uncovering metastases and tumor remissions but also for early diagnostics.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Li X, Strasser B, Jafari-Khouzani K, Thapa B, Small J, Cahill DP, Dietrich J, Batchelor TT, Andronesi OC. Super-Resolution Whole-Brain 3D MR Spectroscopic Imaging for Mapping D-2-Hydroxyglutarate and Tumor Metabolism in Isocitrate Dehydrogenase 1-mutated Human Gliomas. Radiology 2020; 294:589-597. [PMID: 31909698 PMCID: PMC7053225 DOI: 10.1148/radiol.2020191529] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/04/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Background Isocitrate dehydrogenase (IDH) mutations are highly frequent in glioma, producing high levels of the oncometabolite D-2-hydroxyglutarate (D-2HG). Hence, D-2HG represents a valuable imaging marker for IDH-mutated human glioma. Purpose To develop and evaluate a super-resolution three-dimensional (3D) MR spectroscopic imaging strategy to map D-2HG and tumor metabolism in IDH-mutated human glioma. Materials and Methods Between March and September 2018, participants with IDH1-mutated gliomas and healthy participants were prospectively scanned with a 3-T whole-brain 3D MR spectroscopic imaging protocol optimized for D-2HG. The acquired D-2HG maps with a voxel size of 5.2 × 5.2 × 12 mm were upsampled to a voxel size of 1.7 × 1.7 × 3 mm using a super-resolution method that combined weighted total variation, feature-based nonlocal means, and high-spatial-resolution anatomic imaging priors. Validation with simulated healthy and patient data and phantom measurements was also performed. The Mann-Whitney U test was used to check that the proposed super-resolution technique yields the highest peak signal-to-noise ratio and structural similarity index. Results Three participants with IDH1-mutated gliomas (mean age, 50 years ± 21 [standard deviation]; two men) and three healthy participants (mean age, 32 years ± 3; two men) were scanned. Twenty healthy participants (mean age, 33 years ± 5; 16 men) underwent a simulation of upsampled MR spectroscopic imaging. Super-resolution upsampling improved peak signal-to-noise ratio and structural similarity index by 62% (P < .05) and 7.3% (P < .05), respectively, for simulated data when compared with spline interpolation. Correspondingly, the proposed method significantly improved tissue contrast and structural information for the acquired 3D MR spectroscopic imaging data. Conclusion High-spatial-resolution whole-brain D-2-hydroxyglutarate imaging is possible in isocitrate dehydrogenase 1-mutated human glioma by using a super-resolution framework to upsample three-dimensional MR spectroscopic images acquired at lower resolution. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Huang and Lin in this issue.
Collapse
Affiliation(s)
- Xianqi Li
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, 149 13th St, Suite 2301, Charlestown,
MA 02129 (X.L., B.S., B.T., O.C.A.); iCAD, Nashua, NH (K.J.); Departments of
Neurosurgery (J.S., D.P.C.) and Neurology (J.D.), Massachusetts General
Hospital, Boston, Mass; Department of Neurology, Brigham and Women’s
Hospital, Boston, Mass (T.T.B.); and Dana-Farber Cancer Institute, Boston, Mass
(T.T.B.)
| | - Bernhard Strasser
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, 149 13th St, Suite 2301, Charlestown,
MA 02129 (X.L., B.S., B.T., O.C.A.); iCAD, Nashua, NH (K.J.); Departments of
Neurosurgery (J.S., D.P.C.) and Neurology (J.D.), Massachusetts General
Hospital, Boston, Mass; Department of Neurology, Brigham and Women’s
Hospital, Boston, Mass (T.T.B.); and Dana-Farber Cancer Institute, Boston, Mass
(T.T.B.)
| | - Kourosh Jafari-Khouzani
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, 149 13th St, Suite 2301, Charlestown,
MA 02129 (X.L., B.S., B.T., O.C.A.); iCAD, Nashua, NH (K.J.); Departments of
Neurosurgery (J.S., D.P.C.) and Neurology (J.D.), Massachusetts General
Hospital, Boston, Mass; Department of Neurology, Brigham and Women’s
Hospital, Boston, Mass (T.T.B.); and Dana-Farber Cancer Institute, Boston, Mass
(T.T.B.)
| | - Bijaya Thapa
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, 149 13th St, Suite 2301, Charlestown,
MA 02129 (X.L., B.S., B.T., O.C.A.); iCAD, Nashua, NH (K.J.); Departments of
Neurosurgery (J.S., D.P.C.) and Neurology (J.D.), Massachusetts General
Hospital, Boston, Mass; Department of Neurology, Brigham and Women’s
Hospital, Boston, Mass (T.T.B.); and Dana-Farber Cancer Institute, Boston, Mass
(T.T.B.)
| | - Julia Small
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, 149 13th St, Suite 2301, Charlestown,
MA 02129 (X.L., B.S., B.T., O.C.A.); iCAD, Nashua, NH (K.J.); Departments of
Neurosurgery (J.S., D.P.C.) and Neurology (J.D.), Massachusetts General
Hospital, Boston, Mass; Department of Neurology, Brigham and Women’s
Hospital, Boston, Mass (T.T.B.); and Dana-Farber Cancer Institute, Boston, Mass
(T.T.B.)
| | - Daniel P. Cahill
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, 149 13th St, Suite 2301, Charlestown,
MA 02129 (X.L., B.S., B.T., O.C.A.); iCAD, Nashua, NH (K.J.); Departments of
Neurosurgery (J.S., D.P.C.) and Neurology (J.D.), Massachusetts General
Hospital, Boston, Mass; Department of Neurology, Brigham and Women’s
Hospital, Boston, Mass (T.T.B.); and Dana-Farber Cancer Institute, Boston, Mass
(T.T.B.)
| | - Jorg Dietrich
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, 149 13th St, Suite 2301, Charlestown,
MA 02129 (X.L., B.S., B.T., O.C.A.); iCAD, Nashua, NH (K.J.); Departments of
Neurosurgery (J.S., D.P.C.) and Neurology (J.D.), Massachusetts General
Hospital, Boston, Mass; Department of Neurology, Brigham and Women’s
Hospital, Boston, Mass (T.T.B.); and Dana-Farber Cancer Institute, Boston, Mass
(T.T.B.)
| | - Tracy T. Batchelor
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, 149 13th St, Suite 2301, Charlestown,
MA 02129 (X.L., B.S., B.T., O.C.A.); iCAD, Nashua, NH (K.J.); Departments of
Neurosurgery (J.S., D.P.C.) and Neurology (J.D.), Massachusetts General
Hospital, Boston, Mass; Department of Neurology, Brigham and Women’s
Hospital, Boston, Mass (T.T.B.); and Dana-Farber Cancer Institute, Boston, Mass
(T.T.B.)
| | - Ovidiu C. Andronesi
- From the A. A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, 149 13th St, Suite 2301, Charlestown,
MA 02129 (X.L., B.S., B.T., O.C.A.); iCAD, Nashua, NH (K.J.); Departments of
Neurosurgery (J.S., D.P.C.) and Neurology (J.D.), Massachusetts General
Hospital, Boston, Mass; Department of Neurology, Brigham and Women’s
Hospital, Boston, Mass (T.T.B.); and Dana-Farber Cancer Institute, Boston, Mass
(T.T.B.)
| |
Collapse
|
10
|
Magnetic Resonance Spectroscopic Assessment of Isocitrate Dehydrogenase Status in Gliomas: The New Frontiers of Spectrobiopsy in Neurodiagnostics. World Neurosurg 2020; 133:e421-e427. [DOI: 10.1016/j.wneu.2019.09.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
|