1
|
Sørland KI, Trimble CG, Wu CY, Bathen TF, Elschot M, Cloos MA. Reducing femoral flow artefacts in radial magnetic resonance fingerprinting of the prostate using region-optimised virtual coils. NMR IN BIOMEDICINE 2024; 37:e5136. [PMID: 38514929 DOI: 10.1002/nbm.5136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
High acceleration factors in radial magnetic resonance fingerprinting (MRF) of the prostate lead to strong streak-like artefacts from flow in the femoral blood vessels, possibly concealing important anatomical information. Region-optimised virtual (ROVir) coils is a beamforming-based framework to create virtual coils that maximise signal in a region of interest while minimising signal in a region of interference. In this study, the potential of removing femoral flow streak artefacts in prostate MRF using ROVir coils is demonstrated in silico and in vivo. The ROVir framework was applied to radial MRF k-space data in an automated pipeline designed to maximise prostate signal while minimising signal from the femoral vessels. The method was tested in 15 asymptomatic volunteers at 3 T. The presence of streaks was visually assessed and measurements of whole prostate T1, T2 and signal-to-noise ratio (SNR) with and without streak correction were examined. In addition, a purpose-built simulation framework in which blood flow through the femoral vessels can be turned on and off was used to quantitatively evaluate ROVir's ability to suppress streaks in radial prostate MRF. In vivo it was shown that removing selected ROVir coils visibly reduces streak-like artefacts from the femoral blood flow, without increasing the reconstruction time. On average, 80% of the prostate SNR was retained. A similar reduction of streaks was also observed in silico, while the quantitative accuracy of T1 and T2 mapping was retained. In conclusion, ROVir coils efficiently suppress streaking artefacts from blood flow in radial MRF of the prostate, thereby improving the visual clarity of the images, without significant sacrifices to acquisition time, reconstruction time and accuracy of quantitative values. This is expected to help enable T1 and T2 mapping of prostate cancer in clinically viable times, aiding differentiation between prostate cancer from noncancer and healthy prostate tissue.
Collapse
Affiliation(s)
- Kaia I Sørland
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christopher G Trimble
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hostpital, Trondheim, Norway
| | - Chia-Yin Wu
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
- ARC Training Centre for Innovation on Biomedical Imaging Technology (CIBIT), The University of Queensland, St Lucia, Queensland, Australia
- School of Electrical Engineering and Computer Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hostpital, Trondheim, Norway
| | - Mattijs Elschot
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hostpital, Trondheim, Norway
| | - Martijn A Cloos
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
- ARC Training Centre for Innovation on Biomedical Imaging Technology (CIBIT), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
2
|
Coronado R, Castillo-Passi C, Besa C, Irarrazaval P. Fast and accessible T2 mapping using off-resonance corrected DESPOT2 with application to 3D prostate. Magn Reson Imaging 2024; 109:227-237. [PMID: 38508291 DOI: 10.1016/j.mri.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Most T1 and T2 mapping take long acquisitions or needs specialized sequences not widely accessible on clinical scanners. An available solution is DESPOT1/T2 (Driven equilibrium single pulse observation of T1/T2). DESPOT1/T2 uses Spoiled gradient-echo (SPGR) and balanced Steady-State Free Precession (bSSFP) sequences, offering an accessible and reliable way for 3D accelerated T1/T2 mapping. However, bSSFP is prone to off-resonance artifacts, limiting the application of DESPOT2 in regions with high susceptibility contrasts, like the prostate. Our proposal, DESPO+, employs the full bSSFP and SPGR models with a dictionary-based method to reconstruct 3D T1/T2 maps in the prostate region without off-resonance banding. METHODS DESPO+ modifies the bSSFP acquisition of the original variable flip angle DESPOT2. DESPO+ uses variable repetition and echo times, employing a dictionary-based method of the full bSSFP and SPGR models to reconstruct T1, T2, and Proton Density (PD) simultaneously. The proposed DESPO+ method underwent testing through simulations, T1/T2 phantoms, and on fourteen healthy subjects. RESULTS The results reveal a significant reduction in T2 map banding artifacts compared to the original DESPOT2 method. DESPO+ approach reduced T2 errors by up to seven times compared to DESPOT2 in simulations and phantom experiments. We also synthesized in-vivo T1-weighted/T2-weighted images from the acquired maps using a spin-echo model to verify the map's quality when lacking a reference. For in-vivo imaging, the synthesized images closely resemble those from the clinical MRI protocol, reducing scan time by around 50% compared to traditional spin-echo T1-weighted/T2-weighted acquisitions. CONCLUSION DESPO+ provides an off-resonance insensitive and clinically available solution, enabling high-resolution 3D T1/T2 mapping and synthesized T1-weighted/T2-weighted images for the entire prostate, all achieved within a short scan time of 3.6 min, similar to DESPOT1/T2.
Collapse
Affiliation(s)
- Ronal Coronado
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Carlos Castillo-Passi
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cecilia Besa
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile; Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Irarrazaval
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile; Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Schneider A, Munoz C, Hua A, Ellis S, Jeljeli S, Kunze KP, Neji R, Reader AJ, Reyes E, Ismail TF, Botnar RM, Prieto C. Non-rigid motion-compensated 3D whole-heart T 2 mapping in a hybrid 3T PET-MR system. Magn Reson Med 2024; 91:1951-1964. [PMID: 38181169 DOI: 10.1002/mrm.29973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 01/07/2024]
Abstract
PURPOSE Simultaneous PET-MRI improves inflammatory cardiac disease diagnosis. However, challenges persist in respiratory motion and mis-registration between free-breathing 3D PET and 2D breath-held MR images. We propose a free-breathing non-rigid motion-compensated 3D T2 -mapping sequence enabling whole-heart myocardial tissue characterization in a hybrid 3T PET-MR system and provides non-rigid respiratory motion fields to correct also simultaneously acquired PET data. METHODS Free-breathing 3D whole-heart T2 -mapping was implemented on a hybrid 3T PET-MRI system. Three datasets were acquired with different T2 -preparation modules (0, 28, 55 ms) using 3-fold undersampled variable-density Cartesian trajectory. Respiratory motion was estimated via virtual 3D image navigators, enabling multi-contrast non-rigid motion-corrected MR reconstruction. T2 -maps were computed using dictionary-matching. Approach was tested in phantom, 8 healthy subjects, 14 MR only and 2 PET-MR patients with suspected cardiac disease and compared with spin echo reference (phantom) and clinical 2D T2 -mapping (in-vivo). RESULTS Phantom results show a high correlation (R2 = 0.996) between proposed approach and gold standard 2D T2 mapping. In-vivo 3D T2 -mapping average values in healthy subjects (39.0 ± 1.4 ms) and patients (healthy tissue) (39.1 ± 1.4 ms) agree with conventional 2D T2 -mapping (healthy = 38.6 ± 1.2 ms, patients = 40.3 ± 1.7 ms). Bland-Altman analysis reveals bias of 1.8 ms and 95% limits of agreement (LOA) of -2.4-6 ms for healthy subjects, and bias of 1.3 ms and 95% LOA of -1.9 to 4.6 ms for patients. CONCLUSION Validated efficient 3D whole-heart T2 -mapping at hybrid 3T PET-MRI provides myocardial inflammation characterization and non-rigid respiratory motion fields for simultaneous PET data correction. Comparable T2 values were achieved with both 3D and 2D methods. Improved image quality was observed in the PET images after MR-based motion correction.
Collapse
Affiliation(s)
- Alina Schneider
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alina Hua
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sam Ellis
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sami Jeljeli
- PET Centre, St Thomas' Hospital, King's College London & Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Karl P Kunze
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Andrew J Reader
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Eliana Reyes
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Tevfik F Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millenium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millenium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago, Chile
| |
Collapse
|
4
|
Borisch EA, Froemming AT, Grimm RC, Kawashima A, Trzasko JD, Riederer SJ. Model-based image reconstruction with wavelet sparsity regularization for through-plane resolution restoration in T 2 -weighted spin-echo prostate MRI. Magn Reson Med 2023; 89:454-468. [PMID: 36093998 PMCID: PMC9617775 DOI: 10.1002/mrm.29447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The purpose is to develop a model-based image-reconstruction method using wavelet sparsity regularization for maintaining restoration of through-plane resolution but with improved retention of SNR versus linear reconstruction using Tikhonov (TK) regularization in high through-plane resolution (1 mm) T2 -weighted spin-echo (T2SE) images of the prostate. METHODS A wavelet sparsity (WS)-regularized image reconstruction was developed that takes as input a set of ≈80 overlapped 3-mm-thick slices acquired using a T2SE multislice scan and typically 30 coil elements. After testing in contrast and resolution phantoms and calibration in 6 subjects, the WS reconstruction was evaluated in 16 consecutive prostate T2SE MRI exams. Results reconstructed with nominal 1-mm thickness were compared with those from the TK reconstruction with the same raw data. Results were evaluated radiologically. The ratio of magnitude of prostate signal to periprostatic muscle signal was used to assess the presence of noise reduction. Technical performance was also compared with a commercial 3D-T2SE sequence. RESULTS The new WS reconstruction was assessed as superior statistically to TK for overall SNR, contrast, and multiple evaluation criteria related to sharpness while retaining the high (1 mm) through-plane resolution. Wavelet sparsity tended to provide improved overall diagnostic quality versus TK, but not significantly so. In all 16 studies, the prostate-to-muscle signal ratio increased. CONCLUSIONS Model-based WS-regularized reconstruction consistently provides improved SNR in high (1 mm) through-plane resolution images of prostate T2SE MRI versus linear reconstruction using TK regularization.
Collapse
|
5
|
Pseudo-T2 mapping for normalization of T2-weighted prostate MRI. MAGMA (NEW YORK, N.Y.) 2022; 35:573-585. [PMID: 35150363 PMCID: PMC9363383 DOI: 10.1007/s10334-022-01003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/22/2021] [Accepted: 01/23/2022] [Indexed: 01/04/2023]
Abstract
Objective Signal intensity normalization is necessary to reduce heterogeneity in T2-weighted (T2W) magnetic resonance imaging (MRI) for quantitative analysis of multicenter data. AutoRef is an automated dual-reference tissue normalization method that normalizes transversal prostate T2W MRI by creating a pseudo-T2 map. The aim of this study was to evaluate the accuracy of pseudo-T2s and multicenter standardization performance for AutoRef with three pairs of reference tissues: fat/muscle (AutoRefF), femoral head/muscle (AutoRefFH) and pelvic bone/muscle (AutoRefPB). Materials and methods T2s measured by multi-echo spin echo (MESE) were compared to AutoRef pseudo-T2s in the whole prostate (WP) and zones (PZ and TZ/CZ/AFS) for seven asymptomatic volunteers with a paired Wilcoxon signed-rank test. AutoRef normalization was assessed on T2W images from a multicenter evaluation set of 1186 prostate cancer patients. Performance was measured by inter-patient histogram intersections of voxel intensities in the WP before and after normalization in a selected subset of 80 cases. Results AutoRefFH pseudo-T2s best approached MESE T2s in the volunteer study, with no significant difference shown (WP: p = 0.30, TZ/CZ/AFS: p = 0.22, PZ: p = 0.69). All three AutoRef versions increased inter-patient histogram intersections in the multicenter dataset, with median histogram intersections of 0.505 (original data), 0.738 (AutoRefFH), 0.739 (AutoRefF) and 0.726 (AutoRefPB). Discussion All AutoRef versions reduced variation in the multicenter data. AutoRefFH pseudo-T2s were closest to experimentally measured T2s. Supplementary Information The online version contains supplementary material available at 10.1007/s10334-022-01003-9.
Collapse
|
6
|
Ge Y, Jia Y, Li X, Dou W, Chen Z, Yan G. T2 relaxation time for the early prediction of treatment response to chemoradiation in locally advanced rectal cancer. Insights Imaging 2022; 13:113. [PMID: 35796881 PMCID: PMC9263013 DOI: 10.1186/s13244-022-01254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/19/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives Poor responders to chemoradiotherapy (CRT) for locally advanced rectal cancer (LARC) can still have a good prognosis if the treatment strategy is changed in time. However, no reliable predictor of early-treatment response has been identified. The purpose of this study was to investigate the role of T2 relaxation time in magnetic resonance imaging (MRI) for the early prediction of a pathological response to CRT in LARC. Methods A total of 123 MRIs were performed on 41 LARC patients immediately before, during, and after CRT. The corresponding tumor volume, T2 relaxation time, and apparent diffusion coefficient (ADC) values at different scan time points were obtained. The Mann–Whitney U test was used to compare the T2 relaxation time between pathological good responders (GR) and non-good responders (non-GR). The area under the curve (AUC) value was used to quantify the diagnostic ability of each parameter in predicting tumor response to CRT. Results Twenty-one (51%) and 20 (49%) were GRs and non-GRs, respectively. T2 relaxation time showed an excellent intraclass correlation coefficient (ICC) of > 0.85 at three-time points. It was significantly lower in the GR group than in the non-GR group during and after CRT. The early T2 decrease had a high AUC of 0.91 in differentiating non-GRs and GRs, similar to 0.90 of the T2 value after CRT. Conclusions T2 relaxation time may help predict treatment response to CRT for LARC earlier, rather than having to wait until the end of CRT, thereby alleviating the physical burden for patients with no good response. Supplementary Information The online version contains supplementary material available at 10.1186/s13244-022-01254-z.
Collapse
Affiliation(s)
- Yuxi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yanlong Jia
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xiaohong Li
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Weiqiang Dou
- GE Healthcare, MR Research China, Beijing, China
| | - Zhong Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
7
|
Park SB. Quantitative relaxation maps from synthetic MRI for prostate cancer. Acta Radiol 2022; 63:982-983. [PMID: 35200049 DOI: 10.1177/02841851221077405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sung Bin Park
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Henningsson M. Cartesian dictionary-based native T 1 and T 2 mapping of the myocardium. Magn Reson Med 2022; 87:2347-2362. [PMID: 34985143 DOI: 10.1002/mrm.29143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To implement and evaluate a new dictionary-based technique for native myocardial T1 and T2 mapping using Cartesian sampling. METHODS The proposed technique (Multimapping) consisted of single-shot Cartesian image acquisitions in 10 consecutive cardiac cycles, with inversion pulses in cycle 1 and 5, and T2 preparation (TE: 30 ms, 50 ms, and 70 ms) in cycles 8-10. Multimapping was simulated for different T1 and T2 , where entries corresponding to the k-space centers were matched to acquired data. Experiments were performed in a phantom, 16 healthy subjects, and 3 patients with cardiovascular disease. RESULTS Multimapping phantom measurements showed good agreement with reference values for both T1 and T2 , with no discernable heart-rate dependency for T1 and T2 within the range of myocardium. In vivo mean T1 in healthy subjects was significantly higher using Multimapping (T1 = 1114 ± 14 ms) compared to the reference (T1 = 991 ± 26 ms) (p < 0.01). Mean Multimapping T2 (47.1 ± 1.3 ms) and T2 spatial variability (5.8 ± 1.0 ms) was significantly lower compared to the reference (T2 = 54.7 ± 2.2 ms, p < 0.001; spatial variability = 8.4 ± 2.0 ms, p < 0.01). Increased T1 and T2 was detected in all patients using Multimapping. CONCLUSIONS Multimapping allows for simultaneous native myocardial T1 and T2 mapping with a conventional Cartesian trajectory, demonstrating promising in vivo image quality and parameter quantification results.
Collapse
Affiliation(s)
- Markus Henningsson
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences (HMV), Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Zhang J, Ge Y, Zhang H, Wang Z, Dou W, Hu S. Quantitative T2 Mapping to Discriminate Mucinous from Nonmucinous Adenocarcinoma in Rectal Cancer: Comparison with Diffusion-weighted Imaging. Magn Reson Med Sci 2021; 21:593-598. [PMID: 34421090 PMCID: PMC9618932 DOI: 10.2463/mrms.mp.2021-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose: Mucinous adenocarcinoma (MA) is associated with worse clinicopathological characteristics and a poorer prognosis than non-MA. Moreover, MA is related to worse tumor regression grade and tumor downstaging than non-MA. This study investigated whether lesions in MA and non-MA can be quantitatively assessed by T2 mapping technique and compared with the diffusion-weighted imaging (DWI). Methods: High-resolution MRI, DWI, and T2 mapping were performed on 81 patients diagnosed with rectal cancer via biopsy. Afterward, T2 and apparent diffusion coefficient (ADC) values were manually measured by a senior and a junior radiologist independently. By examining surgical specimens, the patients with MA and non-MA were identified. Inter-observer reproducibility was tested, and T2 and ADC values were compared using Mann–Whitney U test. Finally, receiver operating characteristic (ROC) curves were drawn to determine the cut-off value. Results: Of the 81 patients, 11 patients with MA were confirmed by pathology. The inter-observer reproducibility of T2 and ADC values showed an excellent intraclass correlation coefficient (ICC) of 0.993 and 0.913, respectively. MA had higher T2 (87.9 ± 5.11 ms) (P = 0.000) and ADC (2.03 × 10−3 mm2/s) (P = 0.000) values than non-MA (66.6 ± 6.86 ms and 1.17 × 10−3 mm2/s, respectively). The area under the ROC curves (AUC) of the T2 and ADC values were 0.999 (95% confidence interval [CI]: 0.953–1) and 0.979 (95% CI: 0.920–0.998), respectively. When the cutoff value in T2 mapping was 80 ms, the Youden index was the largest, sensitivity was 100%, and specificity was 97%. Conclusion: As a stable quantitative sequence, T2 mapping of MRI is useful in differentiating MA from non-MA. Compared to ADC values, T2 values are also diagnostically effective and non-inferior to ADC values.
Collapse
Affiliation(s)
- Junqin Zhang
- Department of Radiology, The First People's Hospital of Yuhang District
| | - Yuxi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University
| | - Heng Zhang
- Department of Radiology, Affiliated Hospital of Jiangnan University
| | - Zi Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University
| | | | - Shudong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University
| |
Collapse
|
10
|
Freitas AC, Gaspar AS, Sousa I, Teixeira RPAG, Hajnal JV, Nunes RG. Improving B 1 + parametric estimation in the brain from multispin-echo sequences using a fusion bootstrap moves solver. Magn Reson Med 2021; 86:2426-2440. [PMID: 34231250 DOI: 10.1002/mrm.28878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE To simultaneously estimate the B 1 + field (along with the T2 ) in the brain with multispin-echo (MSE) sequences and dictionary matching. METHODS T2 mapping provides clinically relevant information such as in the assessment of brain degenerative diseases. It is commonly obtained with MSE sequences, and accuracy can be further improved by matching the MSE signal to a precomputed dictionary of echo-modulation curves. For additional T1 quantification, transmit B 1 + field knowledge is also required. Preliminary work has shown that although simultaneous brain B 1 + estimation along with T2 is possible, it presents a bimodal distribution with the main peak coinciding with the true value. By taking advantage of this, the B 1 + maps are expected to be spatially smooth by applying an iterative method that takes into account each pixel neighborhood known as the fusion bootstrap moves solver (FBMS). The effect of the FBMS on B 1 + accuracy and piecewise smoothness is investigated and different spatial regularization levels are compared. Total variation regularization was used for both B 1 + and T2 simultaneous estimation because of its simplicity as an initial proof-of-concept; future work could explore non edge-preserving regularization independently for B 1 + . RESULTS Improvements in B 1 + accuracy (up to 45.37% and 16.81% B 1 + error decrease) and recovery of spatially homogeneous maps are shown in simulations and in vivo 3.0T brain data, respectively. CONCLUSION Accurate B 1 + estimated values can be obtained from widely available MSE sequences while jointly estimating T2 maps with the use of echo-modulation curve matching and FBMS at no further cost.
Collapse
Affiliation(s)
- Andreia C Freitas
- Institute for Systems and Robotics (ISR-Lisboa)/LaRSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia S Gaspar
- Institute for Systems and Robotics (ISR-Lisboa)/LaRSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Sousa
- Institute for Systems and Robotics (ISR-Lisboa)/LaRSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rui P A G Teixeira
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Rita G Nunes
- Institute for Systems and Robotics (ISR-Lisboa)/LaRSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Ge YX, Hu SD, Wang Z, Guan RP, Zhou XY, Gao QZ, Yan G. Feasibility and reproducibility of T2 mapping and DWI for identifying malignant lymph nodes in rectal cancer. Eur Radiol 2020; 31:3347-3354. [PMID: 33185752 DOI: 10.1007/s00330-020-07359-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/27/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To evaluate the diagnostic value and reproducibility of T2 mapping versus apparent diffusion coefficients (ADC) for identifying malignant lymph nodes in patients with non-mucinous rectal adenocarcinoma. METHODS High-resolution magnetic resonance imaging, diffusion-weighted imaging, and T2 mapping were performed on patients with suspected metastatic lymph nodes in the mesorectum or around the superior rectal artery with a short-axis diameter of 4-10 mm. The T2 and ADC values of pathology-confirmed metastatic versus non-metastatic lymph nodes were compared using the independent-samples t test and receiver operating characteristic curves. Intra- and inter-observer reproducibility were tested. The cutoff value for T2 relaxation time was determined. RESULTS In total, 67 lymph nodes underwent histological analysis, with 24 in the non-metastatic and 43 in the metastatic groups. Intra- and inter-observer agreements for T2 values were 0.999 and 0.998, respectively, which were higher than the ADC values of 0.924 and 0.844, respectively. The mean T2 and ADC values for metastatic lymph nodes (65 ± 7.8 ms and 1.17 ± 0.16 × 10-3 mm2/s, respectively) were significantly lower than for benign lymph nodes(83 ± 5.7 ms and 1.29 ± 0.15 × 10-3 mm2/s, respectively). T2 values had a higher AUC value of 0.990 than the AUC value for ADC of 0.729. With a cutoff value of 77 ms, sensitivity and specificity for T2 values were 95% and 96%, respectively. CONCLUSIONS T2 mapping had higher diagnostic efficacy and reproducibility than ADC and may be useful in differentiating metastatic from non-metastatic lymph nodes in rectal cancer. KEY POINTS • Mean T2 values were significantly shorter for malignant versus benign LNs in patients with non-mucinous rectal adenocarcinoma. • The diagnostic efficacy and reproducibility of T2 values were excellent and superior to ADC values.
Collapse
Affiliation(s)
- Yu-Xi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, China
| | - Shu-Dong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, China
| | - Zi Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, China
| | - Rong-Ping Guan
- Department of Radiology, Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, China
| | - Xin-Yi Zhou
- Department of Pathology, Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, China
| | - Qi-Zhong Gao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, 214000, Jiangsu, China.
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, 556 Shengguang Road, Xiamen, 361021, Fujian, China.
| |
Collapse
|
12
|
Zi R, Zhu D, Qin Q. Quantitative T 2 mapping using accelerated 3D stack-of-spiral gradient echo readout. Magn Reson Imaging 2020; 73:138-147. [PMID: 32860871 PMCID: PMC7571618 DOI: 10.1016/j.mri.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop a rapid T2 mapping protocol using optimized spiral acquisition, accelerated reconstruction, and model fitting. MATERIALS AND METHODS A T2-prepared stack-of-spiral gradient echo (GRE) pulse sequence was applied. A model-based approach joined with compressed sensing was compared with the two methods applied separately for accelerated reconstruction and T2 mapping. A 2-parameter-weighted fitting method was compared with 2- or 3-parameter models for accurate T2 estimation under the influences of noise and B1 inhomogeneity. The performance was evaluated using both digital phantoms and healthy volunteers. Mitigating partial voluming with cerebrospinal fluid (CSF) was also tested. RESULTS Simulations demonstrates that the 2-parameter-weighted fitting approach was robust to a large range of B1 scales and SNR levels. With an in-plane acceleration factor of 5, the model-based compressed sensing-incorporated method yielded around 8% normalized errors compared to references. The T2 estimation with and without CSF nulling was consistent with literature values. CONCLUSION This work demonstrated the feasibility of a T2 quantification technique with 3D high-resolution and whole-brain coverage in 2-3 min. The proposed iterative reconstruction method, which utilized the model consistency, data consistency and spatial sparsity jointly, provided reasonable T2 estimation. The technique also allowed mitigation of CSF partial volume effect.
Collapse
Affiliation(s)
- Ruoxun Zi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qin Qin
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
13
|
Roccia E, Neji R, Benkert T, Kiefer B, Goh V, Dregely I. Distortion-free 3D diffusion imaging of the prostate using a multishot diffusion-prepared phase-cycled acquisition and dictionary matching. Magn Reson Med 2020; 85:1441-1454. [PMID: 32989765 DOI: 10.1002/mrm.28527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 11/06/2022]
Abstract
PURPOSE To achieve three-dimensional (3D) distortion-free apparent diffusion coefficient (ADC) maps for prostate imaging using a multishot diffusion prepared-gradient echo (msDP-GRE) sequence and ADC dictionary matching. METHODS The msDP-GRE sequence is combined with a 3D Cartesian, centric k-space trajectory with center oversampling. Oversampled k-space center averaging and phase cycling are used to address motion- and eddy current-induced magnitude corruption. Extended-phase-graph (EPG) simulations and ADC dictionary matching are used to compensate for T1 effects. To shorten the acquisition time, each volume is undersampled by a factor of two and reconstructed using iterative sensitivity encoding. The proposed approach is characterized using simulations and validated in a kiwifruit phantom, comparing the msDP-GRE ADC maps obtained using both standard monoexponential fitting and dictionary matching with the clinical standard single-shot diffusion weighted-echo planar imaging (ssDW-EPI) ADC. Initial in vivo feasibility is tested in three healthy subjects, and geometric distortion is compared with anatomical T2 -weighted-turbo spin echo. RESULTS In the kiwifruit phantom experiment, the signal magnitude could be recovered using k-space center averaging and phase cycling. No statistically significant difference was observed in the ADC values estimated using msDP-GRE with dictionary matching and clinical standard DW-EPI (P < .05). The in vivo prostate msDP-GRE scans were free of geometric distortion caused by off-resonance susceptibility, and the ADC values in the prostate were in agreement with values found in the published literature. CONCLUSION Nondistorted 3D ADC maps of the prostate can be achieved using a msDP sequence and dictionary matching.
Collapse
Affiliation(s)
- Elisa Roccia
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,MR Research Collaboration, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Thomas Benkert
- Oncology Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Berthold Kiefer
- Oncology Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Vicky Goh
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Radiology, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Isabel Dregely
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Bustin A, Milotta G, Ismail TF, Neji R, Botnar RM, Prieto C. Accelerated free-breathing whole-heart 3D T 2 mapping with high isotropic resolution. Magn Reson Med 2020; 83:988-1002. [PMID: 31535729 PMCID: PMC6899588 DOI: 10.1002/mrm.27989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE To enable free-breathing whole-heart 3D T2 mapping with high isotropic resolution in a clinically feasible and predictable scan time. This 3D motion-corrected undersampled signal matched (MUST) T2 map is achieved by combining an undersampled motion-compensated T2 -prepared Cartesian acquisition with a high-order patch-based reconstruction. METHODS The 3D MUST-T2 mapping acquisition consists of an electrocardiogram-triggered, T2 -prepared, balanced SSFP sequence with nonselective saturation pulses. Three undersampled T2 -weighted volumes are acquired using a 3D Cartesian variable-density sampling with increasing T2 preparation times. A 2D image-based navigator is used to correct for respiratory motion of the heart and allow 100% scan efficiency. Multicontrast high-dimensionality undersampled patch-based reconstruction is used in concert with dictionary matching to generate 3D T2 maps. The proposed framework was evaluated in simulations, phantom experiments, and in vivo (10 healthy subjects, 2 patients) with 1.5-mm3 isotropic resolution. Three-dimensional MUST-T2 was compared against standard multi-echo spin-echo sequence (phantom) and conventional breath-held single-shot 2D SSFP T2 mapping (in vivo). RESULTS Three-dimensional MUST-T2 showed high accuracy in phantom experiments (R2 > 0.99). The precision of T2 values was similar for 3D MUST-T2 and 2D balanced SSFP T2 mapping in vivo (5 ± 1 ms versus 4 ± 2 ms, P = .52). Slightly longer T2 values were observed with 3D MUST-T2 in comparison to 2D balanced SSFP T2 mapping (50.7 ± 2 ms versus 48.2 ± 1 ms, P < .05). Preliminary results in patients demonstrated T2 values in agreement with literature values. CONCLUSION The proposed approach enables free-breathing whole-heart 3D T2 mapping with high isotropic resolution in about 8 minutes, achieving accurate and precise T2 quantification of myocardial tissue in a clinically feasible scan time.
Collapse
Affiliation(s)
- Aurélien Bustin
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Giorgia Milotta
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Tevfik F. Ismail
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Radhouene Neji
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
- MR Research Collaborations, Siemens HealthcareFrimleyUnited Kingdom
| | - René M. Botnar
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| | - Claudia Prieto
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
15
|
Vidya Shankar R, Roccia E, Cruz G, Neji R, Botnar R, Prezzi D, Goh V, Prieto C, Dregely I. Accelerated 3D T 2 w-imaging of the prostate with 1-millimeter isotropic resolution in less than 3 minutes. Magn Reson Med 2019; 82:721-731. [PMID: 31006906 PMCID: PMC6563534 DOI: 10.1002/mrm.27764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE To achieve 3D T2 w imaging of the prostate with 1-mm isotropic resolution in less than 3 min. METHODS We devised and implemented a 3D T2 -prepared multishot balanced steady state free precession (T2 prep-bSSFP) acquisition sequence with a variable density undersampled trajectory combined with a total variation regularized iterative SENSE (TV-SENSE) reconstruction. Prospectively undersampled images of the prostate (acceleration factor R = 3) were acquired in 11 healthy subjects in an institutional review board-approved study. Image quality metrics (subjective signal-to-noise ratio, contrast, sharpness, and overall prostate image quality) were evaluated by 2 radiologists. Scores of the proposed accelerated sequence were compared using the Wilcoxon signed-rank and Kruskal-Wallis non-parametric tests to prostate images acquired using a fully sampled 3D T2 prep-bSSFP acquisition, and with clinical standard 2D and 3D turbo spin echo (TSE) T2 w acquisitions. A P-value < 0.05 was considered significant. RESULTS The 3× accelerated 3D T2 prep-bSSFP images required a scan time (min:s) of 2:45, while the fully sampled 3D T2 prep-bSSFP and clinical standard 3D TSE images were acquired in 8:23 and 7:29, respectively. Image quality scores (contrast, sharpness, and overall prostate image quality) of the accelerated 3D T2 prep-bSSFP, fully sampled T2 prep-bSSFP, and clinical standard 3D TSE acquisitions along all 3 spatial dimensions were not significantly different (P > 0.05). CONCLUSION 3D T2 w images of the prostate with 1-mm isotropic resolution can be acquired in less than 3 min, with image quality that is comparable to a clinical standard 3D TSE sequence but only takes a third of the acquisition time.
Collapse
Affiliation(s)
- Rohini Vidya Shankar
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Elisa Roccia
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Gastao Cruz
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
- MR Research Collaborations, Siemens Healthcare LimitedFrimleyUnited Kingdom
| | - René Botnar
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Davide Prezzi
- Department of RadiologyGuy's and St Thomas' Hospitals NHS Foundation TrustLondonUnited Kingdom
| | - Vicky Goh
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
- Department of RadiologyGuy's and St Thomas' Hospitals NHS Foundation TrustLondonUnited Kingdom
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Isabel Dregely
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| |
Collapse
|