1
|
Chabert S, Salas R, Cantor E, Veloz A, Cancino A, González M, Torres F, Bennett C. Hemodynamic response function description in patients with glioma. J Neuroradiol 2024; 51:101156. [PMID: 37805126 DOI: 10.1016/j.neurad.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Functional magnetic resonance imaging is a powerful tool that has provided many insights into cognitive sciences. Yet, as its analysis is mostly based on the knowledge of an a priori canonical hemodynamic response function (HRF), its reliability in patients' applications has been questioned. There have been reports of neurovascular uncoupling in patients with glioma, but no specific description of the Hemodynamic Response Function (HRF) in glioma has been reported so far. The aim of this work is to describe the HRF in patients with glioma. METHODS Forty patients were included. MR images were acquired on a 1.5T scanner. Activated clusters were identified using a fuzzy general linear model; HRFs were adjusted with a double-gamma function. Analyses were undertaken considering the tumor grade, age, sex, tumor location, and activated location. RESULTS Differences are found in the occipital, limbic, insular, and sub-lobar areas, but not in the frontal, temporal, and parietal lobes. The presence of a glioma slows the time-to-peak and onset times by 5.2 and 3.8 % respectively; high-grade gliomas present 8.1 % smaller HRF widths than low-grade gliomas. DISCUSSION AND CONCLUSION There is significant HRF variation due to the presence of glioma, but the magnitudes of the observed differences are small. Most processing pipelines should be robust enough for this magnitude of variation and little if any impact should be visible on functional maps. The differences that have been observed in the literature between functional mapping obtained with magnetic resonance vs. that obtained with direct electrostimulation during awake surgery are more probably due to the intrinsic difference in the mapping process: fMRI mapping detects all recruited areas while intra-surgical mapping indicates only the areas indispensable for the realization of a certain task. Surgical mapping might not be the gold standard to use when trying to validate the fMRI mapping process.
Collapse
Affiliation(s)
- Stéren Chabert
- School of Biomedical Engineering, Universidad de Valparaiso, General Cruz 222, Valparaiso, Chile; Millennium Science Initiative Intelligent Healthcare Engineering, Santiago, Chile.
| | - Rodrigo Salas
- School of Biomedical Engineering, Universidad de Valparaiso, General Cruz 222, Valparaiso, Chile; Millennium Science Initiative Intelligent Healthcare Engineering, Santiago, Chile
| | - Erika Cantor
- Institute of Statistics, Universidad de Valparaíso, Valparaíso, Chile
| | - Alejandro Veloz
- School of Biomedical Engineering, Universidad de Valparaiso, General Cruz 222, Valparaiso, Chile
| | - Astrid Cancino
- Millennium Science Initiative Intelligent Healthcare Engineering, Santiago, Chile; Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaiso, Valparaiso, Chile
| | - Matías González
- Neurosurgery Department, Hospital Carlos van Buren, Valparaiso, Chile
| | - Francisco Torres
- Millennium Science Initiative Intelligent Healthcare Engineering, Santiago, Chile; Radiology Department, Hospital Carlos van Buren, Valparaiso, Chile
| | - Carlos Bennett
- Neurosurgery Department, Hospital Carlos van Buren, Valparaiso, Chile
| |
Collapse
|
2
|
Miletić S, Keuken MC, Mulder M, Trampel R, de Hollander G, Forstmann BU. 7T functional MRI finds no evidence for distinct functional subregions in the subthalamic nucleus during a speeded decision-making task. Cortex 2022; 155:162-188. [DOI: 10.1016/j.cortex.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
|
3
|
Polimeni JR, Lewis LD. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog Neurobiol 2021; 207:102174. [PMID: 34525404 PMCID: PMC8688322 DOI: 10.1016/j.pneurobio.2021.102174] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, suggesting it may provide a new avenue for studying subsecond neural processes in the human brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical models of the hemodynamic response. Several studies have established nonlinear properties of the hemodynamic response that have significant implications for fast fMRI. We first review nonlinear properties of the hemodynamic response function that may underlie fast fMRI signals. We then illustrate the breakdown of canonical hemodynamic response models in the context of fast neural dynamics. We will then argue that the canonical hemodynamic response function is not likely to reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific questions that could be addressed using this approach.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
4
|
Priovoulos N, Roos T, Ipek Ö, Meliado EF, Nkrumah RO, Klomp DWJ, van der Zwaag W. A local multi-transmit coil combined with a high-density receive array for cerebellar fMRI at 7 T. NMR IN BIOMEDICINE 2021; 34:e4586. [PMID: 34231292 PMCID: PMC8519055 DOI: 10.1002/nbm.4586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The human cerebellum is involved in a wide array of functions, ranging from motor control to cognitive control, and as such is of great neuroscientific interest. However, its function is underexplored in vivo, due to its small size, its dense structure and its placement at the bottom of the brain, where transmit and receive fields are suboptimal. In this study, we combined two dense coil arrays of 16 small surface receive elements each with a transmit array of three antenna elements to improve BOLD sensitivity in the human cerebellum at 7 T. Our results showed improved B1+ and SNR close to the surface as well as g-factor gains compared with a commercial coil designed for whole-head imaging. This resulted in improved signal stability and large gains in the spatial extent of the activation close to the surface (<3.5 cm), while good performance was retained deeper in the cerebellum. Modulating the phase of the transmit elements of the head coil to constructively interfere in the cerebellum improved the B1+ , resulting in a temporal SNR gain. Overall, our results show that a dedicated transmit array along with the SNR gains of surface coil arrays can improve cerebellar imaging, at the cost of a decreased field of view and increased signal inhomogeneity.
Collapse
Affiliation(s)
- Nikos Priovoulos
- Spinoza Center for NeuroimagingRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Thomas Roos
- Spinoza Center for NeuroimagingRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Özlem Ipek
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Ettore F. Meliado
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtNetherlands
| | - Richard O. Nkrumah
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Dennis W. J. Klomp
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtNetherlands
| | - Wietske van der Zwaag
- Spinoza Center for NeuroimagingRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| |
Collapse
|
5
|
Reducing SAR in 7T brain fMRI by circumventing fat suppression while removing the lipid signal through a parallel acquisition approach. Sci Rep 2021; 11:15371. [PMID: 34321529 PMCID: PMC8319205 DOI: 10.1038/s41598-021-94692-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Ultra-high-field functional magnetic resonance imaging (fMRI) offers a way to new insights while increasing the spatial and temporal resolution. However, a crucial concern in 7T human MRI is the increase in power deposition, supervised through the specific absorption rate (SAR). The SAR limitation can restrict the brain coverage or the minimal repetition time of fMRI experiments. In the majority of today’s studies fMRI relies on the well-known gradient-echo echo-planar imaging (GRE-EPI) sequence, which offers ultrafast acquisition. Commonly, the GRE-EPI sequence comprises two pulses: fat suppression and excitation. This work provides the means for a significant reduction in the SAR by circumventing the fat-suppression pulse. Without this fat-suppression, however, lipid signal can result in artifacts due to the chemical shift between the lipid and water signals. Our approach exploits a reconstruction similar to the simultaneous-multi-slice method to separate the lipid and water images, thus avoiding undesired lipid artifacts in brain images. The lipid-water separation is based on the known spatial shift of the lipid signal, which can be detected by the multi-channel coils sensitivity profiles. Our study shows robust human imaging, offering greater flexibility to reduce the SAR, shorten the repetition time or increase the volume coverage with substantial benefit for brain functional studies.
Collapse
|
6
|
Oran OF, Klassen LM, Gilbert KM, Gati JS, Menon RS. Elimination of low-inversion-efficiency induced artifacts in whole-brain MP2RAGE using multiple RF-shim configurations at 7 T. NMR IN BIOMEDICINE 2020; 33:e4387. [PMID: 32749022 DOI: 10.1002/nbm.4387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
The magnetization-prepared two-rapid-gradient-echo (MP2RAGE) sequence is used for structural T1 -weighted imaging and T1 mapping of the human brain. In this sequence, adiabatic inversion RF pulses are commonly used, which require the B1+ magnitude to be above a certain threshold. Achieving this threshold in the whole brain may not be possible at ultra-high fields because of the short RF wavelength. This results in low-inversion regions especially in the inferior brain (eg cerebellum and temporal lobes), which is reflected as regions of bright signal in MP2RAGE images. This study aims at eliminating the low-inversion-efficiency induced artifacts in MP2RAGE images at 7 T. The proposed technique takes advantage of parallel RF transmission systems by splitting the brain into two overlapping slabs and calculating the complex weights of transmit channels (ie RF shims) on these slabs for excitation and inversion independently. RF shims were calculated using fast methods implemented in the standard workflow. The excitation RF pulse was designed to obtain slabs with flat plateaus and sharp edges. These slabs were joined into a single volume during the online image reconstruction. The two-slab strategy naturally results in a signal-to-noise ratio loss; however, it allowed the use of independent shims to make the B1+ field exceed the adiabatic threshold in the inferior brain, eliminating regions of low inversion efficiency. Accordingly, the normalized root-mean-square errors in the inversion were reduced to below 2%. The two-slab strategy was found to outperform subject-specific kT -point inversion RF pulses in terms of inversion error. The proposed strategy is a simple yet effective method to eliminate low-inversion-efficiency artifacts; consequently, MP2RAGE-based, artifact-free T1 -weighted structural images were obtained in the whole brain at 7 T.
Collapse
Affiliation(s)
- Omer F Oran
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
| | - L Martyn Klassen
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Miletić S, Bazin PL, Weiskopf N, van der Zwaag W, Forstmann BU, Trampel R. fMRI protocol optimization for simultaneously studying small subcortical and cortical areas at 7 T. Neuroimage 2020; 219:116992. [DOI: 10.1016/j.neuroimage.2020.116992] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
|
8
|
Gentile E, Ricci K, Vecchio E, Libro G, Delussi M, Casas-Barragàn A, de Tommaso M. A Simple Pattern of Movement is not Able to Inhibit Experimental Pain in FM Patients and Controls: an sLORETA Study. Brain Sci 2020; 10:E190. [PMID: 32214053 PMCID: PMC7139913 DOI: 10.3390/brainsci10030190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
Motor cortex activation seems to induce an analgesic effect on pain that would be different between patients with fibromyalgia (FM) and control subjects. This study was conducted to analyze the changes of the laser-evoked potentials (LEPs) induced during a finger tapping task in the FM patients and the controls employing a multi-dipolar analysis according to Standardized low resolution brain electromagnetic tomography (sLORETA) method. The LEPs from 38 FM patients and 21 controls were analyzed. The LEPs were recorded while subjects performed a slow and a fast finger tapping task. We confirmed that the difference between N1, N2 and P2 wave amplitudes between conditions and groups was not significant. In control subjects, the fast finger tapping task induced a modification of cortical source activation in the main areas processing laser stimulation from the moving hand independently from the movement speed. In summary, a simple and repetitive movement is not able to induce consistent inhibition of experimental pain evoked by the moving and the not moving hand in each group. It could interfere with LEP sources within the limbic area at least in control subjects, without inhibit cortical responses or explain the different pattern of motor and pain interaction in FM patients.
Collapse
Affiliation(s)
- Eleonora Gentile
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, 70121 Bari, Italy; (K.R.); (E.V.); (G.L.); (M.D.); (M.d.T.)
| | - Katia Ricci
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, 70121 Bari, Italy; (K.R.); (E.V.); (G.L.); (M.D.); (M.d.T.)
| | - Eleonora Vecchio
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, 70121 Bari, Italy; (K.R.); (E.V.); (G.L.); (M.D.); (M.d.T.)
| | - Giuseppe Libro
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, 70121 Bari, Italy; (K.R.); (E.V.); (G.L.); (M.D.); (M.d.T.)
| | - Marianna Delussi
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, 70121 Bari, Italy; (K.R.); (E.V.); (G.L.); (M.D.); (M.d.T.)
| | | | - Marina de Tommaso
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, 70121 Bari, Italy; (K.R.); (E.V.); (G.L.); (M.D.); (M.d.T.)
| |
Collapse
|
9
|
Groenendijk IM, Luijten SPR, de Zeeuw CI, Holstege JC, Scheepe JR, van der Zwaag W, Blok BFM. Whole brain 7T-fMRI during pelvic floor muscle contraction in male subjects. Neurourol Urodyn 2019; 39:382-392. [PMID: 31724214 PMCID: PMC7004158 DOI: 10.1002/nau.24218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Aim The primary aim of this study is to demonstrate that 7‐tesla functional magnetic resonance imaging (7T‐fMRI) can visualize the neural representations of the male pelvic floor in the whole brain of a single subject. Methods In total, 17 healthy male volunteers (age 20‐47) were scanned in a 7T‐MRI scanner (Philips Achieva). The scanning protocol consisted of two functional runs using a multiband echo planar imaging sequence and a T1‐weighted scan. The subjects executed two motor tasks, one involving consecutive pelvic floor muscle contractions (PFMC) and a control task with tongue movements. Results In single subjects, results of both tasks were visualized in the cortex, putamen, thalamus, and the cerebellum. Activation was seen during PFMC in the superomedial and inferolateral primary motor cortex (M1), supplementary motor area (SMA), insula, midcingulate gyrus (MCG), putamen, thalamus, and in the anterior and posterior lobes of the cerebellum. During tongue movement, activation was seen in the inferolateral M1, SMA, MCG, putamen, thalamus, and anterior and posterior lobes of the cerebellum. Tongue activation was found in the proximity of, but not overlapping with, the PFMC activation. Connectivity analysis demonstrated differences in neural networks involved in PFMC and tongue movement. Conclusion This study demonstrated that 7T‐fMRI can be used to visualize brain areas involved in pelvic floor control in the whole brain of single subjects and defined the specific brain areas involved in PFMC. Distinct differences between brain mechanisms controlling the pelvic floor and tongue movements were demonstrated using connectivity analysis.
Collapse
Affiliation(s)
- Ilse M Groenendijk
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sven P R Luijten
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Chris I de Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Joan C Holstege
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen R Scheepe
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Bertil F M Blok
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Marvel CL, Morgan OP, Kronemer SI. How the motor system integrates with working memory. Neurosci Biobehav Rev 2019; 102:184-194. [PMID: 31039359 PMCID: PMC6604620 DOI: 10.1016/j.neubiorev.2019.04.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Working memory is vital for basic functions in everyday life. During working memory, one holds a finite amount of information in mind until it is no longer required or when resources to maintain this information are depleted. Convergence of neuroimaging data indicates that working memory is supported by the motor system, and in particular, by regions that are involved in motor planning and preparation, in the absence of overt movement. These "secondary motor" regions are physically located between primary motor and non-motor regions, within the frontal lobe, cerebellum, and basal ganglia, creating a functionally organized gradient. The contribution of secondary motor regions to working memory may be to generate internal motor traces that reinforce the representation of information held in mind. The primary aim of this review is to elucidate motor-cognitive interactions through the lens of working memory using the Sternberg paradigm as a model and to suggest origins of the motor-cognitive interface. In addition, we discuss the implications of the motor-cognitive relationship for clinical groups with motor network deficits.
Collapse
Affiliation(s)
- Cherie L Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Owen P Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sharif I Kronemer
- Department of Neurology, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|