1
|
Kim K, Narsinh K, Ozhinsky E. Technical advances in motion-robust MR thermometry. Magn Reson Med 2024; 92:15-27. [PMID: 38501903 PMCID: PMC11132643 DOI: 10.1002/mrm.30057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/20/2024]
Abstract
Proton resonance frequency shift (PRFS) MR thermometry is the most common method used in clinical thermal treatments because of its fast acquisition and high sensitivity to temperature. However, motion is the biggest obstacle in PRFS MR thermometry for monitoring thermal treatment in moving organs. This challenge arises because of the introduction of phase errors into the PRFS calculation through multiple methods, such as image misregistration, susceptibility changes in the magnetic field, and intraframe motion during MRI acquisition. Various approaches for motion correction have been developed for real-time, motion-robust, and volumetric MR thermometry. However, current technologies have inherent trade-offs among volume coverage, processing time, and temperature accuracy. These tradeoffs should be considered and chosen according to the thermal treatment application. In hyperthermia treatment, precise temperature measurements are of increased importance rather than the requirement for exceedingly high temporal resolution. In contrast, ablation procedures require robust temporal resolution to accurately capture a rapid temperature rise. This paper presents a comprehensive review of current cutting-edge MRI techniques for motion-robust MR thermometry, and recommends which techniques are better suited for each thermal treatment. We expect that this study will help discern the selection of motion-robust MR thermometry strategies and inspire the development of motion-robust volumetric MR thermometry for practical use in clinics.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| | - Kazim Narsinh
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| | - Eugene Ozhinsky
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
2
|
Daudé P, Roussel T, Troalen T, Viout P, Hernando D, Guye M, Kober F, Confort Gouny S, Bernard M, Rapacchi S. Comparative review of algorithms and methods for chemical-shift-encoded quantitative fat-water imaging. Magn Reson Med 2024; 91:741-759. [PMID: 37814776 DOI: 10.1002/mrm.29860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE To propose a standardized comparison between state-of-the-art open-source fat-water separation algorithms for proton density fat fraction (PDFF) andR 2 * $$ {R}_2^{\ast } $$ quantification using an open-source multi-language toolbox. METHODS Eight recent open-source fat-water separation algorithms were compared in silico, in vitro, and in vivo. Multi-echo data were synthesized with varying fat-fractions, B0 off-resonance, SNR and TEs. Experimental evaluation was conducted using calibrated fat-water phantoms acquired at 3T and multi-site open-source phantoms data. Algorithms' performances were observed on challenging in vivo datasets at 3T. Finally, reconstruction algorithms were investigated with different fat spectra to evaluate the importance of the fat model. RESULTS In silico and in vitro results proved most algorithms to be not sensitive to fat-water swaps andB 0 $$ {\mathrm{B}}_0 $$ offsets with five or more echoes. However, two methods remained inaccurate even with seven echoes and SNR = 50, and two other algorithms' precision depended on the echo spacing scheme (p < 0.05). The remaining four algorithms provided reliable performances with limits of agreement under 2% for PDFF and 6 s-1 forR 2 * $$ {R}_2^{\ast } $$ . The choice of fat spectrum model influenced quantification of PDFF mildly (<2% bias) and ofR 2 * $$ {R}_2^{\ast } $$ more severely, with errors up to 20 s-1 . CONCLUSION In promoting standardized comparisons of MRI-based fat and iron quantification using chemical-shift encoded multi-echo methods, this benchmark work has revealed some discrepancies between recent approaches for PDFF andR 2 * $$ {R}_2^{\ast } $$ mapping. Explicit choices and parameterization of the fat-water algorithm appear necessary for reproducibility. This open-source toolbox further enables the user to optimize acquisition parameters by predicting algorithms' margins of errors.
Collapse
Affiliation(s)
- Pierre Daudé
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tangi Roussel
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | | | - Patrick Viout
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Diego Hernando
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Frank Kober
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Sylviane Confort Gouny
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Monique Bernard
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Stanislas Rapacchi
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
3
|
Zhang C, Shi J, Li B, Yu X, Feng X, Yang H. Magnetic resonance imaging-guided radiofrequency ablation of breast cancer: a current state of the art review. Diagn Interv Radiol 2024; 30:48-54. [PMID: 36971252 PMCID: PMC10773175 DOI: 10.4274/dir.2022.221429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/22/2022] [Indexed: 03/31/2023]
Abstract
With a gradual increase in breast cancer incidence and mortality rates and an urgent need to improve patient prognosis and cosmetology, magnetic resonance imaging (MRI)-guided radiofrequency ablation (RFA) therapy has attracted wide attention as a new treatment method for breast cancer. MRI-RFA results in a higher complete ablation rate and extremely low recurrence and complication rates. Thus, it may be used as an independent treatment for breast cancer or adjuvant to breast-conserving surgery to reduce the extent of breast resection. Furthermore, with MRI guidance, accurate control of RFA can be achieved, and breast cancer treatment can enter a new stage of minimally invasive, safe, and comprehensive therapy. With progress in MR thermometry technology, the applications of MRI are expected to broaden.
Collapse
Affiliation(s)
- Chuan Zhang
- Affiliated Hospital of North Sichuan Medical College, Department of Radiology, Nanchong, China
| | - Jing Shi
- North Sichuan Medical College, School of Medical Imaging, Sichuan Province Nanchong, China
| | - Bing Li
- Affiliated Hospital of North Sichuan Medical College, Department of Radiology, Nanchong, China
| | - Xiaoxuan Yu
- Affiliated Hospital of North Sichuan Medical College, Department of Radiology, Nanchong, China
| | - Xu Feng
- Affiliated Hospital of North Sichuan Medical College, Department of Radiology, Nanchong, China
| | - Hanfeng Yang
- Affiliated Hospital of North Sichuan Medical College, Department of Radiology, Nanchong, China
| |
Collapse
|
4
|
Pan Z, Liu S, Hu J, Luo H, Han M, Sun H, Liu W, Wu Z, Guo H. Improved MR temperature imaging at 0.5 T using view-sharing accelerated multiecho thermometry for MR-guided laser interstitial thermal therapy. NMR IN BIOMEDICINE 2023:e4933. [PMID: 36941216 DOI: 10.1002/nbm.4933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The aim of the current study was to improve temperature-monitoring precision using multiecho proton resonance frequency shift-based thermometry with view-sharing acceleration for MR-guided laser interstitial thermal therapy (MRgLITT) on a 0.5-T low-field MR system. Both precision and speed of the temperature measurement for clinical MRgLITT treatments suffer at low field, due to reduced image signal-to-noise ratio (SNR), decreased temperature-induced phase changes, and limited RF receiver channels. In this work, a bipolar multiecho gradient-recalled echo sequence with a temperature-to-noise ratio optimal weighted echo combination is applied to improve the temperature precision. A view-sharing-based approach is utilized to accelerate signal acquisitions while preserving image SNRs. The method was evaluated using ex vivo (pork and pig brain) LITT heating experiments and in vivo (human brain) nonheating experiments on a high-performance 0.5-T scanner. In terms of results, (1) after echo combination, multiecho thermometry (i.e., ~7.5-40.5 ms, 7 TEs) provides ~1.5-1.9 times higher temperature precision than the no echo combination case (i.e., TE7 = 40.5 ms) within the same readout bandwidth. Additionally, echo registration is necessary for the bipolar multiecho sequence; (2) for a threefold acceleration, the view-sharing approach with variable-density subsampling shows around 1.8 times lower temperature errors than the GRAPPA method. Particularly for view-sharing, variable-density subsampling performs better than Interleave subsampling; and (3) ex vivo heating and in vivo nonheating experiments demonstrated that the temperature accuracy was less than 0.5 ° C $$ {}^{{}^{\circ}}\mathrm{C} $$ and that the temperature precision was less than 0.6 ° C $$ {}^{{}^{\circ}}\mathrm{C} $$ using the proposed 0.5-T thermometry. It was concluded that view-sharing accelerated multiecho thermometry is a practical temperature measurement approach for MRgLITT at 0.5 T.
Collapse
Affiliation(s)
- Ziyi Pan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Simin Liu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | | | - Hai Luo
- Marvel Stone Healthcare, Wuxi, Jiangsu, China
| | - Meng Han
- Sinovation Medical, Beijing, China
| | - Hao Sun
- Sinovation Medical, Beijing, China
| | | | - Ziyue Wu
- Marvel Stone Healthcare, Wuxi, Jiangsu, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Adams-Tew SI, Johnson S, Odéen H, Parker DL, Payne A. Validation of a drift-corrected 3D MR temperature imaging sequence for breast MR-guided focused ultrasound treatments. Magn Reson Imaging 2023; 96:126-134. [PMID: 36496098 PMCID: PMC9810259 DOI: 10.1016/j.mri.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Real-time temperature monitoring is critical to the success of thermally ablative therapies. This work validates a 3D thermometry sequence with k-space field drift correction designed for use in magnetic resonance-guided focused ultrasound treatments for breast cancer. Fiberoptic probes were embedded in tissue-mimicking phantoms, and temperature change measurements from the probes were compared with the magnetic resonance temperature imaging measurements following heating with focused ultrasound. Precision and accuracy of measurements were also evaluated in free-breathing healthy volunteers (N = 3) under a non-heating condition. MR temperature measurements agreed closely with those of fiberoptic probes, with a 95% confidence interval of measurement difference from -2.0 °C to 1.4 °C. Field drift-corrected measurements in vivo had a precision of 1.1 ± 0.7 °C and were accurate within 1.3 ± 0.9 °C across the three volunteers. The field drift correction method improved precision and accuracy by an average of 46 and 42%, respectively, when compared to the uncorrected data. This temperature imaging sequence can provide accurate measurements of temperature change in aqueous tissues in the breast and support the use of this sequence in clinical investigations of focused ultrasound treatments for breast cancer.
Collapse
Affiliation(s)
- Samuel I Adams-Tew
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Sara Johnson
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Kikken MWI, Steensma BR, van den Berg CAT, Raaijmakers AJE. Multi-echo MR thermometry in the upper leg at 7 T using near-harmonic 2D reconstruction for initialization. Magn Reson Med 2023; 89:2347-2360. [PMID: 36688273 DOI: 10.1002/mrm.29591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE The aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for validation against thermal simulations. Such an MR thermometry model would be a valuable tool to get an indication on one of the major safety concerns in MR imaging: the tissue heating occurring due to radiofrequency (RF) exposure. To prevent excessive temperature rise, RF power deposition, expressed as specific absorption rate, cannot exceed predefined thresholds. Using these thresholds, MRI has demonstrated an extensive history of safe usage. Nevertheless, MR thermometry would be a valuable tool to address some of the unmet needs in the area of RF safety assessment, such as validation of specific absorption rate and thermal simulations, investigation of local peak temperatures during scanning, or temperature-based safety guidelines. METHODS The harmonic initialized model-based multi-echo approach is proposed. The method combines a previously published model-based multi-echo water/fat separated approach with an also previously published near-harmonic 2D reconstruction method. The method is tested on the human thigh with a multi-transmit array at 7 T, in three volunteers, and for several RF shims. RESULTS Precision and accuracy are improved considerably compared to a previous fat-referenced method (precision: 0.09 vs. 0.19°C). Comparison of measured temperature rise distributions to subject-specific simulated counterparts show good relative agreement for multiple RF shim settings. CONCLUSION The high precision shows promising potential for validation purposes and other RF safety applications.
Collapse
Affiliation(s)
- Mathijs W I Kikken
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander J E Raaijmakers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Feddersen TV, Poot DHJ, Paulides MM, Salim G, van Rhoon GC, Hernandez-Tamames JA. Multi-echo gradient echo pulse sequences: which is best for PRFS MR thermometry guided hyperthermia? Int J Hyperthermia 2023; 40:2184399. [PMID: 36907223 DOI: 10.1080/02656736.2023.2184399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
PURPOSE MR thermometry (MRT) enables noninvasive temperature monitoring during hyperthermia treatments. MRT is already clinically applied for hyperthermia treatments in the abdomen and extremities, and devices for the head are under development. In order to optimally exploit MRT in all anatomical regions, the best sequence setup and post-processing must be selected, and the accuracy needs to be demonstrated. METHODS MRT performance of the traditionally used double-echo gradient-echo sequence (DE-GRE, 2 echoes, 2D) was compared to multi-echo sequences: a 2D fast gradient-echo (ME-FGRE, 11 echoes) and a 3D fast gradient-echo sequence (3D-ME-FGRE, 11 echoes). The different methods were assessed on a 1.5 T MR scanner (GE Healthcare) using a phantom cooling down from 59 °C to 34 °C and unheated brains of 10 volunteers. In-plane motion of volunteers was compensated by rigid body image registration. For the ME sequences, the off-resonance frequency was calculated using a multi-peak fitting tool. To correct for B0 drift, the internal body fat was selected automatically using water/fat density maps. RESULTS The accuracy of the best performing 3D-ME-FGRE sequence was 0.20 °C in phantom (in the clinical temperature range) and 0.75 °C in volunteers, compared to DE-GRE values of 0.37 °C and 1.96 °C, respectively. CONCLUSION For hyperthermia applications, where accuracy is more important than resolution or scan-time, the 3D-ME-FGRE sequence is deemed the most promising candidate. Beyond its convincing MRT performance, the ME nature enables automatic selection of internal body fat for B0 drift correction, an important feature for clinical application.
Collapse
Affiliation(s)
- Theresa V Feddersen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk H J Poot
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Margarethus M Paulides
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Electromagnetics for Care & Cure Research Lab, Center for Care and Cure Technologies Eindhoven (C3Te), Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ghassan Salim
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Applied Radiation and Isotopes, Reactor Institute Delft, Delft University of Technology, Delft, The Netherlands
| | - Juan A Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Imaging Physics, Applied Physics Faculty, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
8
|
Hübner F, Blauth S, Leithäuser C, Schreiner R, Siedow N, Vogl TJ. Validating a simulation model for laser-induced thermotherapy using MR thermometry. Int J Hyperthermia 2022; 39:1315-1326. [PMID: 36220179 DOI: 10.1080/02656736.2022.2129102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES We want to investigate whether temperature measurements obtained from MR thermometry are accurate and reliable enough to aid the development and validation of simulation models for Laser-induced interstitial thermotherapy (LITT). METHODS Laser-induced interstitial thermotherapy (LITT) is applied to ex-vivo porcine livers. An artificial blood vessel is used to study the cooling effect of large blood vessels in proximity to the ablation zone. The experimental setting is simulated using a model based on partial differential equations (PDEs) for temperature, radiation, and tissue damage. The simulated temperature distributions are compared to temperature data obtained from MR thermometry. RESULTS The overall agreement between measurement and simulation is good for two of our four test cases, while for the remaining cases drift problems with the thermometry data have been an issue. At higher temperatures local deviations between simulation and measurement occur in close proximity to the laser applicator and the vessel. This suggests that certain aspects of the model may need some refinement. CONCLUSION Thermometry data is well-suited for aiding the development of simulations models since it shows where refinements are necessary and enables the validation of such models.
Collapse
Affiliation(s)
- Frank Hübner
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | | | | - Roland Schreiner
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | | - Thomas J Vogl
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Scotti AM, Damen F, Gao J, Li W, Liew CW, Cai Z, Zhang Z, Cai K. Phase-independent thermometry by Z-spectrum MR imaging. Magn Reson Med 2022; 87:1731-1741. [PMID: 34752646 PMCID: PMC10029969 DOI: 10.1002/mrm.29072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Z-spectrum imaging, defined as the consecutive collection of images after saturating over a range of frequency offsets, has been recently proposed as a method to measure the fat-water fraction by the simultaneous detection of fat and water resonances. By incorporating a binomial pulse irradiated at each offset before the readout, the spectral selectivity of the sequence can be further amplified, making it possible to monitor the subtle proton resonance frequency shift that follows a change in temperature. METHODS We tested the hypothesis in aqueous and cream phantoms and in healthy mice, all under thermal challenge. The binomial module consisted of 2 sinc-shaped pulses of opposite phase separated by a delay. Such a delay served to spread out off-resonance spins, with the resulting excitation profile being a periodic function of the delay and the chemical shift. RESULTS During heating experiments, the water resonance shifted downfield, and by fitting the curve to a sine function it was possible to quantify the change in temperature. Results from Z-spectrum imaging correlated linearly with data from conventional MRI techniques like T1 mapping and phase differences from spoiled GRE. CONCLUSION Because the measurement is performed solely on magnitude images, the technique is independent of phase artifacts and is therefore applicable in mixed tissues (e.g., fat). We showed that Z-spectrum imaging can deliver reliable temperature change measurement in both muscular and fatty tissues.
Collapse
Affiliation(s)
- Alessandro M. Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Frederick Damen
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jin Gao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Weiguo Li
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zimeng Cai
- School of Medical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Image Processing, Southern Medical University, Guangzhou, China
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University, Evanston, Illinois, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Hyperthermia: A Potential Game-Changer in the Management of Cancers in Low-Middle-Income Group Countries. Cancers (Basel) 2022; 14:cancers14020315. [PMID: 35053479 PMCID: PMC8774274 DOI: 10.3390/cancers14020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Loco-regional hyperthermia at 40-44 °C is a multifaceted therapeutic modality with the distinct triple advantage of being a potent radiosensitizer, a chemosensitizer and an immunomodulator. Risk difference estimates from pairwise meta-analysis have shown that the local tumour control could be improved by 22.3% (p < 0.001), 22.1% (p < 0.001) and 25.5% (p < 0.001) in recurrent breast cancers, locally advanced cervix cancer (LACC) and locally advanced head and neck cancers, respectively by adding hyperthermia to radiotherapy over radiotherapy alone. Furthermore, thermochemoradiotherapy in LACC have shown to reduce the local failure rates by 10.1% (p = 0.03) and decrease deaths by 5.6% (95% CI: 0.6-11.8%) over chemoradiotherapy alone. As around one-third of the cancer cases in low-middle-income group countries belong to breast, cervix and head and neck regions, hyperthermia could be a potential game-changer and expected to augment the clinical outcomes of these patients in conjunction with radiotherapy and/or chemotherapy. Further, hyperthermia could also be a cost-effective therapeutic modality as the capital costs for setting up a hyperthermia facility is relatively low. Thus, the positive outcomes evident from various phase III randomized trials and meta-analysis with thermoradiotherapy or thermochemoradiotherapy justifies the integration of hyperthermia in the therapeutic armamentarium of clinical management of cancer, especially in low-middle-income group countries.
Collapse
|
11
|
Lena B, Bartels LW, Ferrer CJ, Moonen CTW, Viergever MA, Bos C. Interleaved water and fat MR thermometry for monitoring high intensity focused ultrasound ablation of bone lesions. Magn Reson Med 2021; 86:2647-2655. [PMID: 34061390 PMCID: PMC8596687 DOI: 10.1002/mrm.28877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE To demonstrate that interleaved MR thermometry can monitor temperature in water and fat with adequate temporal resolution. This is relevant for high intensity focused uUltrasounds (HIFU) treatment of bone lesions, which are often found near aqueous tissues, as muscle, or embedded in adipose tissues, as subcutaneous fat and bone marrow. METHODS Proton resonance frequency shift (PRFS)-based thermometry scans and T1 -based 2D variable flip angle (2D-VFA) thermometry scans were acquired alternatingly over time. Temperature in water was monitored using PRFS thermometry, and in fat by 2D-VFA thermometry with slice profile effect correction. The feasibility of interleaved water/fat temperature monitoring was studied ex vivo in porcine bone during MR-HIFU sonication. Precision and stability of measurements in vivo were evaluated in a healthy volunteer under non-heating conditions. RESULTS The method allowed observing temperature change over time in muscle and fat, including bone marrow, during MR-HIFU sonication, with a temporal resolution of 6.1 s. In vivo, the apparent temperature change was stable on the time scale of the experiment: In 7 min the systematic drift was <0.042°C/min in muscle (PRFS after drift correction) and <0.096°C/min in bone marrow (2D-VFA). The SD of the temperature change averaged over time was 0.98°C (PRFS) and 2.7°C (2D-VFA). CONCLUSIONS Interleaved MR thermometry allows temperature measurements in water and fat with a temporal resolution high enough for monitoring HIFU ablation. Specifically, combined fat and water thermometry provides uninterrupted information on temperature changes in tissue close to the bone cortex.
Collapse
Affiliation(s)
- Beatrice Lena
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Cyril J. Ferrer
- Imaging DivisionUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Max A. Viergever
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Clemens Bos
- Imaging DivisionUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
12
|
VilasBoas-Ribeiro I, Curto S, van Rhoon GC, Franckena M, Paulides MM. MR Thermometry Accuracy and Prospective Imaging-Based Patient Selection in MR-Guided Hyperthermia Treatment for Locally Advanced Cervical Cancer. Cancers (Basel) 2021; 13:3503. [PMID: 34298716 PMCID: PMC8303939 DOI: 10.3390/cancers13143503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
The efficacy of a hyperthermia treatment depends on the delivery of well-controlled heating; hence, accurate temperature monitoring is essential for ensuring effective treatment. For deep pelvic hyperthermia, there are no comprehensive and systematic reports on MR thermometry. Moreover, data inclusion generally lacks objective selection criteria leading to a high probability of bias when comparing results. Herein, we studied whether imaging-based data inclusion predicts accuracy and could serve as a tool for prospective patient selection. The accuracy of the MR thermometry in patients with locally advanced cervical cancer was benchmarked against intraluminal temperature. We found that gastrointestinal air motion at the start of the treatment, quantified by the Jaccard similarity coefficient, was a good predictor for MR thermometry accuracy. The results for the group that was selected for low gastrointestinal air motion improved compared to the results for all patients by 50% (accuracy), 26% (precision), and 80% (bias). We found an average MR thermometry accuracy of 2.0 °C when all patients were considered and 1.0 °C for the selected group. These results serve as the basis for comprehensive benchmarking of novel technologies. The Jaccard similarity coefficient also has good potential to prospectively determine in which patients the MR thermometry will be valuable.
Collapse
Affiliation(s)
- Iva VilasBoas-Ribeiro
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.); (M.F.); (M.M.P.)
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.); (M.F.); (M.M.P.)
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.); (M.F.); (M.M.P.)
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft, The Netherlands
| | - Martine Franckena
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.); (M.F.); (M.M.P.)
| | - Margarethus M. Paulides
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.); (M.F.); (M.M.P.)
- Center for Care and Cure Technologies Eindhoven (C3Te), Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
13
|
Madhusoodhanan S, Hagberg GE, Scheffler K, Paul JS. Multi-echo gradient-recalled-echo phase unwrapping using a Nyquist sampled virtual echo train in the presence of high-field gradients. Magn Reson Med 2021; 86:2220-2233. [PMID: 34028899 DOI: 10.1002/mrm.28841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a spatio-temporal approach to accurately unwrap multi-echo gradient-recalled echo phase in the presence of high-field gradients. THEORY AND METHODS Using the virtual echo-based Nyquist sampled (VENyS) algorithm, the temporal unwrapping procedure is modified by introduction of one or more virtual echoes between the first lower and the immediate higher echo, so as to reinstate the Nyquist condition at locations with high-field gradients. An iterative extension of the VENyS algorithm maintains spatial continuity by adjusting the phase rotations to make the neighborhood phase differences less than π. The algorithm is evaluated using simulated data, Gadolinium contrast-doped phantom, and in vivo brain, abdomen, and chest data sets acquired at 3 T and 9.4 T. The unwrapping performance is compared with the standard temporal unwrapping algorithm used in the morphology-enabled dipole inversion-QSM pipeline as a benchmark for validation. RESULTS Quantitative evaluation using numerical phantom showed significant reduction in unwrapping errors in regions of large field gradients, and the unwrapped phase revealed an exact match with the linear concentration profile of vials in a gadolinium contrast-doped phantom data acquired at 9.4 T. Without the need for additional spatial unwrapping, the iterative VENyS algorithm was able to generate spatially continuous phase images. Application to in vivo data resulted in better unwrapping performance, especially in regions with large susceptibility changes such as the air/tissue interface. CONCLUSION The iterative VENyS algorithm serves as a robust unwrapping method for multi-echo gradient-recalled echo phase in the presence of high-field gradients.
Collapse
Affiliation(s)
- Sreekanth Madhusoodhanan
- Medical Image Computing and Signal Processing Laboratory, Indian Institute of Information Technology and Management, Thiruvananthapuram, Kerala, India
| | - Gisela E Hagberg
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,Biomedical Magnetic Resonance, Department of Radiology, Eberhard Karl's University and University Hospital, Tübingen, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,Biomedical Magnetic Resonance, Department of Radiology, Eberhard Karl's University and University Hospital, Tübingen, Germany
| | - Joseph Suresh Paul
- Medical Image Computing and Signal Processing Laboratory, Indian Institute of Information Technology and Management, Thiruvananthapuram, Kerala, India.,School of Electronic Systems and Automation, The Kerala University of Digital Sciences Innovation and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
14
|
Datta NR, Kok HP, Crezee H, Gaipl US, Bodis S. Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Front Oncol 2020; 10:819. [PMID: 32596144 PMCID: PMC7303270 DOI: 10.3389/fonc.2020.00819] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Moderate hyperthermia at temperatures between 40 and 44°C is a multifaceted therapeutic modality. It is a potent radiosensitizer, interacts favorably with a host of chemotherapeutic agents, and, in combination with radiotherapy, enforces immunomodulation akin to “in situ tumor vaccination.” By sensitizing hypoxic tumor cells and inhibiting repair of radiotherapy-induced DNA damage, the properties of hyperthermia delivered together with photons might provide a tumor-selective therapeutic advantage analogous to high linear energy transfer (LET) neutrons, but with less normal tissue toxicity. Furthermore, the high LET attributes of hyperthermia thermoradiobiologically are likely to enhance low LET protons; thus, proton thermoradiotherapy would mimic 12C ion therapy. Hyperthermia with radiotherapy and/or chemotherapy substantially improves therapeutic outcomes without enhancing normal tissue morbidities, yielding level I evidence reported in several randomized clinical trials, systematic reviews, and meta-analyses for various tumor sites. Technological advancements in hyperthermia delivery, advancements in hyperthermia treatment planning, online invasive and non-invasive MR-guided thermometry, and adherence to quality assurance guidelines have ensured safe and effective delivery of hyperthermia to the target region. Novel biological modeling permits integration of hyperthermia and radiotherapy treatment plans. Further, hyperthermia along with immune checkpoint inhibitors and DNA damage repair inhibitors could further augment the therapeutic efficacy resulting in synthetic lethality. Additionally, hyperthermia induced by magnetic nanoparticles coupled to selective payloads, namely, tumor-specific radiotheranostics (for both tumor imaging and radionuclide therapy), chemotherapeutic drugs, immunotherapeutic agents, and gene silencing, could provide a comprehensive tumor-specific theranostic modality akin to “magic (nano)bullets.” To get a realistic overview of the strength (S), weakness (W), opportunities (O), and threats (T) of hyperthermia, a SWOT analysis has been undertaken. Additionally, a TOWS analysis categorizes future strategies to facilitate further integration of hyperthermia with the current treatment modalities. These could gainfully accomplish a safe, versatile, and cost-effective enhancement of the existing therapeutic armamentarium to improve outcomes in clinical oncology.
Collapse
Affiliation(s)
- Niloy R Datta
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - H Petra Kok
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Bodis
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
15
|
Kokuryo D, Kumamoto E, Kuroda K. Recent technological advancements in thermometry. Adv Drug Deliv Rev 2020; 163-164:19-39. [PMID: 33217482 DOI: 10.1016/j.addr.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/25/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Thermometry is the key factor for achieving successful thermal therapy. Although invasive thermometry with a probe has been used for more than four decades, this method can only detect the local temperature within the probing volume. Noninvasive temperature imaging using a tomographic technique is ideal for monitoring hot-spot formation in the human body. Among various techniques, such as X-ray computed tomography, microwave tomography, echo sonography, and magnetic resonance (MR) imaging, the proton resonance frequency shift method of MR thermometry is the only method currently available for clinical practice because its temperature sensitivity is consistent in most aqueous tissues and can be easily observed using common clinical scanners. New techniques are being proposed to improve the robustness of this method against tissue motion. MR techniques for fat thermometry were also developed based on relaxation times. One of the latest non-MR techniques to attract attention is photoacoustic imaging.
Collapse
Affiliation(s)
- Daisuke Kokuryo
- Graduate School of System Informatics, Kobe University, Japan
| | - Etsuko Kumamoto
- Information Science and Technology Center, Kobe University, Japan
| | - Kagayaki Kuroda
- School of Information Science and Technology, Tokai University, Japan; Center for Frontier Medical Engineering, Chiba University, Japan.
| |
Collapse
|
16
|
Zhang L, Armstrong T, Li X, Wu HH. A variable flip angle golden-angle-ordered 3D stack-of-radial MRI technique for simultaneous proton resonant frequency shift and T 1 -based thermometry. Magn Reson Med 2019; 82:2062-2076. [PMID: 31257639 DOI: 10.1002/mrm.27883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop and evaluate a variable-flip-angle golden-angle-ordered 3D stack-of-radial MRI technique for simultaneous proton resonance frequency shift (PRF) and T1 -based thermometry in aqueous and adipose tissues, respectively. METHODS The proposed technique acquires multiecho radial k-space data in segments with alternating flip angles to measure 3D temperature maps dynamically on the basis of PRF and T1 . A sliding-window k-space weighted image contrast filter is used to increase temporal resolution. PRF is measured in aqueous tissues and T1 in adipose tissues using fat/water masks. The accuracy for T1 quantification was evaluated in a reference T1 /T2 phantom. In vivo nonheating experiments were conducted in healthy subjects to evaluate the stability of PRF and T1 in the brain, prostate, and breast. The proposed technique was used to monitor high-intensity focused ultrasound (HIFU) ablation in ex vivo porcine fat/muscle tissues and compared to temperature probe readings. RESULTS The proposed technique achieved 3D coverage with 1.1-mm to 1.3-mm in-plane resolution and 2-s to 5-s temporal resolution. During 20 to 30 min of nonheating in vivo scans, the temporal coefficient of variation for T1 was <5% in the brain, prostate, and breast fatty tissues, while the standard deviation of relative PRF temperature change was within 3°C in aqueous tissues. During ex vivo HIFU ablation, the temperatures measured by PRF and T1 were consistent with temperature probe readings, with an absolute mean difference within 2°C. CONCLUSION The proposed technique achieves simultaneous PRF and T1 -based dynamic 3D MR temperature mapping in aqueous and adipose tissues. It may be used to improve MRI-guided thermal procedures.
Collapse
Affiliation(s)
- Le Zhang
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Tess Armstrong
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Physics in Biology and Medicine Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, California
| | - Xinzhou Li
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California Los Angeles, Los Angeles, California
| | - Holden H Wu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Physics in Biology and Medicine Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California Los Angeles, Los Angeles, California
| |
Collapse
|