1
|
Peña-Trujillo V, Gallo-Bernal S, Kirsch J, Victoria T, Gee MS. 3 Tesla Fetal MR Imaging Quality and Safety Considerations. Magn Reson Imaging Clin N Am 2024; 32:385-394. [PMID: 38944429 DOI: 10.1016/j.mric.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Medical imaging, particularly fetal MR imaging, has undergone a transformative shift with the introduction of 3 Tesla (3T) clinical MR imaging systems. The utilization of higher static magnetic fields in these systems has resulted in remarkable advancements, including superior soft tissue contrast, improved spatial and temporal resolution, and reduced image acquisition time. Despite these notable benefits, safety concerns have emerged, stemming from the elevated static magnetic field strength, amplified acoustic noise, and increased radiofrequency power deposition. This article provides an overview of fetal MR imaging at 3T, its benefits and drawbacks, and the potential safety issues.
Collapse
Affiliation(s)
- Valeria Peña-Trujillo
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Pediatric Imaging Research Center (PIRC), Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA
| | - Sebastian Gallo-Bernal
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Pediatric Imaging Research Center (PIRC), Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA; Department of Medicine, NYC Health + Hospitals/Queens, Icahn School of Medicine at Mount Sinai, 79-01 Broadway, Queens, NY 11373, USA
| | - John Kirsch
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th, Chartlestown, MA 02129, USA
| | - Teresa Victoria
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Pediatric Imaging Research Center (PIRC), Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Pediatric Imaging Research Center (PIRC), Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Brink WM, Remis RF, Webb AG. Radiofrequency safety of high permittivity pads in MRI-Impact of insulation material. Magn Reson Med 2023; 89:2109-2116. [PMID: 36708148 DOI: 10.1002/mrm.29580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/30/2022] [Accepted: 12/26/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE High permittivity dielectric pads are known to be effective for tailoring the RF field and improving image quality in high field MRI. Despite a number of studies reporting benign specific absorption rate (SAR) effects, their "universal" safety remains an open concern. In this work, we evaluate the impact of the insulation material in between the pad and the body, using both RF simulations as well as phantom experiments. METHODS A 3T configuration with high permittivity material was simulated and characterized experimentally in terms of B1 + fields and RF power absorption, both with and without electrical insulation in between the high permittivity material and the sample. Different insulation conditions were compared, and electromagnetic analyses on the induced current density were performed to elucidate the effect. RESULTS Increases in RF heating of up to 49% were observed experimentally in a tissue-mimicking phantom after removing the material insulation. The B1 + magnitude and RF transceive phase were not affected. Simulations indicated that an insulation thickness of 0.5-2 mm should be accounted for in numerical models in order to ensure reliable results. CONCLUSION A reliable RF safety assessment of high permittivity dielectric pads requires accounting for the insulating properties of the plastic encasing. Ignoring the electrical insulation can lead to erroneous results with substantial increases in local SAR at the interface. Conversely, the material insulation does not need to be modeled to predict the B1 + effects during the design of the pad geometry.
Collapse
Affiliation(s)
- Wyger M Brink
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Magnetic Detection & Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Rob F Remis
- Circuits and Systems Group, Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Koloskov V, Zubkov M, Solomakha G, Puchnin V, Levchuk A, Efimtcev A, Melchakova I, Shchelokova A. Improving detection of fMRI activation at 1.5 T using high permittivity ceramics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107390. [PMID: 36774714 DOI: 10.1016/j.jmr.2023.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
In this work, we propose an application of high permittivity materials (HPMs) to improve functional magnetic resonance imaging (fMRI) at 1.5 T, increasing the receive (Rx) sensitivity of a commercial multi-channel head coil. To evaluate the transmit efficiency, specific absorption rate (SAR), and the signal-to-noise ratio (SNR) changes introduced by the HPMs with relative permittivity of 4500, we considered the following configurations in simulation: a whole-body birdcage coil and an Rx-only multi-channel head coil with and without the HPM blocks in the presence of a homogeneous head phantom or a human body model. Experimental studies were also performed with a phantom and with volunteers. Seven healthy volunteers enrolled in a prospective study of fMRI activation in the motor cortex with and without HPMs. fMRI data were analyzed using group-level paired T-tests between acquisitions with and without HPM blocks. Both electromagnetic simulations and experimental measurements showed ∼25% improvement in the Rx sensitivity of a commercial head coil in the areas of interest when HPM blocks were placed in close proximity. It increased the detected motor cortex fMRI activation volume by an average of 56%, thus resulting in more sensitive functional imaging at 1.5 T.
Collapse
Affiliation(s)
- Vladislav Koloskov
- School of Physics and Engineering, ITMO University, St. Petersburg, Russian Federation
| | - Mikhail Zubkov
- School of Physics and Engineering, ITMO University, St. Petersburg, Russian Federation
| | - Georgiy Solomakha
- School of Physics and Engineering, ITMO University, St. Petersburg, Russian Federation
| | - Viktor Puchnin
- School of Physics and Engineering, ITMO University, St. Petersburg, Russian Federation
| | - Anatoliy Levchuk
- School of Physics and Engineering, ITMO University, St. Petersburg, Russian Federation; Department of Radiology, Federal Almazov North-West Medical Research Center, St. Petersburg, Russian Federation
| | - Alexander Efimtcev
- School of Physics and Engineering, ITMO University, St. Petersburg, Russian Federation; Department of Radiology, Federal Almazov North-West Medical Research Center, St. Petersburg, Russian Federation
| | - Irina Melchakova
- School of Physics and Engineering, ITMO University, St. Petersburg, Russian Federation
| | - Alena Shchelokova
- School of Physics and Engineering, ITMO University, St. Petersburg, Russian Federation.
| |
Collapse
|
4
|
Yetisir F, Poser BA, Grant PE, Adalsteinsson E, Wald LL, Guerin B. Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control. Magn Reson Imaging 2022; 93:87-96. [PMID: 35940379 PMCID: PMC9789791 DOI: 10.1016/j.mri.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/26/2022]
Abstract
PURPOSE We develop and test a parallel transmit (pTx) pulse design framework to mitigate transmit field inhomogeneity with control of local specific absorption rate (SAR) in 2D rapid acquisition with relaxation enhancement (RARE) imaging at 7T. METHODS We design large flip angle RF pulses with explicit local SAR constraints by numerical simulation of the Bloch equations. Parallel computation and analytical expressions for the Jacobian and the Hessian matrices are employed to reduce pulse design time. The refocusing-excitation "spokes" pulse pairs are designed to satisfy the Carr-Purcell-Meiboom-Gill (CPMG) condition using a combined magnitude least squares-least squares approach. RESULTS In a simulated dataset, the proposed approach reduced peak local SAR by up to 56% for the same level of refocusing uniformity error and reduced refocusing uniformity error by up to 59% (from 32% to 7%) for the same level of peak local SAR compared to the circularly polarized birdcage mode of the pTx array. Using explicit local SAR constraints also reduced peak local SAR by up to 46% compared to an RF peak power constrained design. The excitation and refocusing uniformity error were reduced from 20%-33% to 4%-6% in single slice phantom experiments. Phantom experiments demonstrated good agreement between the simulated excitation and refocusing uniformity profiles and experimental image shading. CONCLUSION PTx-designed excitation and refocusing CPMG pulse pairs can mitigate transmit field inhomogeneity in the 2D RARE sequence. Moreover, local SAR can be decreased significantly using pTx, potentially leading to better slice coverage, enabling larger flip angles or faster imaging.
Collapse
Affiliation(s)
- Filiz Yetisir
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA
| | - Lawrence L Wald
- Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Athinoula A. Martinos Center for Biomedical Imaging, MA General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Bastien Guerin
- Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, MA General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
5
|
Novel materials in magnetic resonance imaging: high permittivity ceramics, metamaterials, metasurfaces and artificial dielectrics. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:875-894. [PMID: 35471464 PMCID: PMC9596558 DOI: 10.1007/s10334-022-01007-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
AbstractThis article reviews recent developments in designing and testing new types of materials which can be: (i) placed around the body for in vivo imaging, (ii) be integrated into a conventional RF coil, or (iii) form the resonator itself. These materials can improve the quality of MRI scans for both in vivo and magnetic resonance microscopy applications. The methodological section covers the basic operation and design of two different types of materials, namely high permittivity materials constructed from ceramics and artificial dielectrics/metasurfaces formed by coupled conductive subunits, either in air or surrounded by dielectric material. Applications of high permittivity materials and metasurfaces placed next to the body to neuroimaging and extremity imaging at 7 T, body and neuroimaging at 3 T, and extremity imaging at 1.5 T are shown. Results using ceramic resonators for both high field in vivo imaging and magnetic resonance microscopy are also shown. The development of new materials to improve MR image quality remains an active area of research, but has not yet found significant use in clinical applications. This is mainly due to practical issues such as specific absorption rate modelling, accurate and reproducible placement, and acceptable size/weight of such materials. The most successful area has been simple “dielectric pads” for neuroimaging at 7 T which were initially developed somewhat as a stop-gap while parallel transmit technology was being developed, but have continued to be used at many sites. Some of these issues can potentially be overcome using much lighter metasurfaces and artificial dielectrics, which are just beginning to be assessed.
Collapse
|
6
|
Vorobyev V, Shchelokova A, Efimtcev A, Baena JD, Abdeddaim R, Belov P, Melchakova I, Glybovski S. Improving B 1 + homogeneity in abdominal imaging at 3 T with light, flexible, and compact metasurface. Magn Reson Med 2021; 87:496-508. [PMID: 34314033 DOI: 10.1002/mrm.28946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Radiofrequency field inhomogeneity is a significant issue in imaging large fields of view in high- and ultrahigh-field MRI. Passive shimming with coupled coils or dielectric pads is the most common approach at 3 T. We introduce and test light and compact metasurface, providing the same homogeneity improvement in clinical abdominal imaging at 3 T as a conventional dielectric pad. METHODS The metasurface comprising a periodic structure of copper strips and parallel-plate capacitive elements printed on a flexible polyimide substrate supports propagation of slow electromagnetic waves similar to a high-permittivity slab. We compare the metasurface operating inside a transmit body birdcage coil to the state-of-the-art pad by numerical simulations and in vivo study on healthy volunteers. RESULTS Numerical simulations with different body models show that the local minimum of B 1 + causing a dark void in the abdominal domain is removed by the metasurface with comparable resulting homogeneity as for the pad with decreasing maximum and whole-body SAR values. In vivo results confirm similar homogeneity improvement and demonstrate the stability to body mass index. CONCLUSION The light, flexible, and inexpensive metasurface can replace a relatively heavy and expensive pad based on the aqueous suspension of barium titanate in abdominal imaging at 3 T.
Collapse
Affiliation(s)
- Vsevolod Vorobyev
- School of Physics and Engineering, ITMO University, Saint Petersburg, Russia
| | - Alena Shchelokova
- School of Physics and Engineering, ITMO University, Saint Petersburg, Russia
| | - Alexander Efimtcev
- School of Physics and Engineering, ITMO University, Saint Petersburg, Russia.,Department of Radiology, Federal Almazov North-West Medical Research Center, Saint Petersburg, Russia
| | - Juan D Baena
- Department of Physics, Universidad Nacional de Colombia, Bogota, Colombia
| | - Redha Abdeddaim
- CNRS, Aix Marseille University, Marseille, France.,Institut Fresnel, Marseille, France
| | - Pavel Belov
- School of Physics and Engineering, ITMO University, Saint Petersburg, Russia
| | - Irina Melchakova
- School of Physics and Engineering, ITMO University, Saint Petersburg, Russia
| | - Stanislav Glybovski
- School of Physics and Engineering, ITMO University, Saint Petersburg, Russia
| |
Collapse
|
7
|
van Gemert J, Brink W, Remis R, Webb A. A simulation study on the effect of optimized high permittivity materials on fetal imaging at 3T. Magn Reson Med 2019; 82:1822-1831. [PMID: 31199014 PMCID: PMC6771485 DOI: 10.1002/mrm.27849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE One of the main concerns in fetal MRI is the radiofrequency power that is absorbed both by the mother and the fetus. Passive shimming using high permittivity materials in the form of "dielectric pads" has previously been shown to increase the B 1 + efficiency and homogeneity in different applications, while reducing the specific absorption rate (SAR). In this work, we study the effect of optimized dielectric pads for 3 pregnant models. METHODS Pregnant models in the 3rd, 7th, and 9th months of gestation were used for simulations in a birdcage coil at 3T. Dielectric pads were optimized regions of interest (ROI) using previously developed methods for B 1 + efficiency and homogeneity and were designed for 2 ROIs: the entire fetus and the brain of the fetus. The SAR was evaluated in terms of the whole-body SAR, average SAR in the fetus and amniotic fluid, and maximum 10 g-averaged SAR in the mother, fetus, and amniotic fluid. RESULTS The optimized dielectric pads increased the transmit efficiency up to 55% and increased the B 1 + homogeneity in almost every tested configuration. The B 1 + -normalized whole-body SAR was reduced by more than 31% for all body models. The B 1 + -normalized local SAR was reduced in most scenarios by up to 62%. CONCLUSION Simulations have shown that optimized high permittivity pads can reduce SAR in pregnant subjects at the 3rd, 7th, and 9th month of gestation, while improving the transmit field homogeneity in the fetus. However, significantly more work is required to demonstrate that fetal imaging is safe under standard operating conditions.
Collapse
Affiliation(s)
- Jeroen van Gemert
- Circuits & Systems Group, Electrical Engineering, Mathematics and Computer Science Faculty, Delft University of Technology, The Netherlands
| | - Wyger Brink
- Department of Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, The Netherlands
| | - Rob Remis
- Circuits & Systems Group, Electrical Engineering, Mathematics and Computer Science Faculty, Delft University of Technology, The Netherlands
| | - Andrew Webb
- Department of Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, The Netherlands
| |
Collapse
|