1
|
Weiser PJ, Langs G, Motyka S, Bogner W, Courvoisier S, Hoffmann M, Klauser A, Andronesi OC. WALINET: A water and lipid identification convolutional neural network for nuisance signal removal in 1 H $$ {}^1\mathrm{H} $$ MR spectroscopic imaging. Magn Reson Med 2025; 93:1430-1442. [PMID: 39737778 PMCID: PMC11782715 DOI: 10.1002/mrm.30402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025]
Abstract
PURPOSE Proton magnetic resonance spectroscopic imaging ( 1 H $$ {}^1\mathrm{H} $$ -MRSI) provides noninvasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain 1 H $$ {}^1\mathrm{H} $$ -MRSI are spectral overlap of metabolite peaks with large lipid signal from scalp, and overwhelming water signal that distorts spectra. Fast and effective methods are needed for high-resolution 1 H $$ {}^1\mathrm{H} $$ -MRSI to accurately remove lipid and water signals while preserving the metabolite signal. The potential of supervised neural networks for this task remains unexplored, despite their success for other MRSI processing. METHODS We introduce a deep learning method based on a modified Y-NET network for water and lipid removal in whole-brain 1 H $$ {}^1\mathrm{H} $$ -MRSI. The WALINET (WAter and LIpid neural NETwork) was compared with conventional methods such as the state-of-the-art lipid L2 regularization and Hankel-Lanczos singular value decomposition (HLSVD) water suppression. Methods were evaluated on simulated models and in vivo whole-brain MRSI using NMRSE, SNR, CRLB, and FWHM metrics. RESULTS WALINET is significantly faster and needs 8s for high-resolution whole-brain MRSI, compared with 42min for conventional HLSVD+L2. WALINET suppresses lipid and water in the brain by 25-45 and 34-53-fold, respectively. WALINET has better performance than HLSVD+L2, providing: (1) more lipid removal with 41% lower NRMSE; (2) better metabolite signal preservation with 71% lower NRMSE in simulated data; 155% higher SNR and 50% lower CRLB in in vivo data. Metabolic maps obtained by WALINET in healthy subjects and patients show better gray-/white-matter contrast with more visible structural details. CONCLUSIONS WALINET has superior performance for nuisance signal removal and metabolite quantification on whole-brain 1 H $$ {}^1\mathrm{H} $$ -MRSI compared with conventional state-of-the-art techniques. This represents a new application of deep learning for MRSI processing, with potential for automated high-throughput workflow.
Collapse
Affiliation(s)
- Paul J. Weiser
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Computational Imaging Research Lab–Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Georg Langs
- Computational Imaging Research Lab–Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Stanislav Motyka
- High Field MR Center–Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Wolfgang Bogner
- High Field MR Center–Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Sébastien Courvoisier
- Center for Biomedical Imaging (CIBM)GenevaSwitzerland
- Department of Radiology and Medical Informatics, University of GenevaGenevaSwitzerland
| | - Malte Hoffmann
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Antoine Klauser
- Advanced Clinical Imaging TechnologySiemens Healthineers International AGLausanneSwitzerland
| | - Ovidiu C. Andronesi
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Yoo HB, Lee HH, Nga VDW, Choi YS, Lim JH. Detecting Tumor-Associated Intracranial Hemorrhage Using Proton Magnetic Resonance Spectroscopy. Neurol Int 2024; 16:1856-1877. [PMID: 39728759 DOI: 10.3390/neurolint16060133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Intracranial hemorrhage associated with primary or metastatic brain tumors is a critical condition that requires urgent intervention, often through open surgery. Nevertheless, surgical interventions may not always be feasible due to two main reasons: (1) extensive hemorrhage can obscure the underlying tumor mass, limiting radiological assessment; and (2) intracranial hemorrhage may occasionally present as the first symptom of a brain tumor without prior knowledge of its existence. The current review of case studies suggests that advanced radiological imaging techniques can improve diagnostic power for tumoral hemorrhage. Adding proton magnetic resonance spectroscopy (1H-MRS), which profiles biochemical composition of mass lesions could be valuable: it provides unique information about tumor states distinct from hemorrhagic lesions bypassing the structural obliteration caused by the hemorrhage. Recent advances in 1H-MRS techniques may enhance the modality's reliability in clinical practice. This perspective proposes that 1H-MRS can be utilized in clinical settings to enhance diagnostic power in identifying tumors underlying intracranial hemorrhage.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Institute for Data Innovation in Science, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Vincent Diong Weng Nga
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Yoon Seong Choi
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Jeong Hoon Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
3
|
Jeong E, Jang J, Kim JH, Kim H. Recurrent neural network-aided processing of incomplete free induction decays in 1H-MRS of the brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107762. [PMID: 39299053 DOI: 10.1016/j.jmr.2024.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
In the case of limited sampling windows or truncation of free induction decays (FIDs) for artifact removal in proton magnetic resonance spectroscopy (1H-MRS) and spectroscopic imaging (1H-MRSI), metabolite quantification needs to be performed on incomplete FIDs. Given that FIDs are naturally time-domain sequential data, we investigated the potential of recurrent neural network (RNN)-types of neural networks (NNs) in the processing of incomplete human brain FIDs with or without FID restoration prior to quantitative analysis at 3.0T. First, we employed an RNN encoder-decoder and developed it to restore incomplete FIDs (rRNN) with different amounts of sampled data. The quantification of metabolites from the rRNN-restored FIDs was achieved by using LCModel. Second, we modified the RNN encoder-decoder and developed it to convert incomplete brain FIDs into incomplete metabolite-only FIDs without restoration, followed by linear regression using a metabolite basis set for quantitative analysis (cRNN). In consideration of the practical benefit of the FID restoration with respect to pure zero-filling, development and analysis of the NNs were focused particularly on the incomplete FIDs with only the first 64 data points retained. All NNs were trained on simulated data and tested mainly on in vivo data acquired from healthy volunteers (n = 27). Strong correlations were obtained between the NN-derived and ground truth metabolite content (LCModel-derived content on fully sampled FIDs) for myo-inositol, total choline, and total creatine (normalized to total N-acetylaspartate) on the in vivo data using both rRNN (R = 0.83-0.94; p ≤ 0.05) and cRNN (R = 0.86-0.91; p ≤ 0.05). RNN-types of NNs have potential in the quantification of the major brain metabolites from the FIDs with substantially reduced sampled data points. For the metabolites with low to medium SNR, the performance of the NNs needs to be further improved, for which development of more elaborate and advanced simulation techniques would be of help, but remains challenging.
Collapse
Affiliation(s)
- Eunho Jeong
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Joon Jang
- Department of Biomedical Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Department of Radiology, Seoul National University, Seoul, South Korea.
| | - Hyeonjin Kim
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Department of Medical Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
4
|
Huang YL, Lin YR, Tsai SY. Comparison of convolutional-neural-networks-based method and LCModel on the quantification of in vivo magnetic resonance spectroscopy. MAGMA (NEW YORK, N.Y.) 2024; 37:477-489. [PMID: 37713007 DOI: 10.1007/s10334-023-01120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Quantification of metabolites concentrations in institutional unit (IU) is important for inter-subject and long-term comparisons in the applications of magnetic resonance spectroscopy (MRS). Recently, deep learning (DL) algorithms have found a variety of applications on the process of MRS data. A quantification strategy compatible to DL base MRS spectral processing method is, therefore, useful. MATERIALS AND METHODS This study aims to investigate whether metabolite concentrations quantified using a convolutional neural network (CNN) based method, coupled with a scaling procedure that normalizes spectral signals for CNN input and linear regression, can effectively reflect variations in metabolite concentrations in IU across different brain regions with varying signal-to-noise ratios (SNR) and linewidths (LW). An error index based on standard error (SE) is proposed to indicate the confidence levels associated with metabolite predictions. In vivo MRS spectra were acquired from three brain regions of 43 subjects using a 3T system. RESULTS The metabolite concentrations in IU of five major metabolites, quantified using CNN and LCModel, exhibit similar ranges with Pearson's correlation coefficients ranging from 0.24 to 0.78. The SE of the metabolites shows a positive correlation with Cramer-Rao lower bound (CRLB) (r=0.46) and absolute CRLB (r=0.81), calculated by multiplying CRLBs with the quantified metabolite content. CONCLUSION In conclusion, the CNN based method with the proposed scaling procedures can be employed to quantify in vivo MRS spectra and derive metabolites concentrations in IU. The SE can be used as error index, indicating predicted uncertainties for metabolites and sharing information similar to the absolute CRLB.
Collapse
Affiliation(s)
- Yu-Long Huang
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yi-Ru Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Shang-Yueh Tsai
- Graduate Institute of Applied Physics, National Chengchi University, No.64, Sec.2, ZhiNan Rd., Wenshan District, Taipei, 11605, Taiwan.
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan.
| |
Collapse
|
5
|
Berto RP, Bugler H, Dias G, Oliveira M, Ueda L, Dertkigil S, Costa PDP, Rittner L, Merkofer JP, van de Sande DMJ, Amirrajab S, Drenthen GS, Veta M, Jansen JFA, Breeuwer M, van Sloun RJG, Qayyum A, Rodero C, Niederer S, Souza R, Harris AD. Results of the 2023 ISBI challenge to reduce GABA-edited MRS acquisition time. MAGMA (NEW YORK, N.Y.) 2024; 37:449-463. [PMID: 38613715 DOI: 10.1007/s10334-024-01156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE Use a conference challenge format to compare machine learning-based gamma-aminobutyric acid (GABA)-edited magnetic resonance spectroscopy (MRS) reconstruction models using one-quarter of the transients typically acquired during a complete scan. METHODS There were three tracks: Track 1: simulated data, Track 2: identical acquisition parameters with in vivo data, and Track 3: different acquisition parameters with in vivo data. The mean squared error, signal-to-noise ratio, linewidth, and a proposed shape score metric were used to quantify model performance. Challenge organizers provided open access to a baseline model, simulated noise-free data, guides for adding synthetic noise, and in vivo data. RESULTS Three submissions were compared. A covariance matrix convolutional neural network model was most successful for Track 1. A vision transformer model operating on a spectrogram data representation was most successful for Tracks 2 and 3. Deep learning (DL) reconstructions with 80 transients achieved equivalent or better SNR, linewidth and fit error compared to conventional 320 transient reconstructions. However, some DL models optimized linewidth and SNR without actually improving overall spectral quality, indicating a need for more robust metrics. CONCLUSION DL-based reconstruction pipelines have the promise to reduce the number of transients required for GABA-edited MRS.
Collapse
Affiliation(s)
- Rodrigo Pommot Berto
- Department of Biomedical Engineering, University of Calgary, Calgary, Canada
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Hanna Bugler
- Department of Biomedical Engineering, University of Calgary, Calgary, Canada.
- Department of Radiology, University of Calgary, Calgary, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| | - Gabriel Dias
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | - Mateus Oliveira
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | - Lucas Ueda
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
- Research and Development Center in Telecommunications, CPQD, Campinas, Brazil
| | - Sergio Dertkigil
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Paula D P Costa
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
- Artificial Intelligence Lab., Recod.Ai, University of Campinas, Campinas, Brazil
| | - Leticia Rittner
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | - Julian P Merkofer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Dennis M J van de Sande
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sina Amirrajab
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Gerhard S Drenthen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mitko Veta
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jacobus F A Jansen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Marcel Breeuwer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- MR R&D-Clinical Science, Philips Healthcare, Best, Netherlands
| | - Ruud J G van Sloun
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Abdul Qayyum
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Cristobal Rodero
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Steven Niederer
- National Heart & Lung Institute, Imperial College London, London, UK
- The Alan Turing Institute, London, UK
| | - Roberto Souza
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Dziadosz M, Rizzo R, Kyathanahally SP, Kreis R. Denoising single MR spectra by deep learning: Miracle or mirage? Magn Reson Med 2023; 90:1749-1761. [PMID: 37332185 DOI: 10.1002/mrm.29762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/05/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE The inherently poor SNR of MRS measurements presents a significant hurdle to its clinical application. Denoising by machine or deep learning (DL) was proposed as a remedy. It is investigated whether such denoising leads to lower estimate uncertainties or whether it essentially reduces noise in signal-free areas only. METHODS Noise removal based on supervised DL with U-nets was implemented using simulated 1 H MR spectra of human brain in two approaches: (1) via time-frequency domain spectrograms and (2) using 1D spectra as input. Quality of denoising was evaluated in three ways: (1) by an adapted fit quality score, (2) by traditional model fitting, and (3) by quantification via neural networks. RESULTS Visually appealing spectra were obtained; hinting that denoising is well-suited for MRS. However, an adapted denoising score showed that noise removal is inhomogeneous and more efficient for signal-free areas. This was confirmed by quantitative analysis of traditional fit results as well as DL quantitation following DL denoising. DL denoising, although apparently successful as judged by mean squared errors, led to substantially biased estimates in both implementations. CONCLUSION The implemented DL-based denoising techniques may be useful for display purposes, but do not help quantitative evaluations, confirming expectations based on estimation theory: Cramér Rao lower bounds defined by the original data and the appropriate fitting model cannot be circumvented in an unbiased way for single data sets, unless additional prior knowledge can be incurred in the form of parameter restrictions/relations or applicable substates.
Collapse
Affiliation(s)
- Martyna Dziadosz
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rudy Rizzo
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sreenath P Kyathanahally
- Department System Analysis, Integrated Assessment and Modelling, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Roland Kreis
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
7
|
Starčuková J, Stefan D, Graveron-Demilly D. Quantification of short echo time MRS signals with improved version of QUantitation based on quantum ESTimation algorithm. NMR IN BIOMEDICINE 2023; 36:e5008. [PMID: 37539457 DOI: 10.1002/nbm.5008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Magnetic resonance spectroscopy offers information about metabolite changes in the organism, which can be used in diagnosis. While short echo time proton spectra exhibit more distinguishable metabolites compared with proton spectra acquired with long echo times, their quantification (and providing estimates of metabolite concentrations) is more challenging. They are hampered by a background signal, which originates mainly from macromolecules (MM) and mobile lipids. An improved version of the quantification algorithm QUantitation based on quantum ESTimation (QUEST), with MM prior knowledge (QUEST-MM), dedicated to proton signals and invoking appropriate prior knowledge on MM, is proposed and tested. From a single acquisition, it enables better metabolite quantification, automatic estimation of the background, and additional automatic quantification of MM components, thus improving its applicability in the clinic. The proposed algorithm may facilitate studies that involve patients with pathological MM in the brain. QUEST-MM and three QUEST-based strategies for quantifying short echo time signals are compared in terms of bias-variance trade-off and Cramér-Rao lower bound estimates. The performances of the methods are evaluated through extensive Monte Carlo studies. In particular, the histograms of the metabolite and MM amplitude distributions demonstrate the performances of the estimators. They showed that QUEST-MM works better than QUEST (Subtract approach) and is a good alternative to QUEST when measured MM signal is unavailable or unsuitable. Quantification with QUEST-MM is shown for 1 H in vivo rat brain signals obtained with the SPECIAL pulse sequence at 9.4 T, and human brain signals obtained, respectively, with STEAM at 4 T and PRESS at 3 T. QUEST-MM is implemented in jMRUI and will be available for public use from version 7.1.
Collapse
Affiliation(s)
- Jana Starčuková
- Institute of Scientific Instruments of the CAS, Brno, Czech Republic
| | | | - Danielle Graveron-Demilly
- D1Si, Saint André de Corcy, France
- CREATIS, CNRS UMR 5220, INSERM U1294, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
8
|
Agius T, Songeon J, Lyon A, Longchamp J, Ruttimann R, Allagnat F, Déglise S, Corpataux JM, Golshayan D, Buhler L, Meier R, Yeh H, Markmann JF, Uygun K, Toso C, Klauser A, Lazeyras F, Longchamp A. Sodium Hydrosulfide Treatment During Porcine Kidney Ex Vivo Perfusion and Transplantation. Transplant Direct 2023; 9:e1508. [PMID: 37915463 PMCID: PMC10617874 DOI: 10.1097/txd.0000000000001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 11/03/2023] Open
Abstract
Background In rodents, hydrogen sulfide (H2S) reduces ischemia-reperfusion injury and improves renal graft function after transplantation. Here, we hypothesized that the benefits of H2S are conserved in pigs, a more clinically relevant model. Methods Adult porcine kidneys retrieved immediately or after 60 min of warm ischemia (WI) were exposed to 100 µM sodium hydrosulfide (NaHS) (1) during the hypothermic ex vivo perfusion only, (2) during WI only, and (3) during both WI and ex vivo perfusion. Kidney perfusion was evaluated with dynamic contrast-enhanced MRI. MRI spectroscopy was further employed to assess energy metabolites including ATP. Renal biopsies were collected at various time points for histopathological analysis. Results Perfusion for 4 h pig kidneys with Belzer MPS UW + NaHS resulted in similar renal perfusion and ATP levels than perfusion with UW alone. Similarly, no difference was observed when NaHS was administered in the renal artery before ischemia. After autotransplantation, no improvement in histologic lesions or cortical/medullary kidney perfusion was observed upon H2S administration. In addition, AMP and ATP levels were identical in both groups. Conclusions In conclusion, treatment of porcine kidney grafts using NaHS did not result in a significant reduction of ischemia-reperfusion injury or improvement of kidney metabolism. Future studies will need to define the benefits of H2S in human, possibly using other molecules as H2S donors.
Collapse
Affiliation(s)
- Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Julien Songeon
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Arnaud Lyon
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Medicine, Transplantation Centre, Lausanne University Hospital, Lausanne, Switzerland
| | - Justine Longchamp
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Raphael Ruttimann
- Visceral and Transplant Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean-Marc Corpataux
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Déla Golshayan
- Department of Medicine, Transplantation Centre, Lausanne University Hospital, Lausanne, Switzerland
| | - Léo Buhler
- Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Switzerland
| | - Raphael Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Heidi Yeh
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - James F. Markmann
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Korkut Uygun
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Christian Toso
- Visceral and Transplant Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Antoine Klauser
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Francois Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Gudmundson AT, Davies-Jenkins CW, Özdemir İ, Murali-Manohar S, Zöllner HJ, Song Y, Hupfeld KE, Schnitzler A, Oeltzschner G, Stark CEL, Edden RAE. Application of a 1H Brain MRS Benchmark Dataset to Deep Learning for Out-of-Voxel Artifacts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539813. [PMID: 37215030 PMCID: PMC10197548 DOI: 10.1101/2023.05.08.539813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Neural networks are potentially valuable for many of the challenges associated with MRS data. The purpose of this manuscript is to describe the AGNOSTIC dataset, which contains 259,200 synthetic 1H MRS examples for training and testing neural networks. AGNOSTIC was created using 270 basis sets that were simulated across 18 field strengths and 15 echo times. The synthetic examples were produced to resemble in vivo brain data with combinations of metabolite, macromolecule, residual water signals, and noise. To demonstrate the utility, we apply AGNOSTIC to train two Convolutional Neural Networks (CNNs) to address out-of-voxel (OOV) echoes. A Detection Network was trained to identify the point-wise presence of OOV echoes, providing proof of concept for real-time detection. A Prediction Network was trained to reconstruct OOV echoes, allowing subtraction during post-processing. Complex OOV signals were mixed into 85% of synthetic examples to train two separate CNNs for the detection and prediction of OOV signals. AGNOSTIC is available through Dryad and all Python 3 code is available through GitHub. The Detection network was shown to perform well, identifying 95% of OOV echoes. Traditional modeling of these detected OOV signals was evaluated and may prove to be an effective method during linear-combination modeling. The Prediction Network greatly reduces OOV echoes within FIDs and achieved a median log10 normed-MSE of -1.79, an improvement of almost two orders of magnitude.
Collapse
Affiliation(s)
- Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
| | - Christopher W Davies-Jenkins
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
| | - İpek Özdemir
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
| | - Saipavitra Murali-Manohar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
| | - Helge J Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
| | - Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
| | - Kathleen E Hupfeld
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
| |
Collapse
|
10
|
van de Sande DMJ, Merkofer JP, Amirrajab S, Veta M, van Sloun RJG, Versluis MJ, Jansen JFA, van den Brink JS, Breeuwer M. A review of machine learning applications for the proton MR spectroscopy workflow. Magn Reson Med 2023. [PMID: 37402235 DOI: 10.1002/mrm.29793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
This literature review presents a comprehensive overview of machine learning (ML) applications in proton MR spectroscopy (MRS). As the use of ML techniques in MRS continues to grow, this review aims to provide the MRS community with a structured overview of the state-of-the-art methods. Specifically, we examine and summarize studies published between 2017 and 2023 from major journals in the MR field. We categorize these studies based on a typical MRS workflow, including data acquisition, processing, analysis, and artificial data generation. Our review reveals that ML in MRS is still in its early stages, with a primary focus on processing and analysis techniques, and less attention given to data acquisition. We also found that many studies use similar model architectures, with little comparison to alternative architectures. Additionally, the generation of artificial data is a crucial topic, with no consistent method for its generation. Furthermore, many studies demonstrate that artificial data suffers from generalization issues when tested on in vivo data. We also conclude that risks related to ML models should be addressed, particularly for clinical applications. Therefore, output uncertainty measures and model biases are critical to investigate. Nonetheless, the rapid development of ML in MRS and the promising results from the reviewed studies justify further research in this field.
Collapse
Affiliation(s)
- Dennis M J van de Sande
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Julian P Merkofer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sina Amirrajab
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mitko Veta
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ruud J G van Sloun
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Philips Research, Philips Research, Eindhoven, The Netherlands
| | | | - Jacobus F A Jansen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Marcel Breeuwer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- MR R&D - Clinical Science, Philips Healthcare, Best, The Netherlands
| |
Collapse
|
11
|
Rizzo R, Dziadosz M, Kyathanahally SP, Shamaei A, Kreis R. Quantification of MR spectra by deep learning in an idealized setting: Investigation of forms of input, network architectures, optimization by ensembles of networks, and training bias. Magn Reson Med 2023; 89:1707-1727. [PMID: 36533881 DOI: 10.1002/mrm.29561] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE The aims of this work are (1) to explore deep learning (DL) architectures, spectroscopic input types, and learning designs toward optimal quantification in MR spectroscopy of simulated pathological spectra; and (2) to demonstrate accuracy and precision of DL predictions in view of inherent bias toward the training distribution. METHODS Simulated 1D spectra and 2D spectrograms that mimic an extensive range of pathological in vivo conditions are used to train and test 24 different DL architectures. Active learning through altered training and testing data distributions is probed to optimize quantification performance. Ensembles of networks are explored to improve DL robustness and reduce the variance of estimates. A set of scores compares performances of DL predictions and traditional model fitting (MF). RESULTS Ensembles of heterogeneous networks that combine 1D frequency-domain and 2D time-frequency domain spectrograms as input perform best. Dataset augmentation with active learning can improve performance, but gains are limited. MF is more accurate, although DL appears to be more precise at low SNR. However, this overall improved precision originates from a strong bias for cases with high uncertainty toward the dataset the network has been trained with, tending toward its average value. CONCLUSION MF mostly performs better compared to the faster DL approach. Potential intrinsic biases on training sets are dangerous in a clinical context that requires the algorithm to be unbiased to outliers (i.e., pathological data). Active learning and ensemble of networks are good strategies to improve prediction performances. However, data quality (sufficient SNR) has proven as a bottleneck for adequate unbiased performance-like in the case of MF.
Collapse
Affiliation(s)
- Rudy Rizzo
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.,Department for Biomedical Research, University of Bern, Bern, Switzerland.,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Martyna Dziadosz
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.,Department for Biomedical Research, University of Bern, Bern, Switzerland.,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sreenath P Kyathanahally
- Department of System Analysis, Integrated Assessment and Modelling, Data Science for Environmental Research Group, EAWAG, Dübendorf, Switzerland
| | - Amirmohammad Shamaei
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic, Brno, Czech Republic.,Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Roland Kreis
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.,Department for Biomedical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Songeon J, Courvoisier S, Xin L, Agius T, Dabrowski O, Longchamp A, Lazeyras F, Klauser A. In vivo magnetic resonance 31 P-Spectral Analysis With Neural Networks: 31P-SPAWNN. Magn Reson Med 2023; 89:40-53. [PMID: 36161342 PMCID: PMC9828468 DOI: 10.1002/mrm.29446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE We have introduced an artificial intelligence framework, 31P-SPAWNN, in order to fully analyze phosphorus-31 (31 $$ {}^{31} $$ P) magnetic resonance spectra. The flexibility and speed of the technique rival traditional least-square fitting methods, with the performance of the two approaches, are compared in this work. THEORY AND METHODS Convolutional neural network architectures have been proposed for the analysis and quantification of31 $$ {}^{31} $$ P-spectroscopy. The generation of training and test data using a fully parameterized model is presented herein. In vivo unlocalized free induction decay and three-dimensional31 $$ {}^{31} $$ P-magnetic resonance spectroscopy imaging data were acquired from healthy volunteers before being quantified using either 31P-SPAWNN or traditional least-square fitting techniques. RESULTS The presented experiment has demonstrated both the reliability and accuracy of 31P-SPAWNN for estimating metabolite concentrations and spectral parameters. Simulated test data showed improved quantification using 31P-SPAWNN compared with LCModel. In vivo data analysis revealed higher accuracy at low signal-to-noise ratio using 31P-SPAWNN, yet with equivalent precision. Processing time using 31P-SPAWNN can be further shortened up to two orders of magnitude. CONCLUSION The accuracy, reliability, and computational speed of the method open new perspectives for integrating these applications in a clinical setting.
Collapse
Affiliation(s)
- Julien Songeon
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
| | - Sébastien Courvoisier
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
- CIBM Center for Biomedical ImagingGenevaSwitzerland
| | - Lijing Xin
- CIBM Center for Biomedical ImagingGenevaSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Thomas Agius
- Department of Vascular SurgeryCentre Hospitalier Universitaire Vaudois and University of LausanneLausanneSwitzerland
| | - Oscar Dabrowski
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
| | - Alban Longchamp
- Department of Vascular SurgeryCentre Hospitalier Universitaire Vaudois and University of LausanneLausanneSwitzerland
| | - François Lazeyras
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
- CIBM Center for Biomedical ImagingGenevaSwitzerland
| | - Antoine Klauser
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
- CIBM Center for Biomedical ImagingGenevaSwitzerland
| |
Collapse
|
13
|
Subnormothermic Ex Vivo Porcine Kidney Perfusion Improves Energy Metabolism: Analysis Using 31P Magnetic Resonance Spectroscopic Imaging. Transplant Direct 2022; 8:e1354. [PMID: 36176724 PMCID: PMC9514833 DOI: 10.1097/txd.0000000000001354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
The ideal preservation temperature for donation after circulatory death kidney grafts is unknown. We investigated whether subnormothermic (22 °C) ex vivo kidney machine perfusion could improve kidney metabolism and reduce ischemia-reperfusion injury.
Collapse
|
14
|
Acquarelli J, van Laarhoven T, Postma GJ, Jansen JJ, Rijpma A, van Asten S, Heerschap A, Buydens LMC, Marchiori E. Convolutional neural networks to predict brain tumor grades and Alzheimer’s disease with MR spectroscopic imaging data. PLoS One 2022; 17:e0268881. [PMID: 36001537 PMCID: PMC9401174 DOI: 10.1371/journal.pone.0268881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the value of convolutional neural network (CNN) in the diagnosis of human brain tumor or Alzheimer’s disease by MR spectroscopic imaging (MRSI) and to compare its Matthews correlation coefficient (MCC) score against that of other machine learning methods and previous evaluation of the same data. We address two challenges: 1) limited number of cases in MRSI datasets and 2) interpretability of results in the form of relevant spectral regions. Methods A shallow CNN with only one hidden layer and an ad-hoc loss function was constructed involving two branches for processing spectral and image features of a brain voxel respectively. Each branch consists of a single convolutional hidden layer. The output of the two convolutional layers is merged and fed to a classification layer that outputs class predictions for the given brain voxel. Results Our CNN method separated glioma grades 3 and 4 and identified Alzheimer’s disease patients using MRSI and complementary MRI data with high MCC score (Area Under the Curve were 0.87 and 0.91 respectively). The results demonstrated superior effectiveness over other popular methods as Partial Least Squares or Support Vector Machines. Also, our method automatically identified the spectral regions most important in the diagnosis process and we show that these are in good agreement with existing biomarkers from the literature. Conclusion Shallow CNNs models integrating image and spectral features improved quantitative and exploration and diagnosis of brain diseases for research and clinical purposes. Software is available at https://bitbucket.org/TeslaH2O/cnn_mrsi.
Collapse
Affiliation(s)
- Jacopo Acquarelli
- Radboud University Nijmegen, Institute for Computing and Information Science, Nijmegen, The Netherlands
- Radboud University Nijmegen, Institute for Molecules and Materials, Nijmegen, The Netherlands
- * E-mail: (JA); (AH); (EM)
| | - Twan van Laarhoven
- Radboud University Nijmegen, Institute for Computing and Information Science, Nijmegen, The Netherlands
| | - Geert J. Postma
- Radboud University Nijmegen, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Jeroen J. Jansen
- Radboud University Nijmegen, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Anne Rijpma
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Sjaak van Asten
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
- * E-mail: (JA); (AH); (EM)
| | - Lutgarde M. C. Buydens
- Radboud University Nijmegen, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Elena Marchiori
- Radboud University Nijmegen, Institute for Computing and Information Science, Nijmegen, The Netherlands
- * E-mail: (JA); (AH); (EM)
| |
Collapse
|
15
|
Attention-Guided Neural Network for Early Dementia Detection Using MRS data. Comput Med Imaging Graph 2022; 99:102074. [DOI: 10.1016/j.compmedimag.2022.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
|
16
|
Lee HH, Kim H. Bayesian deep learning-based 1 H-MRS of the brain: Metabolite quantification with uncertainty estimation using Monte Carlo dropout. Magn Reson Med 2022; 88:38-52. [PMID: 35344604 DOI: 10.1002/mrm.29214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a Bayesian convolutional neural network (BCNN) with Monte Carlo dropout sampling for metabolite quantification with simultaneous uncertainty estimation in deep learning-based proton MRS of the brain. METHODS Human brain spectra were simulated using basis spectra for 17 metabolites and macromolecules (N = 100 000) at 3.0 Tesla. In addition, actual in vivo spectra (N = 5) were modified by adjusting SNR and linewidth with increasing severity of spectral degradation (N = 50). A BCNN was trained on the simulated spectra to generate a noise-free, line-narrowed, macromolecule signal-removed, metabolite-only spectrum from a typical human brain spectrum. At inference, each input spectrum was Monte Carlo dropout sampled (50 times), and the resulting mean spectrum and variance spectrum were used for metabolite quantification and uncertainty estimation, respectively. RESULTS Using the simulated spectra, the mean absolute percent errors of the BCNN-predicted metabolite content were < 10% for Cr, Glu, Gln, mI, NAA, and Tau (< 5% for Glu, NAA, and mI). For all metabolites, the correlations (r's) between the ground-truth error and BCNN-predicted uncertainty ranged 0.72-0.94 (0.83 ± 0.06; p < 0.001). Using the modified in vivo spectra, the extent of variation in the estimated metabolite content against the increasing severity of spectral degradation tended to be smaller with BCNN than with linear combination of model spectra (LCModel). Overall, the variation in metabolite content tended to be more highly correlated with the uncertainty from BCNN than with the Cramér-Rao lower-bounds from LCModel (0.938 ± 0.019 vs. 0.881 ± 0.057 [p = 0.115]). CONCLUSION The BCNN with Monte Carlo dropout sampling may be used in deep learning-based MRS for the estimation of uncertainty in the machine-predicted metabolite content, which is important in the clinical application of deep learning-based MRS.
Collapse
Affiliation(s)
- Hyeong Hun Lee
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeonjin Kim
- Department of Medical Sciences, Seoul National University, Seoul, Republic of Korea.,Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
17
|
Takeshima H. Deep Learning and Its Application to Function Approximation for MR in Medicine: An Overview. Magn Reson Med Sci 2021; 21:553-568. [PMID: 34544924 DOI: 10.2463/mrms.rev.2021-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This article presents an overview of deep learning (DL) and its applications to function approximation for MR in medicine. The aim of this article is to help readers develop various applications of DL. DL has made a large impact on the literature of many medical sciences, including MR. However, its technical details are not easily understandable for non-experts of machine learning (ML).The first part of this article presents an overview of DL and its related technologies, such as artificial intelligence (AI) and ML. AI is explained as a function that can receive many inputs and produce many outputs. ML is a process of fitting the function to training data. DL is a kind of ML, which uses a composite of many functions to approximate the function of interest. This composite function is called a deep neural network (DNN), and the functions composited into a DNN are called layers. This first part also covers the underlying technologies required for DL, such as loss functions, optimization, initialization, linear layers, non-linearities, normalization, recurrent neural networks, regularization, data augmentation, residual connections, autoencoders, generative adversarial networks, model and data sizes, and complex-valued neural networks.The second part of this article presents an overview of the applications of DL in MR and explains how functions represented as DNNs are applied to various applications, such as RF pulse, pulse sequence, reconstruction, motion correction, spectroscopy, parameter mapping, image synthesis, and segmentation.
Collapse
Affiliation(s)
- Hidenori Takeshima
- Advanced Technology Research Department, Research and Development Center, Canon Medical Systems Corporation
| |
Collapse
|
18
|
Iqbal Z, Nguyen D, Thomas MA, Jiang S. Deep learning can accelerate and quantify simulated localized correlated spectroscopy. Sci Rep 2021; 11:8727. [PMID: 33888805 PMCID: PMC8062502 DOI: 10.1038/s41598-021-88158-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Nuclear magnetic resonance spectroscopy (MRS) allows for the determination of atomic structures and concentrations of different chemicals in a biochemical sample of interest. MRS is used in vivo clinically to aid in the diagnosis of several pathologies that affect metabolic pathways in the body. Typically, this experiment produces a one dimensional (1D) 1H spectrum containing several peaks that are well associated with biochemicals, or metabolites. However, since many of these peaks overlap, distinguishing chemicals with similar atomic structures becomes much more challenging. One technique capable of overcoming this issue is the localized correlated spectroscopy (L-COSY) experiment, which acquires a second spectral dimension and spreads overlapping signal across this second dimension. Unfortunately, the acquisition of a two dimensional (2D) spectroscopy experiment is extremely time consuming. Furthermore, quantitation of a 2D spectrum is more complex. Recently, artificial intelligence has emerged in the field of medicine as a powerful force capable of diagnosing disease, aiding in treatment, and even predicting treatment outcome. In this study, we utilize deep learning to: (1) accelerate the L-COSY experiment and (2) quantify L-COSY spectra. All training and testing samples were produced using simulated metabolite spectra for chemicals found in the human body. We demonstrate that our deep learning model greatly outperforms compressed sensing based reconstruction of L-COSY spectra at higher acceleration factors. Specifically, at four-fold acceleration, our method has less than 5% normalized mean squared error, whereas compressed sensing yields 20% normalized mean squared error. We also show that at low SNR (25% noise compared to maximum signal), our deep learning model has less than 8% normalized mean squared error for quantitation of L-COSY spectra. These pilot simulation results appear promising and may help improve the efficiency and accuracy of L-COSY experiments in the future.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dan Nguyen
- Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Michael Albert Thomas
- Department of Radiological Sciences, University of California Los Angles, Los Angeles, CA, USA
| | - Steve Jiang
- Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
19
|
Li Y, Wang Z, Sun R, Lam F. Separation of Metabolites and Macromolecules for Short-TE 1H-MRSI Using Learned Component-Specific Representations. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1157-1167. [PMID: 33395390 PMCID: PMC8049099 DOI: 10.1109/tmi.2020.3048933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Short-echo-time (TE) proton magnetic resonance spectroscopic imaging (MRSI) allows for simultaneously mapping a number of molecules in the brain, and has been recognized as an important tool for studying in vivo biochemistry in various neuroscience and disease applications. However, separation of the metabolite and macromolecule (MM) signals present in the short-TE data with significant spectral overlaps remains a major technical challenge. This work introduces a new approach to solve this problem by integrating imaging physics and representation learning. Specifically, a mixed unsupervised and supervised learning-based strategy was developed to learn the metabolite and MM-specific low-dimensional representations using deep autoencoders. A constrained reconstruction formulation is proposed to integrate the MRSI spatiospectral encoding model and the learned representations as effective constraints for signal separation. An efficient algorithm was developed to solve the resulting optimization problem with provable convergence. Simulation and experimental results have been obtained to demonstrate the component-specific representation power of the learned models and the capability of the proposed method in separating metabolite and MM signals for practical short-TE [Formula: see text]-MRSI data.
Collapse
|
20
|
Jang J, Lee HH, Park JA, Kim H. Unsupervised anomaly detection using generative adversarial networks in 1H-MRS of the brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 325:106936. [PMID: 33639596 DOI: 10.1016/j.jmr.2021.106936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The applicability of generative adversarial networks (GANs) capable of unsupervised anomaly detection (AnoGAN) was investigated in the management of quality of 1H-MRS human brain spectra at 3.0 T. The AnoGAN was trained in an unsupervised manner solely on simulated normal brain spectra and used for filtering out abnormal spectra with a broad range of abnormalities, which were simulated by including abnormal ranges of SNR, linewidth and metabolite concentrations and spectral artifacts such as ghost, residual water, and lipid. The AnoGAN was able to filter out those spectra with SNR less than ~11-12 dB with an accuracy of ~80% or higher (assuming a normal SNR range to be 15-18 dB). It also detected with an accuracy of ~80% or higher those spectra, in which NAA levels were reduced by ~25-30% or more from the lower bound and elevated by ~20-30% or more from the upper bound of the normal concentration range (7.5-17 mmol/L), while the concentrations of the rest of the metabolites were all within the normal ranges. Despite the fact that those spectra contaminated with ghost, residual water or lipid have never been involved in the training or optimization of the AnoGAN, they were correctly classified as abnormal regardless of the types of the artifacts, depending solely on their intensity. Although the current version of our AnoGAN requires further technical improvement particularly for the detection of linewidth-associated abnormality and validation on in vivo data, our unsupervised deep learning-based approach could be an option in addition to those previously reported supervised deep learning-based approaches in the binary classification of spectral quality with an extended abnormal spectra regime.
Collapse
Affiliation(s)
- Joon Jang
- Department of Biomedical Sciences, Seoul National University, Seoul, South Korea
| | - Hyeong Hun Lee
- Department of Biomedical Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute of Radiological & Medical Science, Seoul, South Korea
| | - Hyeonjin Kim
- Department of Medical Sciences, Seoul National University, Seoul, South Korea; Department of Radiology, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
21
|
Zöllner HJ, Považan M, Hui SC, Tapper S, Edden RA, Oeltzschner G. Comparison of different linear-combination modeling algorithms for short-TE proton spectra. NMR IN BIOMEDICINE 2021; 34:e4482. [PMID: 33530131 PMCID: PMC8935349 DOI: 10.1002/nbm.4482] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/09/2021] [Indexed: 05/08/2023]
Abstract
Short-TE proton MRS is used to study metabolism in the human brain. Common analysis methods model the data as a linear combination of metabolite basis spectra. This large-scale multi-site study compares the levels of the four major metabolite complexes in short-TE spectra estimated by three linear-combination modeling (LCM) algorithms. 277 medial parietal lobe short-TE PRESS spectra (TE = 35 ms) from a recent 3 T multi-site study were preprocessed with the Osprey software. The resulting spectra were modeled with Osprey, Tarquin and LCModel, using the same three vendor-specific basis sets (GE, Philips and Siemens) for each algorithm. Levels of total N-acetylaspartate (tNAA), total choline (tCho), myo-inositol (mI) and glutamate + glutamine (Glx) were quantified with respect to total creatine (tCr). Group means and coefficient of variations of metabolite estimates agreed well for tNAA and tCho across vendors and algorithms, but substantially less so for Glx and mI, with mI systematically estimated as lower by Tarquin. The cohort mean coefficient of determination for all pairs of LCM algorithms across all datasets and metabolites was R 2 ¯ = 0.39, indicating generally only moderate agreement of individual metabolite estimates between algorithms. There was a significant correlation between local baseline amplitude and metabolite estimates (cohort mean R 2 ¯ = 0.10). While mean estimates of major metabolite complexes broadly agree between linear-combination modeling algorithms at group level, correlations between algorithms are only weak-to-moderate, despite standardized preprocessing, a large sample of young, healthy and cooperative subjects, and high spectral quality. These findings raise concerns about the comparability of MRS studies, which typically use one LCM software and much smaller sample sizes.
Collapse
Affiliation(s)
- Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Michal Považan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Steve C.N. Hui
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Sofie Tapper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Tapper S, Mikkelsen M, Dewey BE, Zöllner HJ, Hui SCN, Oeltzschner G, Edden RAE. Frequency and phase correction of J-difference edited MR spectra using deep learning. Magn Reson Med 2020; 85:1755-1765. [PMID: 33210342 DOI: 10.1002/mrm.28525] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate whether a deep learning-based (DL) approach can be used for frequency-and-phase correction (FPC) of MEGA-edited MRS data. METHODS Two neural networks (1 for frequency, 1 for phase) consisting of fully connected layers were trained and validated using simulated MEGA-edited MRS data. This DL-FPC was subsequently tested and compared to a conventional approach (spectral registration [SR]) and to a model-based SR implementation (mSR) using in vivo MEGA-edited MRS datasets. Additional artificial offsets were added to these datasets to further investigate performance. RESULTS The validation showed that DL-based FPC was capable of correcting within 0.03 Hz of frequency and 0.4°of phase offset for unseen simulated data. DL-based FPC performed similarly to SR for the unmanipulated in vivo test datasets. When additional offsets were added to these datasets, the networks still performed well. However, although SR accurately corrected for smaller offsets, it often failed for larger offsets. The mSR algorithm performed well for larger offsets, which was because the model was generated from the in vivo datasets. In addition, the computation times were much shorter using DL-based FPC or mSR compared to SR for heavily distorted spectra. CONCLUSION These results represent a proof of principle for the use of DL for preprocessing MRS data.
Collapse
Affiliation(s)
- Sofie Tapper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Blake E Dewey
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Helge J Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Steve C N Hui
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|