1
|
Wu M, Zhang JL. MR Perfusion Imaging for Kidney Disease. Magn Reson Imaging Clin N Am 2024; 32:161-170. [PMID: 38007278 DOI: 10.1016/j.mric.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Renal perfusion reflects overall function of a kidney. As an important indicator of kidney diseases, renal perfusion can be noninvasively measured by multiple methods of MR imaging, such as dynamic contrast-enhanced MR imaging, intravoxel incoherent motion analysis, and arterial spin labeling method. In this article we introduce the principle of the methods, review their recent technical improvements, and then focus on summarizing recent applications of the methods in assessing various renal diseases. By this review, we demonstrate the capability and clinical potential of the imaging methods, with the hope of accelerating their adoption to clinical practice.
Collapse
Affiliation(s)
- Mingyan Wu
- Central Research Institute, UIH Group, Shanghai, China; School of Biomedical Engineering Building, Room 409, 393 Huaxia Middle Road, Shanghai 201210, China
| | - Jeff L Zhang
- School of Biomedical Engineering, ShanghaiTech University, Room 409, School of Biomedical Engineering Building, 393 Huaxia Middle Road, Shanghai 201210, China.
| |
Collapse
|
2
|
Taso M, Aramendía-Vidaurreta V, Englund EK, Francis S, Franklin S, Madhuranthakam AJ, Martirosian P, Nayak KS, Qin Q, Shao X, Thomas DL, Zun Z, Fernández-Seara MA. Update on state-of-the-art for arterial spin labeling (ASL) human perfusion imaging outside of the brain. Magn Reson Med 2023; 89:1754-1776. [PMID: 36747380 DOI: 10.1002/mrm.29609] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
This review article provides an overview of developments for arterial spin labeling (ASL) perfusion imaging in the body (i.e., outside of the brain). It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. In this review, we focus on specific challenges and developments tailored for ASL in a variety of body locations. After presenting common challenges, organ-specific reviews of challenges and developments are presented, including kidneys, lungs, heart (myocardium), placenta, eye (retina), liver, pancreas, and muscle, which are regions that have seen the most developments outside of the brain. Summaries and recommendations of acquisition parameters (when appropriate) are provided for each organ. We then explore the possibilities for wider adoption of body ASL based on large standardization efforts, as well as the potential opportunities based on recent advances in high/low-field systems and machine-learning. This review seeks to provide an overview of the current state-of-the-art of ASL for applications in the body, highlighting ongoing challenges and solutions that aim to enable more widespread use of the technique in clinical practice.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Erin K Englund
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan Francis
- Sir Peter Mansfield Imaging Center, University of Nottingham, Nottingham, UK
| | - Suzanne Franklin
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Image Sciences, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ananth J Madhuranthakam
- Department of Radiology, Advanced Imaging Research Center, and Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Petros Martirosian
- Section on Experimental Radiology, Department of Radiology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
3
|
Zun Z, Shin T. Velocity-selective excitation: Principles and applications. NMR IN BIOMEDICINE 2023; 36:e4820. [PMID: 35994473 PMCID: PMC9845137 DOI: 10.1002/nbm.4820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Velocity-selective (VS) excitation is a relatively new type of excitation that can be useful for generating image contrast based on spin's motion. This review aims to explain the principles of VS excitation and their utilization for clinical applications. We first review the generalized excitation k-space formalism, which reveals a Fourier relationship between sequence parameters and excitation profiles for spins with arbitrary spatial location, off-resonance, and velocity. Based on the k-space framework, we analyze practical VS excitation pulse sequences that yield sinusoidal or sinc-shaped velocity profiles. Then we demonstrate how these two types of VS excitation can be used as magnetization preparation for clinical applications, including saturation- or inversion-based arterial spin labeling and black- or bright-blood angiography. We also discuss practical considerations and issues for each application, including the determination of design parameters and the effects of MR system errors, such as magnetic field offsets and eddy currents.
Collapse
Affiliation(s)
- Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Taehoon Shin
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, South Korea
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Qin Q, Alsop DC, Bolar DS, Hernandez‐Garcia L, Meakin J, Liu D, Nayak KS, Schmid S, van Osch MJP, Wong EC, Woods JG, Zaharchuk G, Zhao MY, Zun Z, Guo J. Velocity-selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation. Magn Reson Med 2022; 88:1528-1547. [PMID: 35819184 PMCID: PMC9543181 DOI: 10.1002/mrm.29371] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
This review article provides an overview of the current status of velocity-selective arterial spin labeling (VSASL) perfusion MRI and is part of a wider effort arising from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. Since publication of the 2015 consensus paper on arterial spin labeling (ASL) for cerebral perfusion imaging, important advancements have been made in the field. The ASL community has, therefore, decided to provide an extended perspective on various aspects of technical development and application. Because VSASL has the potential to become a principal ASL method because of its unique advantages over traditional approaches, an in-depth discussion was warranted. VSASL labels blood based on its velocity and creates a magnetic bolus immediately proximal to the microvasculature within the imaging volume. VSASL is, therefore, insensitive to transit delay effects, in contrast to spatially selective pulsed and (pseudo-) continuous ASL approaches. Recent technical developments have improved the robustness and the labeling efficiency of VSASL, making it a potentially more favorable ASL approach in a wide range of applications where transit delay effects are of concern. In this review article, we (1) describe the concepts and theoretical basis of VSASL; (2) describe different variants of VSASL and their implementation; (3) provide recommended parameters and practices for clinical adoption; (4) describe challenges in developing and implementing VSASL; and (5) describe its current applications. As VSASL continues to undergo rapid development, the focus of this review is to summarize the fundamental concepts of VSASL, describe existing VSASL techniques and applications, and provide recommendations to help the clinical community adopt VSASL.
Collapse
Affiliation(s)
- Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - David C. Alsop
- Department of RadiologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | | | - James Meakin
- Department of Radiology, Nuclear Medicine and AnatomyRadboud University Medical CenterNijmegenThe Netherlands
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Krishna S. Nayak
- Magnetic Resonance Engineering Laboratory, Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sophie Schmid
- C.J. Gorter Center for high field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for high field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Eric C. Wong
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | - Joseph G. Woods
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | - Greg Zaharchuk
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Zungho Zun
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Jia Guo
- Department of BioengineeringUniversity of California RiversideRiversideCaliforniaUSA
| | | |
Collapse
|
5
|
Bones IK, Bos C, Moonen C, Hendrikse J, van Stralen M. Workflow for automatic renal perfusion quantification using ASL-MRI and machine learning. Magn Reson Med 2021; 87:800-809. [PMID: 34672029 PMCID: PMC9297892 DOI: 10.1002/mrm.29016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE Clinical applicability of renal arterial spin labeling (ASL) MRI is hampered because of time consuming and observer dependent post-processing, including manual segmentation of the cortex to obtain cortical renal blood flow (RBF). Machine learning has proven its value in medical image segmentation, including the kidneys. This study presents a fully automatic workflow for renal cortex perfusion quantification by including machine learning-based segmentation. METHODS Fully automatic workflow was achieved by construction of a cascade of 3 U-nets to replace manual segmentation in ASL quantification. All 1.5T ASL-MRI data, including M0 , T1 , and ASL label-control images, from 10 healthy volunteers was used for training (dataset 1). Trained cascade performance was validated on 4 additional volunteers (dataset 2). Manual segmentations were generated by 2 observers, yielding reference and second observer segmentations. To validate the intended use of the automatic segmentations, manual and automatic RBF values in mL/min/100 g were compared. RESULTS Good agreement was found between automatic and manual segmentations on dataset 1 (dice score = 0.78 ± 0.04), which was in line with inter-observer variability (dice score = 0.77 ± 0.02). Good agreement was confirmed on dataset 2 (dice score = 0.75 ± 0.03). Moreover, similar cortical RBF was obtained with automatic or manual segmentations, on average and at subject level; with 211 ± 31 mL/min/100 g and 208 ± 31 mL/min/100 g (P < .05), respectively, with narrow limits of agreement at -11 and 4.6 mL/min/100 g. RBF accuracy with automated segmentations was confirmed on dataset 2. CONCLUSION Our proposed method automates ASL quantification without compromising RBF accuracy. With quick processing and without observer dependence, renal ASL-MRI is more attractive for clinical application as well as for longitudinal and multi-center studies.
Collapse
Affiliation(s)
- Isabell K Bones
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Clemens Bos
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chrit Moonen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marijn van Stralen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Harteveld AA, Littooij AS, van Noesel MM, van Stralen M, Bos C. Perfusion imaging of neuroblastoma and nephroblastoma in a paediatric population using pseudo-continuous arterial spin-labelling magnetic resonance imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 35:235-246. [PMID: 34342775 PMCID: PMC8995293 DOI: 10.1007/s10334-021-00943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
Objectives To examine the feasibility of performing ASL-MRI in paediatric patients with solid abdominal tumours. Methods Multi-delay ASL data sets were acquired in ten paediatric patients diagnosed with either a neuroblastoma (n = 4) or nephroblastoma (n = 6) during a diagnostic MRI examination at a single visit (n = 4 at initial staging, n = 2 neuroblastoma and n = 2 nephroblastoma patients; n = 6 during follow-up, n = 2 neuroblastoma and n = 4 nephroblastoma patients). Visual evaluation and region-of-interest (ROI) analyses were performed on the processed perfusion-weighted images to assess ASL perfusion signal dynamics in the whole tumour, contralateral kidney, and tumour sub-regions with/without contrast enhancement. Results The majority of the included abdominal tumours presented with relatively low perfusion-weighted signal (PWS), especially compared with the highly perfused kidneys. Within the tumours, regions with high PWS were observed which, at short PLD, are possibly related to labelled blood inside vessels and at long PLD, reflect labelled blood accumulating inside tumour tissue over time. Conversely, comparison of ASL perfusion-weighted image findings with T1w enhancement after contrast administration showed that regions lacking contrast enhancement also were void of PWS. Discussion This pilot study demonstrates the feasibility of utilizing ASL-MRI in paediatric patients with solid abdominal tumours and provides a basis for further research on non-invasive perfusion measurements in this study population.
Collapse
Affiliation(s)
- Anita Adriaantje Harteveld
- Department of Radiology, University Medical Centre Utrecht, Utrecht University, P.O. box 85500, 3508 GA, Utrecht, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Annemieke Simone Littooij
- Department of Radiology, University Medical Centre Utrecht, Utrecht University, P.O. box 85500, 3508 GA, Utrecht, The Netherlands.,Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | | | - Marijn van Stralen
- Department of Radiology, University Medical Centre Utrecht, Utrecht University, P.O. box 85500, 3508 GA, Utrecht, The Netherlands
| | - Clemens Bos
- Department of Radiology, University Medical Centre Utrecht, Utrecht University, P.O. box 85500, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Bones IK, Franklin SL, Harteveld AA, van Osch MJP, Schmid S, Hendrikse J, Moonen C, van Stralen M, Bos C. Exploring label dynamics of velocity-selective arterial spin labeling in the kidney. Magn Reson Med 2021; 86:131-142. [PMID: 33538350 PMCID: PMC8048977 DOI: 10.1002/mrm.28683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Abstract
Purpose Velocity‐selective arterial spin labeling (VSASL) has been proposed for renal perfusion imaging to mitigate planning challenges and effects of arterial transit time (ATT) uncertainties. In VSASL, label generation may shift in the vascular tree as a function of cutoff velocity. Here, we investigate label dynamics and especially the ATT of renal VSASL and compared it with a spatially selective pulsed arterial spin labeling technique, flow alternating inversion recovery (FAIR). Methods Arterial spin labeling data were acquired in 7 subjects, using free‐breathing dual VSASL and FAIR with five postlabeling delays: 400, 800, 1200, 2000, and 2600 ms. The VSASL measurements were acquired with cutoff velocities of 5, 10, and 15 cm/s, with anterior–posterior velocity‐encoding direction. Cortical perfusion‐weighted signal, temporal SNR, quantified renal blood flow, and arterial transit time were reported. Results In contrast to FAIR, renal VSASL already showed fairly high signal at the earliest postlabeling delays, for all cutoff velocities. The highest VSASL signal and temporal SNR was obtained with a cutoff velocity of 10 cm/s at postlabeling delay = 800 ms, which was earlier than for FAIR at 1200 ms. Fitted ATT on VSASL was ≤ 0 ms, indicating ATT insensitivity, which was shorter than for FAIR (189 ± 79 ms, P < .05). Finally, the average cortical renal blood flow measured with cutoff velocities of 5 cm/s (398 ± 84 mL/min/100 g) and 10 cm/s (472 ± 160 mL/min/100 g) were similar to renal blood flow measured with FAIR (441 ± 84 mL/min/100 g) (P > .05) with good correlations on subject level. Conclusion Velocity‐selective arterial spin labeling in the kidney reduces ATT sensitivity compared with the recommended pulsed arterial spin labeling method, as well as if cutoff velocity is increased to reduce spurious labeling due to motion. Thus, VSASL has potential as a method for time‐efficient, single‐time‐point, free‐breathing renal perfusion measurements, despite lower tSNR than FAIR.
Collapse
Affiliation(s)
- Isabell K Bones
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Suzanne L Franklin
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anita A Harteveld
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sophie Schmid
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chrit Moonen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marijn van Stralen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Clemens Bos
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
8
|
Franklin SL, Bones IK, Harteveld AA, Hirschler L, van Stralen M, Qin Q, de Boer A, Hoogduin JM, Bos C, van Osch MJP, Schmid S. Multi-organ comparison of flow-based arterial spin labeling techniques: Spatially non-selective labeling for cerebral and renal perfusion imaging. Magn Reson Med 2020; 85:2580-2594. [PMID: 33251644 PMCID: PMC7898485 DOI: 10.1002/mrm.28603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Purpose Flow‐based arterial spin labeling (ASL) techniques provide a transit‐time insensitive alternative to the more conventional spatially selective ASL techniques. However, it is not clear which flow‐based ASL technique performs best and also, how these techniques perform outside the brain (taking into account eg, flow‐dynamics, field‐inhomogeneity, and organ motion). In the current study we aimed to compare 4 flow‐based ASL techniques (ie, velocity selective ASL, acceleration selective ASL, multiple velocity selective saturation ASL, and velocity selective inversion prepared ASL [VSI‐ASL]) to the current spatially selective reference techniques in brain (ie, pseudo‐continuous ASL [pCASL]) and kidney (ie, pCASL and flow alternating inversion recovery [FAIR]). Methods Brain (n = 5) and kidney (n = 6) scans were performed in healthy subjects at 3T. Perfusion‐weighted signal (PWS) maps were generated and ASL techniques were compared based on temporal SNR (tSNR), sensitivity to perfusion changes using a visual stimulus (brain) and robustness to respiratory motion by comparing scans acquired in paced‐breathing and free‐breathing (kidney). Results In brain, all flow‐based ASL techniques showed similar tSNR as pCASL, but only VSI‐ASL showed similar sensitivity to perfusion changes. In kidney, all flow‐based ASL techniques had comparable tSNR, although all lower than FAIR. In addition, VSI‐ASL showed a sensitivity to B1‐inhomogeneity. All ASL techniques were relatively robust to respiratory motion. Conclusion In both brain and kidney, flow‐based ASL techniques provide a planning‐free and transit‐time insensitive alternative to spatially selective ASL techniques. VSI‐ASL shows the most potential overall, showing similar performance as the golden standard pCASL in brain. However, in kidney, a reduction of B1‐sensitivity of VSI‐ASL is necessary to match the performance of FAIR.
Collapse
Affiliation(s)
- Suzanne L Franklin
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Isabell K Bones
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anita A Harteveld
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lydiane Hirschler
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Marijn van Stralen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anneloes de Boer
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes M Hoogduin
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Clemens Bos
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Sophie Schmid
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
9
|
Bones IK, Franklin SL, Harteveld AA, van Osch MJP, Hendrikse J, Moonen C, van Stralen M, Bos C. Influence of labeling parameters and respiratory motion on velocity-selective arterial spin labeling for renal perfusion imaging. Magn Reson Med 2020; 84:1919-1932. [PMID: 32180263 PMCID: PMC7384062 DOI: 10.1002/mrm.28252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/15/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Purpose Arterial transit time uncertainties and challenges during planning are potential issues for renal perfusion measurement using spatially selective arterial spin labeling techniques. To mitigate these potential issues, a spatially non‐selective technique, such as velocity‐selective arterial spin labeling (VSASL), could be an alternative. This article explores the influence of VSASL sequence parameters and respiratory induced motion on VS‐label generation. Methods VSASL data were acquired in human subjects (n = 15), with both single and dual labeling, during paced‐breathing, while essential sequence parameters were systematically varied; (1) cutoff velocity, (2) labeling gradient orientation and (3) post‐labeling delay (PLD). Pseudo‐continuous ASL was acquired as a spatially selective reference. In an additional free‐breathing single VSASL experiment (n = 9) we investigated respiratory motion influence on VS‐labeling. Absolute renal blood flow (RBF), perfusion weighted signal (PWS), and temporal signal‐to‐noise ratio (tSNR) were determined. Results (1) With decreasing cutoff velocity, tSNR and PWS increased. However, undesired tissue labeling occurred at low cutoff velocities (≤ 5.4 cm/s). (2) Labeling gradient orientation had little effect on tSNR and PWS. (3) For single VSASL high signal appeared in the kidney pedicle at PLD < 800 ms, and tSNR and PWS decreased with increasing PLD. For dual VSASL, maximum tSNR occurred at PLD = 1200 ms. Average cortical RBF measured with dual VSASL (264 ± 34 mL/min/100 g) at a cutoff velocity of 5.4 cm/s, and feet‐head labeling was slightly lower than with pseudo‐continuous ASL (283 ± 55 mL/min/100 g). Conclusion With well‐chosen sequence parameters, tissue labeling induced by respiratory motion can be minimized, allowing to obtain good quality RBF maps using planning‐free labeling with dual VSASL.
Collapse
Affiliation(s)
- Isabell K Bones
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Suzanne L Franklin
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anita A Harteveld
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chrit Moonen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marijn van Stralen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Clemens Bos
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|