1
|
Yang H, Huang G, Li X, Wu M, Zhou W, Yin X, Zhang M, Chen Z. High-resolution magnetic resonance vessel wall imaging provides new insights into Moyamoya disease. Front Neurosci 2024; 18:1375645. [PMID: 38665292 PMCID: PMC11043609 DOI: 10.3389/fnins.2024.1375645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Moyamoya disease (MMD) is a rare condition that affects the blood vessels of the central nervous system. This cerebrovascular disease is characterized by progressive narrowing and blockage of the internal carotid, middle cerebral, and anterior cerebral arteries, which results in the formation of a compensatory fragile vascular network. Currently, digital subtraction angiography (DSA) is considered the gold standard in diagnosing MMD. However, this diagnostic technique is invasive and may not be suitable for all patients. Hence, non-invasive imaging methods such as computed tomography angiography (CTA) and magnetic resonance angiography (MRA) are often used. However, these methods may have less reliable diagnostic results. Therefore, High-Resolution Magnetic Resonance Vessel Wall Imaging (HR-VWI) has emerged as the most accurate method for observing and analyzing arterial wall structure. It enhances the resolution of arterial walls and enables quantitative and qualitative analysis of plaque, facilitating the identification of atherosclerotic lesions, vascular entrapment, myofibrillar dysplasia, moyamoya vasculopathy, and other related conditions. Consequently, HR-VWI provides a new and more reliable evaluation criterion for diagnosing vascular lesions in patients with Moyamoya disease.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
- School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Guilan Huang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Xi Li
- Department of Neurology, University of California Irvine Medical Center, Irvine, CA, United States
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Weixin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| |
Collapse
|
2
|
Sakai Y, Cao Q, Rubin J, Witsch J, Cohen‐Addad D, de Macedo Rodrigues K, Coco‐Martin MB, Pasyar P, Juega J, Fan Z, Kasner SE, Cucchiara BL, Song JW. Imaging Biomarkers and Prevalence of Complex Aortic Plaque in Cryptogenic Stroke: A Systematic Review. J Am Heart Assoc 2023; 12:e031797. [PMID: 38014682 PMCID: PMC10727354 DOI: 10.1161/jaha.123.031797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Complex aortic plaque (CAP) is a potential embolic source in patients with cryptogenic stroke (CS). We review CAP imaging criteria for transesophageal echocardiogram (TEE), computed tomography angiography (CTA), and magnetic resonance imaging and calculate CAP prevalence in patients with acute CS. METHODS AND RESULTS PubMed and EMBASE databases were searched up to December 2022 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline. Two independent reviewers extracted data on study design, imaging techniques, CAP criteria, and prevalence. The Cochrane Collaboration tool and Guideline for Reporting Reliability and Agreement Studies were used to assess risk of bias and reporting completeness, respectively. From 2293 studies, 45 were reviewed for CAP imaging biomarker criteria in patients with acute CS (N=37 TEE; N=9 CTA; N=6 magnetic resonance imaging). Most studies (74%) used ≥4 mm plaque thickness as the imaging criterion for CAP although ≥1 mm (N=1, CTA), ≥5 mm (N=5, TEE), and ≥6 mm (N=2, CTA) were also reported. Additional features included mobility, ulceration, thrombus, protrusions, and assessment of plaque composition. From 23 prospective studies, CAP was detected in 960 of 2778 patients with CS (0.32 [95% CI, 0.24-0.41], I2=94%). By modality, prevalence estimates were 0.29 (95% CI, 0.20-0.40; I2=95%) for TEE; 0.23 (95% CI, 0.15-0.34; I2=87%) for CTA and 0.22 (95% CI, 0.06-0.54; I2=92%) for magnetic resonance imaging. CONCLUSIONS TEE was commonly used to assess CAP in patients with CS. The most common CAP imaging biomarker was ≥4 mm plaque thickness. CAP was observed in one-third of patients with acute CS. However, high study heterogeneity suggests a need for reproducible imaging methods.
Collapse
Affiliation(s)
- Yu Sakai
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Quy Cao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jeremy Rubin
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jens Witsch
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Dan Cohen‐Addad
- Department of Radiology and Imaging SciencesEmory UniversityAtlantaGAUSA
| | | | | | - Pouyan Pasyar
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jesús Juega
- Department of NeurologyVall d’Hebron University HospitalBarcelonaSpain
| | - Zhaoyang Fan
- Departments of Radiology, Biomedical Engineering, and Radiation OncologyUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Scott E. Kasner
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | | | - Jae W. Song
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
3
|
Munoz C, Fotaki A, Hua A, Hajhosseiny R, Kunze KP, Ismail TF, Neji R, Pushparajah K, Botnar RM, Prieto C. Simultaneous Highly Efficient Contrast-Free Lumen and Vessel Wall MR Imaging for Anatomical Assessment of Aortic Disease. J Magn Reson Imaging 2023; 58:1110-1122. [PMID: 36757267 PMCID: PMC10946808 DOI: 10.1002/jmri.28613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Bright-blood lumen and black-blood vessel wall imaging are required for the comprehensive assessment of aortic disease. These images are usually acquired separately, resulting in long examinations and potential misregistration between images. PURPOSE To characterize the performance of an accelerated and respiratory motion-compensated three-dimensional (3D) cardiac MRI technique for simultaneous contrast-free aortic lumen and vessel wall imaging with an interleaved T2 and inversion recovery prepared sequence (iT2Prep-BOOST). STUDY TYPE Prospective. POPULATION A total of 30 consecutive patients with aortopathy referred for a clinically indicated cardiac MRI examination (9 females, mean age ± standard deviation: 32 ± 12 years). FIELD STRENGTH/SEQUENCE 1.5-T; bright-blood MR angiography (diaphragmatic navigator-gated T2-prepared 3D balanced steady-state free precession [bSSFP], T2Prep-bSSFP), breath-held black-blood two-dimensional (2D) half acquisition single-shot turbo spin echo (HASTE), and 3D bSSFP iT2Prep-BOOST. ASSESSMENT iT2Prep-BOOST bright-blood images were compared to T2prep-bSSFP images in terms of aortic vessel dimensions, lumen-to-myocardium contrast ratio (CR), and image quality (diagnostic confidence, vessel sharpness and presence of artifacts, assessed by three cardiologists on a 4-point scale, 1: nondiagnostic to 4: excellent). The iT2Prep-BOOST black-blood images were compared to 2D HASTE images for quantification of wall thickness. A visual comparison between computed tomography (CT) and iT2Prep-BOOST was performed in a patient with chronic aortic dissection. STATISTICAL TESTS Paired t-tests, Wilcoxon signed-rank tests, intraclass correlation coefficient (ICC), Bland-Altman analysis. A P value < 0.05 was considered statistically significant. RESULTS Bright-blood iT2Prep-BOOST resulted in significantly improved image quality (mean ± standard deviation 3.8 ± 0.5 vs. 3.3 ± 0.8) and CR (2.9 ± 0.8 vs. 1.8 ± 0.5) compared with T2Prep-bSSFP, with a shorter scan time (7.8 ± 1.7 minutes vs. 12.9 ± 3.4 minutes) while providing a complementary 3D black-blood image. Aortic lumen diameter and vessel wall thickness measurements in bright-blood and black-blood images were in good agreement with T2Prep-bSSFP and HASTE images (<0.02 cm and <0.005 cm bias, respectively) and good intrareader (ICC > 0.96) and interreader (ICC > 0.94) agreement was observed for all measurements. DATA CONCLUSION iT2Prep-BOOST might enable time-efficient simultaneous bright- and black-blood aortic imaging, with improved image quality compared to T2Prep-bSSFP and HASTE imaging, and comparable measurements for aortic wall and lumen dimensions. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Camila Munoz
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Anastasia Fotaki
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Alina Hua
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Karl P. Kunze
- MR Research CollaborationsSiemens Healthcare LimitedFrimleyUK
| | - Tevfik F. Ismail
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- MR Research CollaborationsSiemens Healthcare LimitedFrimleyUK
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - René M. Botnar
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Escuela de Ingeniería, Pontificia Universidad Católica de ChileSantiagoChile
- Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de ChileSantiagoChile
- Millenium Institute for Intelligent Healthcare Engineering iHEALTHSantiagoChile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Escuela de Ingeniería, Pontificia Universidad Católica de ChileSantiagoChile
- Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de ChileSantiagoChile
- Millenium Institute for Intelligent Healthcare Engineering iHEALTHSantiagoChile
| |
Collapse
|
4
|
Hu Z, Xiao J, Mao X, Xie Y, Kwan AC, Song SS, Fong MW, Wilcox AG, Li D, Christodoulou AG, Fan Z. MR Multitasking-based multi-dimensional assessment of cardiovascular system (MT-MACS) with extended spatial coverage and water-fat separation. Magn Reson Med 2023; 89:1496-1505. [PMID: 36336794 PMCID: PMC9892247 DOI: 10.1002/mrm.29522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/25/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To extend the MR MultiTasking-based Multidimensional Assessment of Cardiovascular System (MT-MACS) technique with larger spatial coverage and water-fat separation for comprehensive aortocardiac assessment. METHODS MT-MACS adopts a low-rank tensor image model for 7D imaging, with three spatial dimensions for volumetric imaging, one cardiac motion dimension for cine imaging, one respiratory motion dimension for free-breathing imaging, one T2-prepared inversion recovery time dimension for multi-contrast assessment, and one T2*-decay time dimension for water-fat separation. Nine healthy subjects were recruited for the 3T study. Overall image quality was scored on bright-blood (BB), dark-blood (DB), and gray-blood (GB) contrasts using a 4-point scale (0-poor to 3-excellent) by two independent readers, and their interreader agreement was evaluated. Myocardial wall thickness and left ventricular ejection fraction (LVEF) were quantified on DB and BB contrasts, respectively. The agreement in these metrics between MT-MACS and conventional breath-held, electrocardiography-triggered 2D sequences were evaluated. RESULTS MT-MACS provides both water-only and fat-only images with excellent image quality (average score = 3.725/3.780/3.835/3.890 for BB/DB/GB/fat-only images) and moderate to high interreader agreement (weighted Cohen's kappa value = 0.727/0.668/1.000/1.000 for BB/DB/GB/fat-only images). There were good to excellent agreements in myocardial wall thickness measurements (intraclass correlation coefficients [ICC] = 0.781/0.929/0.680/0.878 for left atria/left ventricle/right atria/right ventricle) and LVEF quantification (ICC = 0.716) between MT-MACS and 2D references. All measurements were within the literature range of healthy subjects. CONCLUSION The refined MT-MACS technique provides multi-contrast, phase-resolved, and water-fat imaging of the aortocardiac systems and allows evaluation of anatomy and function. Clinical validation is warranted.
Collapse
Affiliation(s)
- Zhehao Hu
- Department of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Jiayu Xiao
- Department of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xianglun Mao
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Yibin Xie
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Alan C. Kwan
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Shlee S. Song
- Department of NeurologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Michael W. Fong
- Division of Cardiovascular MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Cardiovascular Thoracic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Alison G. Wilcox
- Department of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Debiao Li
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Anthony G. Christodoulou
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Zhaoyang Fan
- Department of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Munoz C, Fotaki A, Botnar RM, Prieto C. Latest Advances in Image Acceleration: All Dimensions are Fair Game. J Magn Reson Imaging 2023; 57:387-402. [PMID: 36205716 PMCID: PMC10092100 DOI: 10.1002/jmri.28462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/20/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a versatile modality that can generate high-resolution images with a variety of tissue contrasts. However, MRI is a slow technique and requires long acquisition times, which increase with higher temporal and spatial resolution and/or when multiple contrasts and large volumetric coverage is required. In order to speedup MR data acquisition, several approaches have been introduced in the literature. Most of these techniques acquire less data than required and exploit intrinsic redundancies in the MR images to recover the information that was not sampled. This article presents a review of MR acquisition and reconstruction methods that have exploited redundancies in the temporal, spatial, and contrast/parametric dimensions to accelerate image data acquisition, focusing on cardiac and abdominal MR imaging applications. The review describes how each of these dimensions has been separately exploited for speeding up MR acquisition to then discuss more advanced techniques where multiple dimensions are exploited together for further reducing scan times. Finally, future directions for multidimensional image acceleration and remaining technical challenges are discussed. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: 1.
Collapse
Affiliation(s)
- Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millenium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millenium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago, Chile
| |
Collapse
|
6
|
Eyre K, Lindsay K, Razzaq S, Chetrit M, Friedrich M. Simultaneous multi-parametric acquisition and reconstruction techniques in cardiac magnetic resonance imaging: Basic concepts and status of clinical development. Front Cardiovasc Med 2022; 9:953823. [PMID: 36277755 PMCID: PMC9582154 DOI: 10.3389/fcvm.2022.953823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Simultaneous multi-parametric acquisition and reconstruction techniques (SMART) are gaining attention for their potential to overcome some of cardiovascular magnetic resonance imaging's (CMR) clinical limitations. The major advantages of SMART lie within their ability to simultaneously capture multiple "features" such as cardiac motion, respiratory motion, T1/T2 relaxation. This review aims to summarize the overarching theory of SMART, describing key concepts that many of these techniques share to produce co-registered, high quality CMR images in less time and with less requirements for specialized personnel. Further, this review provides an overview of the recent developments in the field of SMART by describing how they work, the parameters they can acquire, their status of clinical testing and validation, and by providing examples for how their use can improve the current state of clinical CMR workflows. Many of the SMART are in early phases of development and testing, thus larger scale, controlled trials are needed to evaluate their use in clinical setting and with different cardiac pathologies.
Collapse
Affiliation(s)
- Katerina Eyre
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada,*Correspondence: Katerina Eyre,
| | - Katherine Lindsay
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Saad Razzaq
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Michael Chetrit
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Matthias Friedrich
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Cao T, Wang N, Kwan AC, Lee HL, Mao X, Xie Y, Nguyen KL, Colbert CM, Han F, Han P, Han H, Christodoulou AG, Li D. Free-breathing, non-ECG, simultaneous myocardial T 1 , T 2 , T 2 *, and fat-fraction mapping with motion-resolved cardiovascular MR multitasking. Magn Reson Med 2022; 88:1748-1763. [PMID: 35713184 PMCID: PMC9339519 DOI: 10.1002/mrm.29351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To develop a free-breathing, non-electrocardiogram technique for simultaneous myocardial T1 , T2 , T2 *, and fat-fraction (FF) mapping in a single scan. METHODS The MR Multitasking framework is adapted to quantify T1 , T2 , T2 *, and FF simultaneously. A variable TR scheme is developed to preserve temporal resolution and imaging efficiency. The underlying high-dimensional image is modeled as a low-rank tensor, which allows accelerated acquisition and efficient reconstruction. The accuracy and/or repeatability of the technique were evaluated on static and motion phantoms, 12 healthy volunteers, and 3 patients by comparing to the reference techniques. RESULTS In static and motion phantoms, T1 /T2 /T2 */FF measurements showed substantial consistency (R > 0.98) and excellent agreement (intraclass correlation coefficient > 0.93) with reference measurements. In human subjects, the proposed technique yielded repeatable T1 , T2 , T2 *, and FF measurements that agreed with those from references. CONCLUSIONS The proposed free-breathing, non-electrocardiogram, motion-resolved Multitasking technique allows simultaneous quantification of myocardial T1 , T2 , T2 *, and FF in a single 2.5-min scan.
Collapse
Affiliation(s)
- Tianle Cao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Nan Wang
- Radiology Department, Stanford University, Stanford, California, USA
| | - Alan C. Kwan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Imaging and Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hsu-Lei Lee
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xianglun Mao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- David Geffen School of Medicine and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Caroline M. Colbert
- David Geffen School of Medicine and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Physics and Biology in Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Fei Han
- Siemens Medical Solutions USA, Inc., Los Angeles, California, USA
| | - Pei Han
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Hui Han
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Anthony G. Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
8
|
Tachikawa Y, Hamano H, Yoshikai H, Ikeda K, Maki Y, Hirata K, Takahashi Y, Matake K. Three-dimensional multicontrast blood imaging with a single acquisition: Simultaneous non-contrast-enhanced MRA and vessel wall imaging in the thoracic aorta. Magn Reson Med 2022; 88:617-632. [PMID: 35436368 DOI: 10.1002/mrm.29217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/22/2022] [Accepted: 02/13/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To evaluate MRA and vessel wall imaging (VWI) image quality in the thoracic aorta using a novel method named BRIDGE (bright and dark blood images with multishot gradient-echo EPI). METHODS The BRIDGE method consists of 3D multishot gradient-echo EPI acquisition using pulse gating, navigator gating, and magnetization preparation with a T2 -preparation pulse and a nonselective inversion-recovery pulse. The BRIDGE and conventional methods (noncontrast MRA based on 3D turbo-field-echo [TFE] and VWI based on 3D turbo spin echo with variable refocusing flip angle [VRFA-TSE]) were performed in 10 healthy volunteers and 10 patients. The SNR, contrast-to-noise ratio (CNR), and sharpness in the thoracic aorta were compared for MRA evaluation. The values of SNRlumen , SNRwall , CNRwall-lumen , contrast ratio (CR)lumen-muscle , coefficient of variation, sharpness, lumen area, and wall area in the thoracic aorta were compared for VWI evaluation. Two radiologists independently performed qualitative image-analysis assessments. RESULTS When MRA and VWI were acquired, the acquisition time was 26.6% to 27.8% shorter with BRIDGE than the conventional method. In the MRA evaluation, BRIDGE and TFE methods were comparable. In the VWI evaluation, BRIDGE was superior to the VRFA-TSE method in blood suppression and evaluation of the ascending aorta. Because the blood signal suppression of BRIDGE is based on the T1 value of blood, the blood signal can be suppressed more uniformly than with the VRFA-TSE method, regardless of age, blood flow velocity, or vascular anatomy. CONCLUSION The BRIDGE method can provide both MRA, to assess vascular anatomy and luminal changes, and VWI, to assess the vessel wall and detect vulnerable plaques, in a single scan.
Collapse
Affiliation(s)
- Yoshihiko Tachikawa
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, Saga, Japan
| | | | - Hikaru Yoshikai
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, Saga, Japan
| | - Kento Ikeda
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, Saga, Japan
| | - Yasunori Maki
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, Saga, Japan
| | - Kazuhide Hirata
- Division of Radiological Technology, Department of Medical Technology, Karatsu Red Cross Hospital, Saga, Japan
| | | | - Kunishige Matake
- Department of Radiology, Karatsu Red Cross Hospital, Saga, Japan
| |
Collapse
|
9
|
Sakai Y, Lehman VT, Eisenmenger LB, Obusez EC, Kharal GA, Xiao J, Wang GJ, Fan Z, Cucchiara BL, Song JW. Vessel wall MR imaging of aortic arch, cervical carotid and intracranial arteries in patients with embolic stroke of undetermined source: A narrative review. Front Neurol 2022; 13:968390. [PMID: 35968273 PMCID: PMC9366886 DOI: 10.3389/fneur.2022.968390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Despite advancements in multi-modal imaging techniques, a substantial portion of ischemic stroke patients today remain without a diagnosed etiology after conventional workup. Based on existing diagnostic criteria, these ischemic stroke patients are subcategorized into having cryptogenic stroke (CS) or embolic stroke of undetermined source (ESUS). There is growing evidence that in these patients, non-cardiogenic embolic sources, in particular non-stenosing atherosclerotic plaque, may have significant contributory roles in their ischemic strokes. Recent advancements in vessel wall MRI (VW-MRI) have enabled imaging of vessel walls beyond the degree of luminal stenosis, and allows further characterization of atherosclerotic plaque components. Using this imaging technique, we are able to identify potential imaging biomarkers of vulnerable atherosclerotic plaques such as intraplaque hemorrhage, lipid rich necrotic core, and thin or ruptured fibrous caps. This review focuses on the existing evidence on the advantages of utilizing VW-MRI in ischemic stroke patients to identify culprit plaques in key anatomical areas, namely the cervical carotid arteries, intracranial arteries, and the aortic arch. For each anatomical area, the literature on potential imaging biomarkers of vulnerable plaques on VW-MRI as well as the VW-MRI literature in ESUS and CS patients are reviewed. Future directions on further elucidating ESUS and CS by the use of VW-MRI as well as exciting emerging techniques are reviewed.
Collapse
Affiliation(s)
- Yu Sakai
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Vance T. Lehman
- Department of Radiology, The Mayo Clinic, Rochester, MN, United States
| | - Laura B. Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | | | - G. Abbas Kharal
- Department of Neurology, Cerebrovascular Center, Neurological Institute, Cleveland, OH, United States
| | - Jiayu Xiao
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Grace J. Wang
- Department of Vascular Surgery and Endovascular Therapy, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Zhaoyang Fan
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brett L. Cucchiara
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Jae W. Song
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Jae W. Song
| |
Collapse
|
10
|
Han P, Chen J, Xiao J, Han F, Hu Z, Yang W, Cao M, Ling DC, Li D, Christodoulou AG, Fan Z. Single projection driven real-time multi-contrast (SPIDERM) MR imaging using pre-learned spatial subspace and linear transformation. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/13/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To develop and test the feasibility of a novel Single ProjectIon DrivEn Real-time Multi-contrast (SPIDERM) MR imaging technique that can generate real-time 3D images on-the-fly with flexible contrast weightings and a low latency. Approach. In SPIDERM, a ‘prep’ scan is first performed, with sparse k-space sampling periodically interleaved with the central k-space line (navigator data), to learn a subject-specific model, incorporating a spatial subspace and a linear transformation between navigator data and subspace coordinates. A ‘live’ scan is then performed by repeatedly acquiring the central k-space line only to dynamically determine subspace coordinates. With the ‘prep’-learned subspace and ‘live’ coordinates, real-time 3D images are generated on-the-fly with computationally efficient matrix multiplication. When implemented based on a multi-contrast pulse sequence, SPIDERM further allows for data-driven image contrast regeneration to convert real-time contrast-varying images into contrast-frozen images at user’s discretion while maintaining motion states. Both digital phantom and in-vivo experiments were performed to evaluate the technical feasibility of SPIDERM. Main results. The elapsed time from the input of the central k-space line to the generation of real-time contrast-frozen 3D images was approximately 45 ms, permitting a latency of 55 ms or less. Motion displacement measured from SPIDERM and reference images showed excellent correlation (
R
2
≥
0.983
). Geometric variation from the ground truth in the digital phantom was acceptable as demonstrated by pancreas contour analysis (Dice ≥ 0.84, mean surface distance ≤ 0.95 mm). Quantitative image quality metrics showed good consistency between reference images and contrast-varying SPIDREM images in in-vivo studies (mean
NMRSE
=
0.141
,
PSNR
=
3
0.12
,
SSIM
=
0.88
). Significance. SPIDERM is capable of generating real-time multi-contrast 3D images with a low latency. An imaging framework based on SPIDERM has the potential to serve as a standalone package for MR-guided radiation therapy by offering adaptive simulation through a ‘prep’ scan and real-time image guidance through a ‘live’ scan.
Collapse
|
11
|
Cao T, Ma S, Wang N, Gharabaghi S, Xie Y, Fan Z, Hogg E, Wu C, Han F, Tagliati M, Haacke EM, Christodoulou AG, Li D. Three-dimensional simultaneous brain mapping of T1, T2, T2∗ and magnetic susceptibility with MR Multitasking. Magn Reson Med 2022; 87:1375-1389. [PMID: 34708438 PMCID: PMC8776611 DOI: 10.1002/mrm.29059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 01/24/2023]
Abstract
PURPOSE To develop a new technique that enables simultaneous quantification of whole-brain T1 , T2 , T 2 ∗ , as well as susceptibility and synthesis of six contrast-weighted images in a single 9.1-minute scan. METHODS The technique uses hybrid T2 -prepared inversion-recovery pulse modules and multi-echo gradient-echo readouts to collect k-space data with various T1, T2, and T 2 ∗ weightings. The underlying image is represented as a six-dimensional low-rank tensor consisting of three spatial dimensions and three temporal dimensions corresponding to T1 recovery, T2 decay, and multi-echo behaviors, respectively. Multiparametric maps were fitted from reconstructed image series. The proposed method was validated on phantoms and healthy volunteers, by comparing quantitative measurements against corresponding reference methods. The feasibility of generating six contrast-weighted images was also examined. RESULTS High quality, co-registered T1 , T2 , and T 2 ∗ susceptibility maps were generated that closely resembled the reference maps. Phantom measurements showed substantial consistency (R2 > 0.98) with the reference measurements. Despite the significant differences of T1 (p < .001), T2 (p = .002), and T 2 ∗ (p = 0.008) between our method and the references for in vivo studies, excellent agreement was achieved with all intraclass correlation coefficients greater than 0.75. No significant difference was found for susceptibility (p = .900). The framework is also capable of synthesizing six contrast-weighted images. CONCLUSION The MR Multitasking-based 3D brain mapping of T1 , T2 , T 2 ∗ , and susceptibility agrees well with the reference and is a promising technique for multicontrast and quantitative imaging.
Collapse
Affiliation(s)
- Tianle Cao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Sen Ma
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nan Wang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sara Gharabaghi
- Magnetic Resonance Innovations, Inc., Bingham Farms, MI, USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elliot Hogg
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Chaowei Wu
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Fei Han
- Siemens Medical Solutions USA, Inc., Los Angeles, California, USA
| | - Michele Tagliati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - E. Mark Haacke
- Magnetic Resonance Innovations, Inc., Bingham Farms, MI, USA
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
- The MRI Institute for Biomedical Research, Bingham Farms, MI, USA
| | - Anthony G. Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| |
Collapse
|
12
|
Ma L, Yerly J, Di Sopra L, Piccini D, Lee J, DiCarlo A, Passman R, Greenland P, Kim D, Stuber M, Markl M. Using 5D flow MRI to decode the effects of rhythm on left atrial 3D flow dynamics in patients with atrial fibrillation. Magn Reson Med 2021; 85:3125-3139. [PMID: 33400296 PMCID: PMC7904609 DOI: 10.1002/mrm.28642] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023]
Abstract
PURPOSE This study used a 5D flow framework to explore the influence of arrhythmia on thrombogenic hemodynamic parameters in patients with atrial fibrillation (AF). METHODS A fully self-gated, 3D radial, highly accelerated free-running 5D flow sequence with interleaved four-point velocity-encoding was acquired using an in vitro arrhythmic flow phantom and in 25 patients with a history of AF (68 ± 8 y, 6 female). Self-gating signals were used to calculate AF burden, bin data, and tag each k-space line with its RRLength . Data were binned as an RR-resolved dataset with four RR-interval bins (RR1-RR4, short-to-long) for compressed sensing reconstruction. AF burden was calculated as interquartile range of all intrascan RR-intervals divided by median RR-interval, and left atrial (LA) stasis as the percent of the cardiac cycle where the velocity was <0.1 m/s. RESULTS In vitro results demonstrated successful recovery of RR-binned flow curves using RR-resolved 5D flow compared to a real-time PC reference standard. In vivo, 5D flow was acquired in 8:48 minutes. AF burden was significantly correlated with 5D flow-derived peak (PV) and mean (MV) velocity and stasis (|ρ| = 0.54-0.75, P < .001). Sensitivity analyses determined a threshold for low versus high AF burden at 9.7%. High burden patients had increased LA mean stasis (up to +42%, P < .01), and lower MV and PV (-30%, -40.6%, respectively, P < .01). RR4 deviated furthest from respiratory-resolved reconstruction (end-expiration) with increased mean stasis (7.6% ± 14.0%, P = .10) and decreased PV (-12.7 ± 14.2%, P = .09). CONCLUSIONS RR-resolved 5D flow can capture temporal and RR-resolved 3D hemodynamics in <10 minutes and offers a novel approach to investigate arrhythmias.
Collapse
Affiliation(s)
- Liliana Ma
- Department of Radiology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Lorenzo Di Sopra
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Jeesoo Lee
- Department of Radiology, Feinberg School of Medicine, Chicago, IL, USA
| | - Amanda DiCarlo
- Department of Radiology, Feinberg School of Medicine, Chicago, IL, USA
| | - Rod Passman
- Department of Medicine and Preventive Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Philip Greenland
- Department of Medicine and Preventive Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel Kim
- Department of Radiology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
13
|
Henningsson M, Malik S, Botnar R, Castellanos D, Hussain T, Leiner T. Black-Blood Contrast in Cardiovascular MRI. J Magn Reson Imaging 2020; 55:61-80. [PMID: 33078512 PMCID: PMC9292502 DOI: 10.1002/jmri.27399] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
MRI is a versatile technique that offers many different options for tissue contrast, including suppressing the blood signal, so‐called black‐blood contrast. This contrast mechanism is extremely useful to visualize the vessel wall with high conspicuity or for characterization of tissue adjacent to the blood pool. In this review we cover the physics of black‐blood contrast and different techniques to achieve blood suppression, from methods intrinsic to the imaging readout to magnetization preparation pulses that can be combined with arbitrary readouts, including flow‐dependent and flow‐independent techniques. We emphasize the technical challenges of black‐blood contrast that can depend on flow and motion conditions, additional contrast weighting mechanisms (T1, T2, etc.), magnetic properties of the tissue, and spatial coverage. Finally, we describe specific implementations of black‐blood contrast for different vascular beds.
Collapse
Affiliation(s)
- Markus Henningsson
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shaihan Malik
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Rene Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Daniel Castellanos
- Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tarique Hussain
- Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Division of Pediatric Radiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, The Netherlands
| |
Collapse
|