1
|
Dall'Armellina E, Ennis DB, Axel L, Croisille P, Ferreira PF, Gotschy A, Lohr D, Moulin K, Nguyen C, Nielles-Vallespin S, Romero W, Scott AD, Stoeck C, Teh I, Tunnicliffe L, Viallon M, Wang, Young AA, Schneider JE, Sosnovik DE. Cardiac diffusion-weighted and tensor imaging: a Society for Cardiovascular Magnetic Resonance (SCMR) special interest group consensus statement. J Cardiovasc Magn Reson 2024:101109. [PMID: 39442672 DOI: 10.1016/j.jocmr.2024.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Thanks to recent developments in Cardiovascular magnetic resonance (CMR), cardiac diffusion-weighted magnetic resonance is fast emerging in a range of clinical applications. Cardiac diffusion-weighted imaging (cDWI) and diffusion tensor imaging (cDTI) now enable investigators and clinicians to assess and quantify the 3D microstructure of the heart. Free-contrast DWI is uniquely sensitized to the presence and displacement of water molecules within the myocardial tissue, including the intra-cellular, extra-cellular and intra-vascular spaces. CMR can determine changes in microstructure by quantifying: a) mean diffusivity (MD) -measuring the magnitude of diffusion; b) fractional anisotropy (FA) - specifying the directionality of diffusion; c) helix angle (HA) and transverse angle (TA) -indicating the orientation of the cardiomyocytes; d) E2A and E2A mobility - measuring the alignment and systolic-diastolic mobility of the sheetlets, respectively. This document provides recommendations for both clinical and research cDWI and cDTI, based on published evidence when available and expert consensus when not. It introduces the cardiac microstructure focusing on the cardiomyocytes and their role in cardiac physiology and pathophysiology. It highlights methods, observations and recommendations in terminology, acquisition schemes, post-processing pipelines, data analysis and interpretation of the different biomarkers. Despite the ongoing challenges discussed in the document and the need for ongoing technical improvements, it is clear that cDTI is indeed feasible, can be accurately and reproducibly performed and, most importantly, can provide unique insights into myocardial pathophysiology.
Collapse
Affiliation(s)
- E Dall'Armellina
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - D B Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
| | - L Axel
- Department of Radiology, and Division of Cardiology, Department of Internal Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - P Croisille
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Department of Radiology, University Hospital Saint-Etienne, France
| | - P F Ferreira
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - A Gotschy
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland and Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - D Lohr
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - K Moulin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, US
| | - C Nguyen
- Harvard Medical School, MA, and Cardiovascular Innovation Research Center, Cleveland Clinic, United States
| | - S Nielles-Vallespin
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - W Romero
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Saint Etienne, France
| | - A D Scott
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - C Stoeck
- University and ETH Zurich, Switzerland
| | - I Teh
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - L Tunnicliffe
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford UK
| | - M Viallon
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Department of Radiology, University Hospital Saint-Etienne, France
| | - Wang
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - J E Schneider
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - D E Sosnovik
- Martinos Center for Biomedical Imaging and Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Sadighi M, Kara D, Mai D, Nguyen K, Chen S, Kwon D, Nguyen C. Cardiac DTI using short-axis PROPELLER: A feasibility study. Magn Reson Med 2024; 91:2546-2558. [PMID: 38376096 PMCID: PMC11102807 DOI: 10.1002/mrm.30020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE We aimed to develop a free-breathing (FB) cardiac DTI (cDTI) method based on short-axis PROPELLER (SAP) and M2 motion compensated spin-echo EPI (SAP-M2-EPI) to mitigate geometric distortion and eliminate aliasing in acquired diffusion-weighted (DW) images, particularly in patients with a higher body mass index (BMI). THEORY AND METHODS The study involved 10 healthy volunteers whose BMI values fell into specific categories: BMI <25 (4 volunteers), 25< BMI <28 (5 volunteers), and BMI >30 (1 volunteer). We compared DTI parameters, including fractional anisotropy (FA), mean diffusivity (MD), and helix angle transmurality (HAT), between SAP-M2-EPI and M2-ssEPI. To evaluate the performance of SAP-M2-EPI in reducing geometric distortions in the left ventricle (LV) compared to CINE and M2-ssEPI, we utilized the DICE similarity coefficient (DSC) and assessed misregistration area. RESULTS In all volunteers, SAP-M2-EPI yielded high-quality LV DWIs without aliasing, demonstrating significantly reduced geometric distortion (with an average DSC of 0.92 and average misregistration area of 90 mm2) and diminished signal loss due to bulk motion when compared to M2-ssEPI. DTI parameter maps exhibited consistent patterns across slices without motion related artifacts. CONCLUSION SAP-M2-EPI facilitates free-breathing cDTI of the entire LV, effectively eliminating aliasing and minimizing geometric distortion compared to M2-ssEPI. Furthermore, it preserves accurate quantification of myocardial microstructure.
Collapse
Affiliation(s)
- Mehdi Sadighi
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Danielle Kara
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Dingheng Mai
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Khoi Nguyen
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shi Chen
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Deborah Kwon
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Imaging Institute,Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher Nguyen
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
- Imaging Institute,Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Rock CA, Chen YI, Wang R, Philip AL, Keil B, Weiner RB, Elmariah S, Mekkaoui C, Nguyen CT, Sosnovik DE. Diffusion Tensor Phenomapping of the Healthy and Pressure-Overloaded Human Heart. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.03.24306781. [PMID: 38746173 PMCID: PMC11092740 DOI: 10.1101/2024.05.03.24306781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Current techniques to image the microstructure of the heart with diffusion tensor MRI (DTI) are highly under-resolved. We present a technique to improve the spatial resolution of cardiac DTI by almost 10-fold and leverage this to measure local gradients in cardiomyocyte alignment or helix angle (HA). We further introduce a phenomapping approach based on voxel-wise hierarchical clustering of these gradients to identify distinct microstructural microenvironments in the heart. Initial development was performed in healthy volunteers (n=8). Thereader, subjects with severe but well-compensated aortic stenosis (AS, n=10) were compared to age-matched controls (CTL, n=10). Radial HA gradient was significantly reduced in AS (8.0±0.8°/mm vs. 10.2±1.8°/mm, p=0.001) but the other HA gradients did not change significantly. Four distinct microstructural clusters could be idenJfied in both the CTL and AS subjects and did not differ significantly in their properties or distribution. Despite marked hypertrophy, our data suggest that the myocardium in well-compensated AS can maintain its microstructural coherence. The described phenomapping approach can be used to characterize microstructural plasticity and perturbation in any organ system and disease.
Collapse
|
4
|
Teh I, Shelley D, Boyle JH, Zhou F, Poenar A, Sharrack N, Foster RJ, Yuldasheva NY, Parker GJM, Dall'Armellina E, Plein S, Schneider JE, Szczepankiewicz F. Cardiac q-space trajectory imaging by motion-compensated tensor-valued diffusion encoding in human heart in vivo. Magn Reson Med 2023; 90:150-165. [PMID: 36941736 PMCID: PMC10952623 DOI: 10.1002/mrm.29637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE Tensor-valued diffusion encoding can probe more specific features of tissue microstructure than what is available by conventional diffusion weighting. In this work, we investigate the technical feasibility of tensor-valued diffusion encoding at high b-values with q-space trajectory imaging (QTI) analysis, in the human heart in vivo. METHODS Ten healthy volunteers were scanned on a 3T scanner. We designed time-optimal gradient waveforms for tensor-valued diffusion encoding (linear and planar) with second-order motion compensation. Data were analyzed with QTI. Normal values and repeatability were investigated for the mean diffusivity (MD), fractional anisotropy (FA), microscopic FA (μFA), isotropic, anisotropic and total mean kurtosis (MKi, MKa, and MKt), and orientation coherence (Cc ). A phantom, consisting of two fiber blocks at adjustable angles, was used to evaluate sensitivity of parameters to orientation dispersion and diffusion time. RESULTS QTI data in the left ventricular myocardium were MD = 1.62 ± 0.07 μm2 /ms, FA = 0.31 ± 0.03, μFA = 0.43 ± 0.07, MKa = 0.20 ± 0.07, MKi = 0.13 ± 0.03, MKt = 0.33 ± 0.09, and Cc = 0.56 ± 0.22 (mean ± SD across subjects). Phantom experiments showed that FA depends on orientation dispersion, whereas μFA was insensitive to this effect. CONCLUSION We demonstrated the first tensor-valued diffusion encoding and QTI analysis in the heart in vivo, along with first measurements of myocardial μFA, MKi, MKa, and Cc . The methodology is technically feasible and provides promising novel biomarkers for myocardial tissue characterization.
Collapse
Affiliation(s)
- Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - David Shelley
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
- Leeds Teaching Hospitals TrustLeedsUK
| | - Jordan H. Boyle
- Faculty of Industrial Design EngineeringDelft University of TechnologyDelftNetherlands
| | - Fenglei Zhou
- Center for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of NeuroinflammationUniversity College LondonLondonUK
- Astrea BioseparationCombertonUK
| | - Ana‐Maria Poenar
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Noor Sharrack
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Richard J. Foster
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Nadira Y. Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Geoff J. M. Parker
- Center for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of NeuroinflammationUniversity College LondonLondonUK
- Bioxydyn LimitedManchesterUK
| | - Erica Dall'Armellina
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Jürgen E. Schneider
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | |
Collapse
|