1
|
Safari M, Eidex Z, Chang CW, Qiu RL, Yang X. Advancing MRI Reconstruction: A Systematic Review of Deep Learning and Compressed Sensing Integration. ARXIV 2025:arXiv:2501.14158v2. [PMID: 39975448 PMCID: PMC11838702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive imaging modality and provides comprehensive anatomical and functional insights into the human body. However, its long acquisition times can lead to patient discomfort, motion artifacts, and limiting real-time applications. To address these challenges, strategies such as parallel imaging have been applied, which utilize multiple receiver coils to speed up the data acquisition process. Additionally, compressed sensing (CS) is a method that facilitates image reconstruction from sparse data, significantly reducing image acquisition time by minimizing the amount of data collection needed. Recently, deep learning (DL) has emerged as a powerful tool for improving MRI reconstruction. It has been integrated with parallel imaging and CS principles to achieve faster and more accurate MRI reconstructions. This review comprehensively examines DL-based techniques for MRI reconstruction. We categorize and discuss various DL-based methods, including end-to-end approaches, unrolled optimization, and federated learning, highlighting their potential benefits. Our systematic review highlights significant contributions and underscores the potential of DL in MRI reconstruction. Additionally, we summarize key results and trends in DL-based MRI reconstruction, including quantitative metrics, the dataset, acceleration factors, and the progress of and research interest in DL techniques over time. Finally, we discuss potential future directions and the importance of DL-based MRI reconstruction in advancing medical imaging. To facilitate further research in this area, we provide a GitHub repository that includes up-to-date DL-based MRI reconstruction publications and public datasets-https://github.com/mosaf/Awesome-DL-based-CS-MRI.
Collapse
Affiliation(s)
- Mojtaba Safari
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Zach Eidex
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| |
Collapse
|
2
|
Huang J, Wu Y, Wang F, Fang Y, Nan Y, Alkan C, Abraham D, Liao C, Xu L, Gao Z, Wu W, Zhu L, Chen Z, Lally P, Bangerter N, Setsompop K, Guo Y, Rueckert D, Wang G, Yang G. Data- and Physics-Driven Deep Learning Based Reconstruction for Fast MRI: Fundamentals and Methodologies. IEEE Rev Biomed Eng 2025; 18:152-171. [PMID: 39437302 DOI: 10.1109/rbme.2024.3485022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Magnetic Resonance Imaging (MRI) is a pivotal clinical diagnostic tool, yet its extended scanning times often compromise patient comfort and image quality, especially in volumetric, temporal and quantitative scans. This review elucidates recent advances in MRI acceleration via data and physics-driven models, leveraging techniques from algorithm unrolling models, enhancement-based methods, and plug-and-play models to the emerging full spectrum of generative model-based methods. We also explore the synergistic integration of data models with physics-based insights, encompassing the advancements in multi-coil hardware accelerations like parallel imaging and simultaneous multi-slice imaging, and the optimization of sampling patterns. We then focus on domain-specific challenges and opportunities, including image redundancy exploitation, image integrity, evaluation metrics, data heterogeneity, and model generalization. This work also discusses potential solutions and future research directions, with an emphasis on the role of data harmonization and federated learning for further improving the general applicability and performance of these methods in MRI reconstruction.
Collapse
|
3
|
Zhu Y, Wang G, Gu Y, Zhao W, Lu J, Zhu J, MacAskill CJ, Dupuis A, Griswold MA, Ma D, Flask CA, Yu X. 3D MR fingerprinting for dynamic contrast-enhanced imaging of whole mouse brain. Magn Reson Med 2025; 93:67-79. [PMID: 39164799 PMCID: PMC11518651 DOI: 10.1002/mrm.30253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE Quantitative MRI enables direct quantification of contrast agent concentrations in contrast-enhanced scans. However, the lengthy scan times required by conventional methods are inadequate for tracking contrast agent transport dynamically in mouse brain. We developed a 3D MR fingerprinting (MRF) method for simultaneous T1 and T2 mapping across the whole mouse brain with 4.3-min temporal resolution. METHOD We designed a 3D MRF sequence with variable acquisition segment lengths and magnetization preparations on a 9.4T preclinical MRI scanner. Model-based reconstruction approaches were employed to improve the accuracy and speed of MRF acquisition. The method's accuracy for T1 and T2 measurements was validated in vitro, while its repeatability of T1 and T2 measurements was evaluated in vivo (n = 3). The utility of the 3D MRF sequence for dynamic tracking of intracisternally infused gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) in the whole mouse brain was demonstrated (n = 5). RESULTS Phantom studies confirmed accurate T1 and T2 measurements by 3D MRF with an undersampling factor of up to 48. Dynamic contrast-enhanced MRF scans achieved a spatial resolution of 192 × 192 × 500 μm3 and a temporal resolution of 4.3 min, allowing for the analysis and comparison of dynamic changes in concentration and transport kinetics of intracisternally infused Gd-DTPA across brain regions. The sequence also enabled highly repeatable, high-resolution T1 and T2 mapping of the whole mouse brain (192 × 192 × 250 μm3) in 30 min. CONCLUSION We present the first dynamic and multi-parametric approach for quantitatively tracking contrast agent transport in the mouse brain using 3D MRF.
Collapse
Affiliation(s)
- Yuran Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Guanhua Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Walter Zhao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jiahao Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christina J. MacAskill
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew Dupuis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A. Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chris A. Flask
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Huynh C, Goolaub DS, Macgowan CK. Electric potential energy optimized 3D radial sampling trajectories for MRI. Sci Rep 2024; 14:24084. [PMID: 39406755 PMCID: PMC11480509 DOI: 10.1038/s41598-024-74437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
A novel method for creating "golden" 3D center-out radial MRI sampling trajectories was developed and analyzed. This method, called ELECTRO (ELECTRic potential energy Optimized), uses repulsive forces to minimize electric potential energy. An objective function [Formula: see text], the electric potential energies of all subsets of consecutive readouts in a 3D radial trajectory, and its reduced form were minimized using a multi-stage optimization strategy. A metric called normalized mean nearest neighbor angular distance (NMNA) was proposed for describing distributions of points on a sphere. ELECTRO and other relevant golden trajectories were compared in silico using NMNA and point spread function analysis. Consecutive readouts from an ELECTRO trajectory were well spread out, with consistent NMNA values across sphere sizes (σNMNA = 0.005) and between regions on the sphere (NMNA ≈ 1.49). Conversely, the supergolden trajectory had poor consistency in NMNA values (σNMNA = 0.090) and clustering (NMNA = 1.28 at the pole with 40,000 readouts) that lead to artifact in the point spread function. Multi-stage optimization was faster than single-stage and obtained lower values of [Formula: see text] (e.g., 0.87 vs. 0.91, for a sphere size of 40). In conclusion, ELECTRO trajectories are more golden than other 3D center-out radial trajectories, making them a suitable candidate for dynamic 3D MR imaging.
Collapse
Affiliation(s)
- Christopher Huynh
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada.
- Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Peter Gilgan Centre for Research and Learning, Rm 08.9714, 686 Bay Street, Toronto, Canada.
| |
Collapse
|
5
|
Zhu Y, Wang G, Gu Y, Zhao W, Lu J, Zhu J, MacAskill CJ, Dupuis A, Griswold MA, Ma D, Flask CA, Yu X. 3D MR Fingerprinting for Dynamic Contrast-Enhanced Imaging of Whole Mouse Brain. ARXIV 2024:arXiv:2405.00513v2. [PMID: 38745701 PMCID: PMC11092875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Purpose Quantitative MRI enables direct quantification of contrast agent concentrations in contrast-enhanced scans. However, the lengthy scan times required by conventional methods are inadequate for tracking contrast agent transport dynamically in mouse brain. We developed a 3D MR fingerprinting (MRF) method for simultaneous T1 and T2 mapping across the whole mouse brain with 4.3-min temporal resolution. Method We designed a 3D MRF sequence with variable acquisition segment lengths and magnetization preparations on a 9.4T preclinical MRI scanner. Model-based reconstruction approaches were employed to improve the accuracy and speed of MRF acquisition. The method's accuracy for T1 and T2 measurements was validated in vitro, while its repeatability of T1 and T2 measurements was evaluated in vivo (n=3). The utility of the 3D MRF sequence for dynamic tracking of intracisternally infused Gd-DTPA in the whole mouse brain was demonstrated (n=5). Results Phantom studies confirmed accurate T1 and T2 measurements by 3D MRF with an undersampling factor up to 48. Dynamic contrast-enhanced (DCE) MRF scans achieved a spatial resolution of 192 ✕ 192 ✕ 500 μm3 and a temporal resolution of 4.3 min, allowing for the analysis and comparison of dynamic changes in concentration and transport kinetics of intracisternally infused Gd-DTPA across brain regions. The sequence also enabled highly repeatable, high-resolution T1 and T2 mapping of the whole mouse brain (192 ✕ 192 ✕ 250 μm3) in 30 min. Conclusion We present the first dynamic and multi-parametric approach for quantitatively tracking contrast agent transport in the mouse brain using 3D MRF.
Collapse
Affiliation(s)
- Yuran Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Guanhua Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Walter Zhao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jiahao Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christina J. MacAskill
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew Dupuis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A. Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chris A. Flask
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Yang H, Wang G, Li Z, Li H, Zheng J, Hu Y, Cao X, Liao C, Ye H, Tian Q. Artificial intelligence for neuro MRI acquisition: a review. MAGMA (NEW YORK, N.Y.) 2024; 37:383-396. [PMID: 38922525 DOI: 10.1007/s10334-024-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
OBJECT To review recent advances of artificial intelligence (AI) in enhancing the efficiency and throughput of the MRI acquisition workflow in neuroimaging, including planning, sequence design, and correction of acquisition artifacts. MATERIALS AND METHODS A comprehensive analysis was conducted on recent AI-based methods in neuro MRI acquisition. The study focused on key technological advances, their impact on clinical practice, and potential risks associated with these methods. RESULTS The findings indicate that AI-based algorithms have a substantial positive impact on the MRI acquisition process, improving both efficiency and throughput. Specific algorithms were identified as particularly effective in optimizing acquisition steps, with reported improvements in workflow efficiency. DISCUSSION The review highlights the transformative potential of AI in neuro MRI acquisition, emphasizing the technological advances and clinical benefits. However, it also discusses potential risks and challenges, suggesting areas for future research to mitigate these concerns and further enhance AI integration in MRI acquisition.
Collapse
Affiliation(s)
- Hongjia Yang
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Guanhua Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ziyu Li
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Haoxiang Li
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Jialan Zheng
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Yuxin Hu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Congyu Liao
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Huihui Ye
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qiyuan Tian
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Xiang H, Fessler JA, Noll DC. Model-based reconstruction for looping-star MRI. Magn Reson Med 2024; 91:2104-2113. [PMID: 38282253 PMCID: PMC10950512 DOI: 10.1002/mrm.29927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE The aim of this study was to develop a reconstruction method that more fully models the signals and reconstructs gradient echo (GRE) images without sacrificing the signal to noise ratio and spatial resolution, compared to conventional gridding and model-based image reconstruction method. METHODS By modeling the trajectories for every spoke and simplifying the scenario to only echo-in and echo-out mixture, the approach explicitly models the overlapping echoes. After modeling the overlapping echoes with two system matrices, we use the conjugate gradient algorithm (CG-SENSE) with the nonuniform FFT (NUFFT) to optimize the image reconstruction cost function. RESULTS The proposed method is demonstrated in phantoms and in-vivo volunteer experiments for three-dimensional, high-resolution T2*-weighted imaging and functional MRI tasks. Compared to the gridding method, the high resolution protocol exhibits improved spatial resolution and reduced signal loss as a result of less intra-voxel dephasing. The fMRI task shows that the proposed model-based method produced images with reduced artifacts and blurring as well as more stable and prominent time courses. CONCLUSION The proposed model-based reconstruction results shows improved spatial resolution and reduced artifacts. The fMRI task shows improved time series and activation map due to the reduced overlapping echoes and under-sampling artifacts.
Collapse
Affiliation(s)
| | - Jeffrey A. Fessler
- EECS, University of Michigan, Michigan, USA
- Biomedical Engineering, University of Michigan, Michigan, USA
| | - Douglas C. Noll
- Biomedical Engineering, University of Michigan, Michigan, USA
| |
Collapse
|
8
|
Tian Y, Nayak KS. New clinical opportunities of low-field MRI: heart, lung, body, and musculoskeletal. MAGMA (NEW YORK, N.Y.) 2024; 37:1-14. [PMID: 37902898 PMCID: PMC10876830 DOI: 10.1007/s10334-023-01123-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Contemporary whole-body low-field MRI scanners (< 1 T) present new and exciting opportunities for improved body imaging. The fundamental reason is that the reduced off-resonance and reduced SAR provide substantially increased flexibility in the design of MRI pulse sequences. Promising body applications include lung parenchyma imaging, imaging adjacent to metallic implants, cardiac imaging, and dynamic imaging in general. The lower cost of such systems may make MRI favorable for screening high-risk populations and population health research, and the more open configurations allowed may prove favorable for obese subjects and for pregnant women. This article summarizes promising body applications for contemporary whole-body low-field MRI systems, with a focus on new platforms developed within the past 5 years. This is an active area of research, and one can expect many improvements as MRI physicists fully explore the landscape of pulse sequences that are feasible, and as clinicians apply these to patient populations.
Collapse
Affiliation(s)
- Ye Tian
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, 3740 McClintock Ave, EEB 406, Los Angeles, CA, 90089-2564, USA.
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, 3740 McClintock Ave, EEB 406, Los Angeles, CA, 90089-2564, USA
| |
Collapse
|
9
|
Takeshima H. [[MRI] 2. Recent Research on MR Image Reconstruction Using Artificial Intelligence]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:863-869. [PMID: 37599072 DOI: 10.6009/jjrt.2023-2236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Affiliation(s)
- Hidenori Takeshima
- Imaging Modality Group, Advanced Technology Research Department, Research and Development Center, Canon Medical Systems Corporation
| |
Collapse
|