1
|
Indelicato E, Wanschitz J, Löscher W, Boesch S. Skeletal Muscle Involvement in Friedreich Ataxia. Int J Mol Sci 2024; 25:9915. [PMID: 39337401 PMCID: PMC11432698 DOI: 10.3390/ijms25189915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Friedreich Ataxia (FRDA) is an inherited neuromuscular disorder triggered by a deficit of the mitochondrial protein frataxin. At a cellular level, frataxin deficiency results in insufficient iron-sulfur cluster biosynthesis and impaired mitochondrial function and adenosine triphosphate production. The main clinical manifestation is a progressive balance and coordination disorder which depends on the involvement of peripheral and central sensory pathways as well as of the cerebellum. Besides the neurological involvement, FRDA affects also the striated muscles. The most prominent manifestation is a hypertrophic cardiomyopathy, which also represents the major determinant of premature mortality. Moreover, FRDA displays skeletal muscle involvement, which contributes to the weakness and marked fatigue evident throughout the course of the disease. Herein, we review skeletal muscle findings in FRDA generated by functional imaging, histology, as well as multiomics techniques in both disease models and in patients. Altogether, these findings corroborate a disease phenotype in skeletal muscle and support the notion of progressive mitochondrial damage as a driver of disease progression in FRDA. Furthermore, we highlight the relevance of skeletal muscle investigations in the development of biomarkers for early-phase trials and future therapeutic strategies in FRDA.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Julia Wanschitz
- Unit for Neuromuscular Disorders and Clinical Neurophysiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Wolfgang Löscher
- Unit for Neuromuscular Disorders and Clinical Neurophysiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
2
|
Cilenti NA, Tamaroff JG, Capiola CJ, Faig W, McBride MG, Paridon SM, O'Malley S, Edelson JB, Lynch DR, McCormack SE, Lin KY. Cardiopulmonary exercise testing on adaptive equipment in children and adults with Friedreich ataxia. Muscle Nerve 2024; 69:613-619. [PMID: 38515223 PMCID: PMC11013735 DOI: 10.1002/mus.28085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION/AIMS Traditional exercise is often difficult for individuals with Friedreich ataxia (FRDA), and evidence is limited regarding how to measure exercise performance in this population. We evaluated the feasibility, reliability, and natural history of adaptive cardiopulmonary exercise test (CPET) performance in children and adults with FRDA. METHODS Participants underwent CPET on either an arm cycle ergometer (ACE) or recumbent leg cycle ergometer (RLCE) at up to four visits (baseline, 2 weeks, 4 weeks, and 1 year). Maximum work, oxygen consumption (peak VO2), oxygen (O2) pulse, and anaerobic threshold (AT) were measured in those who reached maximal volition. Test-retest reliability was assessed with intraclass coefficients, and longitudinal change was assessed using regression analysis. RESULTS In our cohort (N = 23), median age was 18 years (interquartile range [IQR], 14-23), median age of FRDA onset was 8 years (IQR 6-13), median Friedreich Ataxia Rating Scale score was 58 (IQR 54-62), and GAA repeat length on the shorter FXN allele (GAA1) was 766 (IQR, 650-900). Twenty-one (91%) completed a maximal CPET (n = 8, ACE and n = 13, RLCE). Age, sex, and GAA1 repeat length were each associated with peak VO2. Preliminary estimates demonstrated reasonable agreement between visits 2 and 3 for peak work by both ACE and RLCE, and for peak VO2, O2 pulse, and AT by RLCE. We did not detect significant performance changes over 1 year. DISCUSSION Adaptive CPET is feasible in FRDA, a relevant clinical trial outcome for interventions that impact exercise performance and will increase access to participation as well as generalizability of findings.
Collapse
Affiliation(s)
- Nicolette A. Cilenti
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jaclyn G. Tamaroff
- Division of Pediatric Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher J. Capiola
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Walter Faig
- Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael G. McBride
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stephen M. Paridon
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shannon O'Malley
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jonathan B. Edelson
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David R. Lynch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shana E. McCormack
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kimberly Y. Lin
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Doni D, Cavion F, Bortolus M, Baschiera E, Muccioli S, Tombesi G, d'Ettorre F, Ottaviani D, Marchesan E, Leanza L, Greggio E, Ziviani E, Russo A, Bellin M, Sartori G, Carbonera D, Salviati L, Costantini P. Human frataxin, the Friedreich ataxia deficient protein, interacts with mitochondrial respiratory chain. Cell Death Dis 2023; 14:805. [PMID: 38062036 PMCID: PMC10703789 DOI: 10.1038/s41419-023-06320-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023]
Abstract
Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease caused by an expanded GAA repeat in the first intron of the FXN gene, leading to transcriptional silencing and reduced expression of frataxin. Frataxin participates in the mitochondrial assembly of FeS clusters, redox cofactors of the respiratory complexes I, II and III. To date it is still unclear how frataxin deficiency culminates in the decrease of bioenergetics efficiency in FRDA patients' cells. We previously demonstrated that in healthy cells frataxin is closely attached to the mitochondrial cristae, which contain both the FeS cluster assembly machinery and the respiratory chain complexes, whereas in FRDA patients' cells with impaired respiration the residual frataxin is largely displaced in the matrix. To gain novel insights into the function of frataxin in the mitochondrial pathophysiology, and in the upstream metabolic defects leading to FRDA disease onset and progression, here we explored the potential interaction of frataxin with the FeS cluster-containing respiratory complexes I, II and III. Using healthy cells and different FRDA cellular models we found that frataxin interacts with these three respiratory complexes. Furthermore, by EPR spectroscopy, we observed that in mitochondria from FRDA patients' cells the decreased level of frataxin specifically affects the FeS cluster content of complex I. Remarkably, we also found that the frataxin-like protein Nqo15 from T. thermophilus complex I ameliorates the mitochondrial respiratory phenotype when expressed in FRDA patient's cells. Our data point to a structural and functional interaction of frataxin with complex I and open a perspective to explore therapeutic rationales for FRDA targeted to this respiratory complex.
Collapse
Affiliation(s)
- Davide Doni
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Federica Cavion
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, 35131, Padova, Italy
| | - Elisa Baschiera
- Clinical Genetics Unit, Department of Women's and Children Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, 35127, Padova, Italy
| | - Silvia Muccioli
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Giulia Tombesi
- Department of Biology, University of Padova, 35121, Padova, Italy
| | | | | | - Elena Marchesan
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, 35121, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Elena Ziviani
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Milena Bellin
- Department of Biology, University of Padova, 35121, Padova, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, ZA, Leiden, The Netherlands
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children Health, University of Padova, 35128, Padova, Italy.
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, 35127, Padova, Italy.
| | - Paola Costantini
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
4
|
Jávor P, Donka T, Horváth T, Sándor L, Török L, Szabó A, Hartmann P. Impairment of Mesenteric Perfusion as a Marker of Major Bleeding in Trauma Patients. J Clin Med 2023; 12:jcm12103571. [PMID: 37240677 DOI: 10.3390/jcm12103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of potentially preventable mortality in trauma patients is related to bleeding; therefore, early recognition and effective treatment of hemorrhagic shock impose a cardinal challenge for trauma teams worldwide. The reduction in mesenteric perfusion (MP) is among the first compensatory responses to blood loss; however, there is no adequate tool for splanchnic hemodynamic monitoring in emergency patient care. In this narrative review, (i) methods based on flowmetry, CT imaging, video microscopy (VM), measurement of laboratory markers, spectroscopy, and tissue capnometry were critically analyzed with respect to their accessibility, and applicability, sensitivity, and specificity. (ii) Then, we demonstrated that derangement of MP is a promising diagnostic indicator of blood loss. (iii) Finally, we discussed a new diagnostic method for the evaluation of hemorrhage based on exhaled methane (CH4) measurement. Conclusions: Monitoring the MP is a feasible option for the evaluation of blood loss. There are a wide range of experimentally used methodologies; however, due to their practical limitations, only a fraction of them could be integrated into routine emergency trauma care. According to our comprehensive review, breath analysis, including exhaled CH4 measurement, would provide the possibility for continuous, non-invasive monitoring of blood loss.
Collapse
Affiliation(s)
- Péter Jávor
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| | - Tibor Donka
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| | - Tamara Horváth
- Institute of Surgical Research, University of Szeged, H-6724 Szeged, Hungary
| | - Lilla Sándor
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| | - László Török
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
- Department of Sports Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, H-6724 Szeged, Hungary
| | - Petra Hartmann
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
5
|
Dong YNA, Mesaros C, Xu P, Mercado-Ayón E, Halawani S, Ngaba LV, Warren N, Sleiman P, Rodden LN, Schadt KA, Blair IA, Lynch DR. Frataxin controls ketone body metabolism through regulation of OXCT1. PNAS NEXUS 2022; 1:pgac142. [PMID: 36016708 PMCID: PMC9396447 DOI: 10.1093/pnasnexus/pgac142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/21/2022] [Indexed: 02/05/2023]
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by the deficiency of mitochondrial protein frataxin, which plays a crucial role in iron-sulphur cluster formation and ATP production. The cellular function of frataxin is not entirely known. Here, we demonstrate that frataxin controls ketone body metabolism through regulation of 3-Oxoacid CoA-Transferase 1 (OXCT1), a rate limiting enzyme catalyzing the conversion of ketone bodies to acetoacetyl-CoA that is then fed into the Krebs cycle. Biochemical studies show a physical interaction between frataxin and OXCT1 both in vivo and in vitro. Frataxin overexpression also increases OXCT1 protein levels in human skin fibroblasts while frataxin deficiency decreases OXCT1 in multiple cell types including cerebellum and skeletal muscle both acutely and chronically, suggesting that frataxin directly regulates OXCT1. This regulation is mediated by frataxin-dependent suppression of ubiquitin-proteasome system (UPS)-dependent OXCT1 degradation. Concomitantly, plasma ketone bodies are significantly elevated in frataxin deficient knock-in/knockout (KIKO) mice with no change in the levels of other enzymes involved in ketone body production. In addition, ketone bodies fail to be metabolized to acetyl-CoA accompanied by increased succinyl-CoA in vitro in frataxin deficient cells, suggesting that ketone body elevation is caused by frataxin-dependent reduction of OXCT1 leading to deficits in tissue utilization of ketone bodies. Considering the potential role of metabolic abnormalities and deficiency of ATP production in FRDA, our results suggest a new role for frataxin in ketone body metabolism and also suggest modulation of OXCT1 may be a potential therapeutic approach for FRDA.
Collapse
Affiliation(s)
- Yi NA Dong
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peining Xu
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Sarah Halawani
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lucie Vanessa Ngaba
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nathan Warren
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Patrick Sleiman
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Layne N Rodden
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kimberly A Schadt
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ian A Blair
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
6
|
Vásquez-Trincado C, Dunn J, Han JI, Hymms B, Tamaroff J, Patel M, Nguyen S, Dedio A, Wade K, Enigwe C, Nichtova Z, Lynch DR, Csordas G, McCormack SE, Seifert EL. Frataxin deficiency lowers lean mass and triggers the integrated stress response in skeletal muscle. JCI Insight 2022; 7:e155201. [PMID: 35531957 PMCID: PMC9090249 DOI: 10.1172/jci.insight.155201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited disorder caused by reduced levels of frataxin (FXN), which is required for iron-sulfur cluster biogenesis. Neurological and cardiac comorbidities are prominent and have been a major focus of study. Skeletal muscle has received less attention despite indications that FXN loss affects it. Here, we show that lean mass is lower, whereas body mass index is unaltered, in separate cohorts of adults and children with FRDA. In adults, lower lean mass correlated with disease severity. To further investigate FXN loss in skeletal muscle, we used a transgenic mouse model of whole-body inducible and progressive FXN depletion. There was little impact of FXN loss when FXN was approximately 20% of control levels. When residual FXN was approximately 5% of control levels, muscle mass was lower along with absolute grip strength. When we examined mechanisms that can affect muscle mass, only global protein translation was lower, accompanied by integrated stress response (ISR) activation. Also in mice, aerobic exercise training, initiated prior to the muscle mass difference, improved running capacity, yet, muscle mass and the ISR remained as in untrained mice. Thus, FXN loss can lead to lower lean mass, with ISR activation, both of which are insensitive to exercise training.
Collapse
Affiliation(s)
- César Vásquez-Trincado
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Julia Dunn
- Division of Endocrinology and Diabetes and
| | - Ji In Han
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Briyanna Hymms
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Monika Patel
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Anna Dedio
- Division of Endocrinology and Diabetes and
| | | | | | - Zuzana Nichtova
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David R. Lynch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology and
| | - Gyorgy Csordas
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shana E. McCormack
- Division of Endocrinology and Diabetes and
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin L. Seifert
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Mitochondrial and metabolic dysfunction in Friedreich ataxia: update on pathophysiological relevance and clinical interventions. Neuronal Signal 2021; 5:NS20200093. [PMID: 34046211 PMCID: PMC8132591 DOI: 10.1042/ns20200093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Friedreich ataxia (FRDA) is a recessive disorder resulting from relative deficiency of the mitochondrial protein frataxin. Frataxin functions in the process of iron–sulfur (Fe–S) cluster synthesis. In this review, we update some of the processes downstream of frataxin deficiency that may mediate the pathophysiology. Based on cellular models, in vivo models and observations of patients, ferroptosis may play a major role in the pathogenesis of FRDA along with depletion of antioxidant reserves and abnormalities of mitochondrial biogenesis. Ongoing clinical trials with ferroptosis inhibitors and nuclear factor erythroid 2-related factor 2 (Nrf2) activators are now targeting each of the processes. In addition, better understanding of the mitochondrial events in FRDA may allow the development of improved imaging methodology for assessing the disorder. Though not technologically feasible at present, metabolic imaging approaches may provide a direct methodology to understand the mitochondrial changes occurring in FRDA and provide a methodology to monitor upcoming trials of frataxin restoration.
Collapse
|
8
|
Doni D, Rigoni G, Palumbo E, Baschiera E, Peruzzo R, De Rosa E, Caicci F, Passerini L, Bettio D, Russo A, Szabò I, Soriano ME, Salviati L, Costantini P. The displacement of frataxin from the mitochondrial cristae correlates with abnormal respiratory supercomplexes formation and bioenergetic defects in cells of Friedreich ataxia patients. FASEB J 2021; 35:e21362. [PMID: 33629768 DOI: 10.1096/fj.202000524rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Friedreich ataxia (FRDA) is a neurodegenerative disease resulting from a severe decrease of frataxin (FXN). Most patients carry a GAA repeat expansion in both alleles of the FXN gene, whereas a small fraction of them are compound heterozygous for the expansion and a point mutation in the other allele. FXN is involved in the mitochondrial biogenesis of the FeS-clusters. Distinctive feature of FRDA patient cells is an impaired cellular respiration, likely due to a deficit of key redox cofactors working as electrons shuttles through the respiratory chain. However, a definite relationship between FXN levels, FeS-clusters assembly dysregulation and bioenergetics failure has not been established. In this work, we performed a comparative analysis of the mitochondrial phenotype of cell lines from FRDA patients, either homozygous for the expansion or compound heterozygotes for the G130V mutation. We found that, in healthy cells, FXN and two key proteins of the FeS-cluster assembly machinery are enriched in mitochondrial cristae, the dynamic subcompartment housing the respiratory chain. On the contrary, FXN widely redistributes to the matrix in FRDA cells with defects in respiratory supercomplexes assembly and altered respiratory function. We propose that this could be relevant for the early mitochondrial defects afflicting FRDA cells and that perturbation of mitochondrial morphodynamics could in turn be critical in terms of disease mechanisms.
Collapse
Affiliation(s)
- Davide Doni
- Department of Biology, University of Padova, Padova, Italy
| | | | - Elisa Palumbo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Elisa Baschiera
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padova, Italy
| | | | - Edith De Rosa
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Daniela Bettio
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padova, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ildiko Szabò
- Department of Biology, University of Padova, Padova, Italy
| | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padova, Italy
- Myology Center, University of Padova, Padova, Italy
| | | |
Collapse
|
9
|
Role of frataxin protein deficiency and metabolic dysfunction in Friedreich ataxia, an autosomal recessive mitochondrial disease. Neuronal Signal 2018; 2:NS20180060. [PMID: 32714592 PMCID: PMC7373238 DOI: 10.1042/ns20180060] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023] Open
Abstract
Friedreich ataxia (FRDA) is a progressive neurodegenerative disease with developmental features caused by a genetic deficiency of frataxin, a small, nuclear-encoded mitochondrial protein. Frataxin deficiency leads to impairment of iron–sulphur cluster synthesis, and consequently, ATP production abnormalities. Based on the involvement of such processes in FRDA, initial pathophysiological hypotheses focused on reactive oxygen species (ROS) production as a key component of the mechanism. With further study, a variety of other events appear to be involved, including abnormalities of mitochondrially related metabolism and dysfunction in mitochondrial biogenesis. Consequently, present therapies focus not only on free radical damage, but also on control of metabolic abnormalities and correction of mitochondrial biogenesis. Understanding the multitude of abnormalities in FRDA thus offers possibilities for treatment of this disorder.
Collapse
|
10
|
Monnier V, Llorens JV, Navarro JA. Impact of Drosophila Models in the Study and Treatment of Friedreich's Ataxia. Int J Mol Sci 2018; 19:E1989. [PMID: 29986523 PMCID: PMC6073496 DOI: 10.3390/ijms19071989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila melanogaster has been for over a century the model of choice of several neurobiologists to decipher the formation and development of the nervous system as well as to mirror the pathophysiological conditions of many human neurodegenerative diseases. The rare disease Friedreich’s ataxia (FRDA) is not an exception. Since the isolation of the responsible gene more than two decades ago, the analysis of the fly orthologue has proven to be an excellent avenue to understand the development and progression of the disease, to unravel pivotal mechanisms underpinning the pathology and to identify genes and molecules that might well be either disease biomarkers or promising targets for therapeutic interventions. In this review, we aim to summarize the collection of findings provided by the Drosophila models but also to go one step beyond and propose the implications of these discoveries for the study and cure of this disorder. We will present the physiological, cellular and molecular phenotypes described in the fly, highlighting those that have given insight into the pathology and we will show how the ability of Drosophila to perform genetic and pharmacological screens has provided valuable information that is not easily within reach of other cellular or mammalian models.
Collapse
Affiliation(s)
- Véronique Monnier
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Sorbonne Paris Cité, Université Paris Diderot, UMR8251 CNRS, 75013 Paris, France.
| | - Jose Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 96100 Valencia, Spain.
| | - Juan Antonio Navarro
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
11
|
Calap-Quintana P, Navarro JA, González-Fernández J, Martínez-Sebastián MJ, Moltó MD, Llorens JV. Drosophila melanogaster Models of Friedreich's Ataxia. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5065190. [PMID: 29850527 PMCID: PMC5907503 DOI: 10.1155/2018/5065190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/29/2018] [Accepted: 02/28/2018] [Indexed: 11/17/2022]
Abstract
Friedreich's ataxia (FRDA) is a rare inherited recessive disorder affecting the central and peripheral nervous systems and other extraneural organs such as the heart and pancreas. This incapacitating condition usually manifests in childhood or adolescence, exhibits an irreversible progression that confines the patient to a wheelchair, and leads to early death. FRDA is caused by a reduced level of the nuclear-encoded mitochondrial protein frataxin due to an abnormal GAA triplet repeat expansion in the first intron of the human FXN gene. FXN is evolutionarily conserved, with orthologs in essentially all eukaryotes and some prokaryotes, leading to the development of experimental models of this disease in different organisms. These FRDA models have contributed substantially to our current knowledge of frataxin function and the pathogenesis of the disease, as well as to explorations of suitable treatments. Drosophila melanogaster, an organism that is easy to manipulate genetically, has also become important in FRDA research. This review describes the substantial contribution of Drosophila to FRDA research since the characterization of the fly frataxin ortholog more than 15 years ago. Fly models have provided a comprehensive characterization of the defects associated with frataxin deficiency and have revealed genetic modifiers of disease phenotypes. In addition, these models are now being used in the search for potential therapeutic compounds for the treatment of this severe and still incurable disease.
Collapse
Affiliation(s)
- P. Calap-Quintana
- Department of Genetics, University of Valencia, Campus of Burjassot, Valencia, Spain
| | - J. A. Navarro
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - J. González-Fernández
- Department of Genetics, University of Valencia, Campus of Burjassot, Valencia, Spain
- Biomedical Research Institute INCLIVA, Valencia, Spain
| | | | - M. D. Moltó
- Department of Genetics, University of Valencia, Campus of Burjassot, Valencia, Spain
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - J. V. Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, Valencia, Spain
| |
Collapse
|
12
|
Edenharter O, Schneuwly S, Navarro JA. Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and Nervous System Degeneration in a Drosophila Model of Friedreich's Ataxia. Front Mol Neurosci 2018; 11:38. [PMID: 29563863 PMCID: PMC5845754 DOI: 10.3389/fnmol.2018.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most important recessive ataxia in the Caucasian population. It is caused by a deficit of the mitochondrial protein frataxin. Despite its pivotal effect on biosynthesis of iron-sulfur clusters and mitochondrial energy production, little is known about the influence of frataxin depletion on homeostasis of the cellular mitochondrial network. We have carried out a forward genetic screen to analyze genetic interactions between genes controlling mitochondrial homeostasis and Drosophila frataxin. Our screen has identified silencing of Drosophila mitofusin (Marf) as a suppressor of FRDA phenotypes in glia. Drosophila Marf is known to play crucial roles in mitochondrial fusion, mitochondrial degradation and in the interface between mitochondria and endoplasmic reticulum (ER). Thus, we have analyzed the effects of frataxin knockdown on mitochondrial morphology, mitophagy and ER function in our fly FRDA model using different histological and molecular markers such as tetramethylrhodamine, ethyl ester (TMRE), mitochondria-targeted GFP (mitoGFP), p62, ATG8a, LAMP1, Xbp1 and BiP/GRP78. Furthermore, we have generated the first Drosophila transgenic line containing the mtRosella construct under the UAS control to study the progression of the mitophagy process in vivo. Our results indicated that frataxin-deficiency had a small impact on mitochondrial morphology but enhanced mitochondrial clearance and altered the ER stress response in Drosophila. Remarkably, we demonstrate that downregulation of Marf suppresses ER stress in frataxin-deficient cells and this is sufficient to improve locomotor dysfunction, brain degeneration and lipid dyshomeostasis in our FRDA model. In agreement, chemical reduction of ER stress by means of two different compounds was sufficient to ameliorate the effects of frataxin deficiency in three different fly FRDA models. Altogether, our results strongly suggest that the protection mediated by Marf knockdown in glia is mainly linked to its role in the mitochondrial-ER tethering and not to mitochondrial dynamics or mitochondrial degradation and that ER stress is a novel and pivotal player in the progression and etiology of FRDA. This work might define a new pathological mechanism in FRDA, linking mitochondrial dysfunction due to frataxin deficiency and mitofusin-mediated ER stress, which might be responsible for characteristic cellular features of the disease and also suggests ER stress as a therapeutic target.
Collapse
Affiliation(s)
- Oliver Edenharter
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Stephan Schneuwly
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Legendre A, Khraiche D, Ou P, Mauvais FX, Madrange M, Guemann AS, Jais JP, Bonnet D, Hamel Y, de Lonlay P. Cardiac function and exercise adaptation in 8 children with LPIN1 mutations. Mol Genet Metab 2018; 123:375-381. [PMID: 29325813 DOI: 10.1016/j.ymgme.2017.12.429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Lipin-1 deficiency is a major cause of rhabdomyolysis that are precipitated by febrile illness. The prognosis is poor, with one-third of patients dying from cardiac arrest during a crisis episode. Apart from acute rhabdomyolysis, most patients are healthy, showing normal clinical and cardiac ultrasound parameters. PATIENTS AND METHODS We report cardiac and exercise examinations of 8 children carrying two LPIN1 mutations. The examinations were performed outside of a myolysis episode, but one patient presented with fever during one examination. RESULTS All but one patient displayed normal resting cardiac function, as determined by echocardiography. One patient exhibited slight left ventricular dysfunction at rest and a lack of increased stroke volume during cycle ramp exercise. During exercise, peripheral muscle adaptation was impaired in 2 patients compared to healthy controls: they presented an abnormal increase in cardiac output relative to oxygen uptake: dQ/dVO2=8.2 and 9.5 (>2DS of controls population). One patient underwent 2 exercise tests; during one test, the patient was febrile, leading to acute rhabdomyolysis in the following hours. He exhibited changes in recovery muscle reoxygenation parameters and an increased dQ/dVO2 during exercise compared with that under normothermia (7.9 vs 6), which did not lead to acute rhabdomyolysis. The four patients assessed by cardiac 1H-magnetic resonance spectroscopy exhibited signs of intracardiac steatosis. CONCLUSION We observed abnormal haemodynamic profiles during exercise in 3/8 patients with lipin-1 deficiency, suggesting impaired muscle oxidative phosphorylation during exercise. Fever appeared to be an aggravating factor. One patient exhibited moderate cardiac dysfunction, which was possibly related to intracardiac stored lipid toxicity.
Collapse
Affiliation(s)
- Antoine Legendre
- Pediatric Cardiology, Centre de Référence des Malformations Cardiaques Congénitales Complexes-M3C, Necker Hospital for Sick Children, Paris, France.
| | - Diala Khraiche
- Pediatric Cardiology, Centre de Référence des Malformations Cardiaques Congénitales Complexes-M3C, Necker Hospital for Sick Children, Paris, France
| | - Phalla Ou
- Pediatric Cardiology, Centre de Référence des Malformations Cardiaques Congénitales Complexes-M3C, Necker Hospital for Sick Children, Paris, France; Department of Radiology, Hospital Bichat, APHP, University Paris Diderot, Paris, France
| | - François-Xavier Mauvais
- Reference Centre of Inherited Metabolic Diseases, Hospital Necker Enfants Malades, APHP, Institute Imagine, University Paris Descartes, Paris, France; Institut National de la Sante et de la Recherche Médicale, Unité 1151, Paris 75015, France
| | - Marine Madrange
- Reference Centre of Inherited Metabolic Diseases, Hospital Necker Enfants Malades, APHP, Institute Imagine, University Paris Descartes, Paris, France
| | - Anne-Sophie Guemann
- Reference Centre of Inherited Metabolic Diseases, Hospital Necker Enfants Malades, APHP, Institute Imagine, University Paris Descartes, Paris, France
| | - Jean-Philippe Jais
- Université Paris Descartes, Department of Biostatistics and Medical Informatics, Paris, France
| | - Damien Bonnet
- Pediatric Cardiology, Centre de Référence des Malformations Cardiaques Congénitales Complexes-M3C, Necker Hospital for Sick Children, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yamina Hamel
- Reference Centre of Inherited Metabolic Diseases, Hospital Necker Enfants Malades, APHP, Institute Imagine, University Paris Descartes, Paris, France
| | - Pascale de Lonlay
- Reference Centre of Inherited Metabolic Diseases, Hospital Necker Enfants Malades, APHP, Institute Imagine, University Paris Descartes, Paris, France
| |
Collapse
|
14
|
Willingham TB, McCully KK. In Vivo Assessment of Mitochondrial Dysfunction in Clinical Populations Using Near-Infrared Spectroscopy. Front Physiol 2017; 8:689. [PMID: 28959210 PMCID: PMC5603672 DOI: 10.3389/fphys.2017.00689] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
The ability to sustain submaximal exercise is largely dependent on the oxidative capacity of mitochondria within skeletal muscle, and impairments in oxidative metabolism have been implicated in many neurologic and cardiovascular pathologies. Here we review studies which have demonstrated the utility of Near-infrared spectroscopy (NIRS) as a method of evaluating of skeletal muscle mitochondrial dysfunction in clinical human populations. NIRS has been previously used to noninvasively measure tissue oxygen saturation, but recent studies have demonstrated the utility of NIRS as a method of evaluating skeletal muscle oxidative capacity using post-exercise recovery kinetics of oxygen metabolism. In comparison to historical methods of measuring muscle metabolic dysfunction in vivo, NIRS provides a more versatile and economical method of evaluating mitochondrial oxidative capacity in humans. These advantages generate great potential for the clinical applicability of NIRS as a means of evaluating muscle dysfunction in clinical populations.
Collapse
Affiliation(s)
| | - Kevin K McCully
- Department of Kinesiology, University of GeorgiaAthens, GA, United States
| |
Collapse
|
15
|
Bossie HM, Willingham TB, Schoick RAV, O'Connor PJ, McCully KK. Mitochondrial capacity, muscle endurance, and low energy in friedreich ataxia. Muscle Nerve 2017; 56:773-779. [PMID: 28000230 DOI: 10.1002/mus.25524] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In this study we noninvasively evaluated skeletal muscle mitochondrial capacity, muscle-specific endurance, and energy/fatigue feelings in persons with Friedreich ataxia (FRDA) and able-bodied controls (AB). METHODS Forearm mitochondrial capacity was measured in FRDA (n = 16) and AB (n = 10) study participants using the rate of recovery of oxygen consumption after electrical stimulation with near-infrared spectroscopy. Mechanomyography (MMG) assessed muscle endurance after electrical stimulation for 3 minutes at 2 Hz, 4 Hz, and 6 Hz. Validated scales assessed disease severity and energy/fatigue feelings. RESULTS Groups did not differ in mitochondrial capacity (FRDA and AB: 1.8 ± 0.3 L/min). The difference in muscle endurance at 6 Hz was lower by 19.2% in the FRDA group (group effect: P < 0.001). Feelings of physical energy were 34% lower in FRDA group. In FDRA muscle, endurance was positively related to mitochondrial capacity (r = 0.59, P = 0.03), and disease severity was negatively related to mitochondrial capacity (r = -0.55, P = 0.04) and muscle endurance (r = -0.60, P = 0.01). CONCLUSION Non-invasive measures of skeletal muscle mitochondrial capacity and muscle-specific endurance are useful in monitoring FRDA. Muscle Nerve 56: 773-779, 2017.
Collapse
Affiliation(s)
- Hannah M Bossie
- Department of Kinesiology, University of Georgia, 330 River Road, Athens, Georgia, 30605, USA
| | - T Bradley Willingham
- Department of Kinesiology, University of Georgia, 330 River Road, Athens, Georgia, 30605, USA
| | - Robbi A Van Schoick
- Department of Kinesiology, University of Georgia, 330 River Road, Athens, Georgia, 30605, USA
| | - Patrick J O'Connor
- Department of Kinesiology, University of Georgia, 330 River Road, Athens, Georgia, 30605, USA
| | - Kevin K McCully
- Department of Kinesiology, University of Georgia, 330 River Road, Athens, Georgia, 30605, USA
| |
Collapse
|
16
|
Kumar V, Chang H, Reiter DA, Bradley DP, Belury M, McCormack SE, Raman SV. Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle. J Vis Exp 2017. [PMID: 28190054 DOI: 10.3791/54977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle mitochondrial oxidative phosphorylation (OXPHOS) capacity, which is critically important in health and disease, can be measured in vivo and noninvasively in humans via phosphorus-31 magnetic resonance spectroscopy (31PMRS). However, the approach has not been widely adopted in translational and clinical research, with variations in methodology and limited guidance from the literature. Increased optimization, standardization, and dissemination of methods for in vivo 31PMRS would facilitate the development of targeted therapies to improve OXPHOS capacity and could ultimately favorably impact cardiovascular health. 31PMRS produces a noninvasive, in vivo measure of OXPHOS capacity in human skeletal muscle, as opposed to alternative measures obtained from explanted and potentially altered mitochondria via muscle biopsy. It relies upon only modest additional instrumentation beyond what is already in place on magnetic resonance scanners available for clinical and translational research at most institutions. In this work, we outline a method to measure in vivo skeletal muscle OXPHOS. The technique is demonstrated using a 1.5 Tesla whole-body MR scanner equipped with the suitable hardware and software for 31PMRS, and we explain a simple and robust protocol for in-magnet resistive exercise to rapidly fatigue the quadriceps muscle. Reproducibility and feasibility are demonstrated in volunteers as well as subjects over a wide range of functional capacities.
Collapse
Affiliation(s)
- Vidhya Kumar
- Davis Heart and Lung Research Institute, The Ohio State University
| | - Henry Chang
- Davis Heart and Lung Research Institute, The Ohio State University
| | - David A Reiter
- Laboratory of Clinical Investigation, National Institute on Aging
| | - David P Bradley
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University
| | - Martha Belury
- Department of Human Sciences, Human Nutrition, The Ohio State University
| | - Shana E McCormack
- Division of Endocrinology and Diabetes, Department of Pediatrics, University of Pennsylvania
| | - Subha V Raman
- Davis Heart and Lung Research Institute, The Ohio State University;
| |
Collapse
|
17
|
Sakudo A. Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clin Chim Acta 2016; 455:181-8. [PMID: 26877058 DOI: 10.1016/j.cca.2016.02.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/29/2023]
Abstract
The near-infrared radiation (NIR) window, also known as the "optical window" or "therapeutic window", is the range of wavelengths that has the maximum depth of penetration in tissue. Indeed, because NIR is minimally absorbed by water and hemoglobin, spectra readings can be easily collected from the body surface. Recent reports have shown the potential of NIR spectroscopy in various medical applications, including functional analysis of the brain and other tissues, as well as an analytical tool for diagnosing diseases. The broad applicability of NIR spectroscopy facilitates the diagnosis and therapy of diseases as well as elucidating their pathophysiology. This review introduces recent advances and describes new studies in NIR to demonstrate potential clinical applications of NIR spectroscopy.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| |
Collapse
|
18
|
Calap-Quintana P, Soriano S, Llorens JV, Al-Ramahi I, Botas J, Moltó MD, Martínez-Sebastián MJ. TORC1 Inhibition by Rapamycin Promotes Antioxidant Defences in a Drosophila Model of Friedreich's Ataxia. PLoS One 2015; 10:e0132376. [PMID: 26158631 PMCID: PMC4497667 DOI: 10.1371/journal.pone.0132376] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/14/2015] [Indexed: 12/22/2022] Open
Abstract
Friedreich's ataxia (FRDA), the most common inherited ataxia in the Caucasian population, is a multisystemic disease caused by a significant decrease in the frataxin level. To identify genes capable of modifying the severity of the symptoms of frataxin depletion, we performed a candidate genetic screen in a Drosophila RNAi-based model of FRDA. We found that genetic reduction in TOR Complex 1 (TORC1) signalling improves the impaired motor performance phenotype of FRDA model flies. Pharmacologic inhibition of TORC1 signalling by rapamycin also restored this phenotype and increased the lifespan and ATP levels. Furthermore, rapamycin reduced the altered levels of malondialdehyde + 4-hydroxyalkenals and total glutathione of the model flies. The rapamycin-mediated protection against oxidative stress is due in part to an increase in the transcription of antioxidant genes mediated by cap-n-collar (Drosophila ortholog of Nrf2). Our results suggest that autophagy is indeed necessary for the protective effect of rapamycin in hyperoxia. Rapamycin increased the survival and aconitase activity of model flies subjected to high oxidative insult, and this improvement was abolished by the autophagy inhibitor 3-methyladenine. These results point to the TORC1 pathway as a new potential therapeutic target for FRDA and as a guide to finding new promising molecules for disease treatment.
Collapse
Affiliation(s)
| | - Sirena Soriano
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - María Dolores Moltó
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- CIBERSAM, INCLIVA, Valencia, Spain
| | | |
Collapse
|
19
|
Cotticelli MG, Crabbe AM, Wilson RB, Shchepinov MS. Insights into the role of oxidative stress in the pathology of Friedreich ataxia using peroxidation resistant polyunsaturated fatty acids. Redox Biol 2013; 1:398-404. [PMID: 25499576 PMCID: PMC4802835 DOI: 10.1016/j.redox.2013.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/22/2022] Open
Abstract
Friedreich ataxia is an autosomal recessive, inherited neuro- and cardio-degenerative disorder characterized by progressive ataxia of all four limbs, dysarthria, areflexia, sensory loss, skeletal deformities, and hypertrophic cardiomyopathy. Most disease alleles have a trinucleotide repeat expansion in the first intron of the FXN gene, which decreases expression of the encoded protein frataxin. Frataxin is involved in iron–sulfur-cluster (ISC) assembly in the mitochondrial matrix, and decreased frataxin is associated with ISC-enzyme and mitochondrial dysfunction, mitochondrial iron accumulation, and increased oxidative stress. To assess the role of oxidative stress in lipid peroxidation in Friedreich ataxia we used the novel approach of treating Friedreich ataxia cell models with polyunsaturated fatty acids (PUFAs) deuterated at bis-allylic sites. In ROS-driven oxidation of PUFAs, the rate-limiting step is hydrogen abstraction from a bis-allylic site; isotopic reinforcement (deuteration) of bis-allylic sites slows down their peroxidation. We show that linoleic and α-linolenic acids deuterated at the peroxidation-prone bis-allylic positions actively rescue oxidative-stress-challenged Friedreich ataxia cells. The protective effect of the deuterated PUFAs is additive in our models with the protective effect of the CoQ10 analog idebenone, which is thought to decrease the production of free radicals. Moreover, the administration of deuterated PUFAs resulted in decreased lipid peroxidation as measured by the fluorescence of the fatty acid analog C11-BODIPY (581/591) probe. Our results are consistent with a role for lipid peroxidation in Friedreich ataxia pathology, and suggest that the novel approach of oral delivery of isotope-reinforced PUFAs may have therapeutic potential in Friedreich ataxia and other disorders involving oxidative stress and lipid peroxidation. We test deuterated polyunsaturated fatty acids in cell models of Friedreich ataxia. Linoleic and α-linolenic acids exacerbate oxidative-stress toxicity in these cells. Deuterated linoleic and α-linolenic acids protect these cells from oxidative stress. Cell rescue correlates with decreased lipid peroxidation. Deuterated polyunsaturated fatty acids might be a therapeutic for Friedreich ataxia.
Collapse
Affiliation(s)
- M Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew M Crabbe
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
20
|
D’Oria V, Petrini S, Travaglini L, Priori C, Piermarini E, Petrillo S, Carletti B, Bertini E, Piemonte F. Frataxin deficiency leads to reduced expression and impaired translocation of NF-E2-related factor (Nrf2) in cultured motor neurons. Int J Mol Sci 2013; 14:7853-65. [PMID: 23574943 PMCID: PMC3645720 DOI: 10.3390/ijms14047853] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of Friedreich's Ataxia (FRDA), a neurodegenerative disease caused by the decreased expression of frataxin, a mitochondrial protein responsible of iron homeostasis. Under conditions of oxidative stress, the activation of the transcription factor NF-E2-related factor (Nrf2) triggers the antioxidant cellular response by inducing antioxidant response element (ARE) driven genes. Increasing evidence supports a role for the Nrf2-ARE pathway in neurodegenerative diseases. In this study, we analyzed the expression and the distribution of Nrf2 in silenced neurons for frataxin gene. Decreased Nrf2 mRNA content and a defective activation after treatment with pro-oxidants have been evidenced in frataxin-silenced neurons by RT-PCR and confocal microscopy. The loss of Nrf2 in FRDA may greatly enhance the cellular susceptibility to oxidative stress and make FRDA neurons more vulnerable to injury. Our findings may help to focus on this promising target, especially in its emerging role in the neuroprotective response.
Collapse
Affiliation(s)
- Valentina D’Oria
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy; E-Mails: (V.D.); (S.P.)
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy; E-Mails: (V.D.); (S.P.)
| | - Lorena Travaglini
- Unit for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, Piazza S’Onofrio, 4, Rome 00165, Italy; E-Mails: (L.T.); (C.P.); (E.P.); (S.P.); (B.C.); (E.B.)
| | - Chiara Priori
- Unit for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, Piazza S’Onofrio, 4, Rome 00165, Italy; E-Mails: (L.T.); (C.P.); (E.P.); (S.P.); (B.C.); (E.B.)
| | - Emanuela Piermarini
- Unit for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, Piazza S’Onofrio, 4, Rome 00165, Italy; E-Mails: (L.T.); (C.P.); (E.P.); (S.P.); (B.C.); (E.B.)
| | - Sara Petrillo
- Unit for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, Piazza S’Onofrio, 4, Rome 00165, Italy; E-Mails: (L.T.); (C.P.); (E.P.); (S.P.); (B.C.); (E.B.)
| | - Barbara Carletti
- Unit for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, Piazza S’Onofrio, 4, Rome 00165, Italy; E-Mails: (L.T.); (C.P.); (E.P.); (S.P.); (B.C.); (E.B.)
| | - Enrico Bertini
- Unit for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, Piazza S’Onofrio, 4, Rome 00165, Italy; E-Mails: (L.T.); (C.P.); (E.P.); (S.P.); (B.C.); (E.B.)
| | - Fiorella Piemonte
- Unit for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, Piazza S’Onofrio, 4, Rome 00165, Italy; E-Mails: (L.T.); (C.P.); (E.P.); (S.P.); (B.C.); (E.B.)
| |
Collapse
|
21
|
Abstract
Friedreich ataxia is an inherited, severe, progressive neuro- and cardiodegenerative disorder for which there currently is no approved therapy. Friedreich ataxia is caused by the decreased expression and/or function of frataxin, a mitochondrial matrix protein that binds iron and is involved in the formation of iron-sulfur clusters. Decreased frataxin function leads to decreased iron-sulfur cluster formation, mitochondrial iron accumulation, cytosolic iron depletion, oxidative stress, and mitochondrial dysfunction. Cloning of the disease gene for Friedreich ataxia and elucidation of many aspects of the biochemical defects underlying the disorder have led to several major therapeutic initiatives aimed at increasing frataxin expression, reversing mitochondrial iron accumulation, and alleviating oxidative stress. These initiatives are in preclinical and clinical development and are reviewed herein.
Collapse
Affiliation(s)
- Robert B Wilson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Abstract
During the past 15 years, the pace of research advancement in Friedreich ataxia has been rapid. The abnormal gene has been discovered and its gene product characterized, leading to the development of new evidence-based therapies. Still, various unsettled issues remain that affect clinical trials. These include the level of frataxin deficiency needed to cause disease, the mechanism by which frataxin-deficient mitochondrial dysfunction leads to symptomatology, and the reason selected cells are most affected in Friedreich ataxia. In this review, we summarize these questions and propose testable hypotheses for their resolution.
Collapse
Affiliation(s)
- David R Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
23
|
Skeletal Muscle Involvement in Friedreich Ataxia and Potential Effects of Recombinant Human Erythropoietin Administration on Muscle Regeneration and Neovascularization. J Neuropathol Exp Neurol 2012; 71:708-15. [DOI: 10.1097/nen.0b013e31825fed76] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
24
|
Cotticelli MG, Rasmussen L, Kushner NL, McKellip S, Sosa MI, Manouvakhova A, Feng S, White EL, Maddry JA, Heemskerk J, Oldt RJ, Surrey LF, Ochs R, Wilson RB. Primary and secondary drug screening assays for Friedreich ataxia. JOURNAL OF BIOMOLECULAR SCREENING 2012; 17:303-13. [PMID: 22086726 DOI: 10.1177/1087057111427949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neuro- and cardiodegenerative disorder for which there are no proven effective treatments. FRDA is caused by decreased expression and/or function of the protein frataxin. Frataxin chaperones iron in the mitochondrial matrix for the assembly of iron-sulfur clusters (ISCs), which are prosthetic groups critical for the function of the Krebs cycle and the mitochondrial electron transport chain (ETC). Decreased expression of frataxin or the yeast frataxin orthologue, Yfh1p, is associated with decreased ISC assembly, mitochondrial iron accumulation, and increased oxidative stress, all of which contribute to mitochondrial dysfunction. Using yeast depleted of Yfh1p, a high-throughput screening (HTS) assay was developed in which mitochondrial function was monitored by reduction of the tetrazolium dye WST-1 in a growth medium with a respiration-only carbon source. Of 101 200 compounds screened, 302 were identified that effectively rescue mitochondrial function. To confirm activities in mammalian cells and begin understanding mechanisms of action, secondary screening assays were developed using murine C2C12 cells and yeast mutants lacking specific complexes of the ETC, respectively. The compounds identified in this study have potential relevance for other neurodegenerative disorders associated with mitochondrial dysfunction, such as Parkinson disease.
Collapse
Affiliation(s)
- M Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Herrero AJ, Martín J, Martín T, García-López D, Garatachea N, Jiménez B, Marín PJ. Whole-body vibration alters blood flow velocity and neuromuscular activity in Friedreich's ataxia. Clin Physiol Funct Imaging 2010; 31:139-44. [PMID: 21078065 DOI: 10.1111/j.1475-097x.2010.00992.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to investigate the effects of whole-body vibration (WBV) on blood flow velocity and muscular activity after different vibration protocols in Friedreich's ataxia (FA) patients. After two familiarization sessions ten patients received six 3 min WBV treatments depending on a combination of frequency (10, 20 or 30 Hz) and protocol (constant or fragmented). Femoral artery blood flow velocity, vastus lateralis (VL) and vastus medialis (VM) electromyography (EMG), and rate of perceived exertion were registered. Peak blood velocity was increased with respect to basal values after 1, 2 and 3 min of WBV (14·8%, 18·8% and 19·7%, respectively, P<0·001). Likewise, mean blood velocity was increased with respect to basal values after 1, 2 and 3 min of WBV (17·3%, 19·4% and 16·6%, respectively, P<0·001). EMG amplitude of VL and VM was increased (39% and 23%, respectively, P<0·05) and EMG frequencies decreased during the application of WBV. The results of this study suggest that higher frequencies (30 Hz) produce a greater increase in blood flow velocity and rate of perceived exertion. WBV is an effective method to increase blood flow and to activate muscle mass in patients with Friedreich's ataxia, and could therefore be considered to be incorporated in rehabilitation programs of this collective.
Collapse
Affiliation(s)
- Azael J Herrero
- Research Center on Physical Disability, ASPAYM Castilla y León, Valladolid, Spain.
| | | | | | | | | | | | | |
Collapse
|
26
|
Drinkard BE, Keyser RE, Paul SM, Arena R, Plehn JF, Yanovski JA, Di Prospero NA. Exercise capacity and idebenone intervention in children and adolescents with Friedreich ataxia. Arch Phys Med Rehabil 2010; 91:1044-50. [PMID: 20599042 DOI: 10.1016/j.apmr.2010.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine the exercise capacity of children and adolescents with Friedreich's Ataxia (FA) and to evaluate the effects of 6 months of idebenone treatment on exercise capacity. DESIGN Exploratory endpoint in a randomized double-blind, placebo-controlled, phase II clinical trial designed to investigate the effects of idebenone on a biomarker of oxidative stress. SETTING Exercise physiology laboratory in a single clinical research center. PARTICIPANTS Ambulatory subjects (N=48; age range, 9-17 y) with genetically confirmed FA. INTERVENTION Idebenone administered orally 3 times a day for a total daily dose of approximately 5, 15, and 45 mg/kg or matching placebo for 6 months. MAIN OUTCOME MEASURES Peak oxygen consumption per unit time (peak VO(2)) and peak work rate (WR) were measured during incremental exercise testing at baseline and after treatment. Echocardiography and neurologic assessments were also completed before and after treatment. RESULTS Baseline mean peak VO(2) +/- SD was 746+/-246 mL/min (16.2+/-5.8 mL/kg/min), and WR was 40+/-23 W for all subjects. Peak VO(2) and WR were correlated with short guanine-adenine-adenine allele length and neurologic function. Relative left ventricular wall thickness was increased but left ventricular ejection fraction was normal in most subjects; there was no relationship between any exercise and echocardiographic measures. There were no significant changes in mean peak VO(2) or WR after idebenone treatment at any dose level relative to placebo. CONCLUSIONS Exercise capacity in children and adolescents with FA was significantly impaired. The basis for the impairment appears to be multifactorial and correlated to the degree of neurologic impairment. Although idebenone has previously been shown potentially to improve features of FA, idebenone treatment did not increase exercise capacity relative to placebo.
Collapse
Affiliation(s)
- Bart E Drinkard
- Rehabilitation Medicine Department, Hatfield Clinical Research Center, National Institutes of Health, Bethesda, MD 20892-1604, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Sparaco M, Gaeta LM, Santorelli FM, Passarelli C, Tozzi G, Bertini E, Simonati A, Scaravilli F, Taroni F, Duyckaerts C, Feleppa M, Piemonte F. Friedreich's ataxia: oxidative stress and cytoskeletal abnormalities. J Neurol Sci 2009; 287:111-8. [PMID: 19748629 DOI: 10.1016/j.jns.2009.08.052] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/24/2009] [Accepted: 08/13/2009] [Indexed: 11/20/2022]
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive disorder caused by mutations in the gene encoding frataxin, a mitochondrial protein implicated in iron metabolism. Current evidence suggests that loss of frataxin causes iron overload in tissues, and increase in free-radical production leading to oxidation and inactivation of mitochondrial respiratory chain enzymes, particularly Complexes I, II, III and aconitase. Glutathione plays an important role in the detoxification of ROS in the Central Nervous System (CNS), where it also provides regulation of protein function by glutathionylation. The cytoskeletal proteins are particularly susceptible to oxidation and appear constitutively glutathionylated in the human CNS. Previously, we showed loss of cytoskeletal organization in fibroblasts of patients with FRDA found to be associated with increased levels of glutathione bound to cytoskeletal proteins. In this study, we analysed the glutathionylation of proteins in the spinal cord of patients with FRDA and the distribution of tubulin and neurofilaments in the same area. We found, for the first time, a significant rise of the dynamic pool of tubulin as well as abnormal distribution of the phosphorylated forms of human neurofilaments in FRDA motor neurons. In the same cells, the cytoskeletal abnormalities co-localized with an increase in protein glutathionylation and the mitochondrial proteins were normally expressed by immunocytochemistry. Our results suggest that in FRDA oxidative stress causes abnormally increased protein glutathionylation leading to prominent abnormalities of the neuronal cytoskeleton.
Collapse
Affiliation(s)
- Marco Sparaco
- Division of Neurology, Department of Neurosciences, Azienda Ospedaliera G Rummo, 82100 Benevento, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hamaoka T, McCully KK, Quaresima V, Yamamoto K, Chance B. Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:062105. [PMID: 18163808 DOI: 10.1117/1.2805437] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Near-infrared spectroscopy (NIRS) was initiated in 1977 by Jobsis as a simple, noninvasive method for measuring the presence of oxygen in muscle and other tissues in vivo. This review honoring Jobsis highlights the progress that has been made in developing and adapting NIRS and NIR imaging (NIRI) technologies for evaluating skeletal muscle O(2) dynamics and oxidative energy metabolism. Development of NIRS/NIRI technologies has included novel approaches to quantification of the signal, as well as the addition of multiple source detector pairs for imaging. Adaptation of NIRS technology has focused on the validity and reliability of NIRS measurements. NIRS measurements have been extended to resting, ischemic, localized exercise, and whole body exercise conditions. In addition, NIRS technology has been applied to the study of a number of chronic health conditions, including patients with chronic heart failure, peripheral vascular disease, chronic obstructive pulmonary disease, varying muscle diseases, spinal cord injury, and renal failure. As NIRS technology continues to evolve, the study of skeletal muscle function with NIRS first illuminated by Jobsis continues to be bright.
Collapse
Affiliation(s)
- Takafumi Hamaoka
- National Institute of Fitness and Sports, Department of Exercise Science, Shiromizu 1, Kanoya, 891-2393 Japan.
| | | | | | | | | |
Collapse
|
29
|
Fukunaga S, Miyazaki T, Yuji T, Fujimoto T, Higashi Y, Sekine N, Tamura T, Shiga T. Assessment of muscle blood flow volume in elderly poststroke hemiplegic patients using near-infrared spectroscopy. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:4815-7. [PMID: 17271388 DOI: 10.1109/iembs.2004.1404332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This study assessed the changes in blood flow volume in elderly hemiplegic patients before and after rehabilitation training. Total hemoglobin accumulation (blood flow volume) was measured using near-infrared spectroscopy (NIRS) in both the affected and unaffected gastrocnemius muscles before and after walking. In the gastrocnemius on the affected side, the blood flow volume was larger during the recovery period than during the rest period, and the blood flow volume did not decrease during the recovery period after the subjects walked a corridor. By contrast, the blood flow volume recovered faster on the unaffected side than on the affected side. After the subjects walked the stairs, the blood flow volume increased in the gastrocnemius muscles on both sides. These results suggested that the level of training involved in walking a corridor was too light for the unaffected side, although it was effective for the affected side. In our subjects, walking the stairs was effective rehabilitation training for both the unaffected and affected sides. Our results suggested that NIRS was an objective tool useful for planning rehabilitation training.
Collapse
Affiliation(s)
- S Fukunaga
- Fujimoto Hayasuzu Hospital, Miyazaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Grassi B, Marzorati M, Lanfranconi F, Ferri A, Longaretti M, Stucchi A, Vago P, Marconi C, Morandi L. Impaired oxygen extraction in metabolic myopathies: Detection and quantification by near-infrared spectroscopy. Muscle Nerve 2007; 35:510-20. [PMID: 17143893 DOI: 10.1002/mus.20708] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O(2) extraction, low maximal aerobic power, and reduced exercise tolerance. Non-invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient-controls, P-CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O(2) uptake (VO(2)) and vastus lateralis oxygenation indices (by near-infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin (Delta[deoxy(Hb + Mb)]) were considered an index of O(2) extraction. Delta[deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 +/- 12.0%) and McA (18.7 +/- 7.3) than in P-CTRL (62.4 +/- 3.9) and CTRL (71.3 +/- 3.9) subjects. VO(2) peak and Delta[deoxy(Hb + Mb)] peak were linearly related (r(2) = 0.83). In these patients, NIRS is a tool to detect and quantify non-invasively the metabolic impairment, which may be useful in the follow-up of patients and in the assessment of therapies and interventions.
Collapse
Affiliation(s)
- Bruno Grassi
- Department of Science and Biomedical Technologies, University of Milan, LITA-Via Fratelli Cervi 93, I-20090 Segrate, MI, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Friedreich ataxia is the most common hereditary ataxia. The signs and symptoms of the disorder derive from decreased expression of the protein frataxin, which is involved in iron metabolism. Frataxin chaperones iron for iron-sulfur cluster biogenesis and detoxifies iron in the mitochondrial matrix. Decreased expression of frataxin is associated with impairments of iron-sulfur cluster biogenesis and heme synthesis, as well as with mitochondrial dysfunction and oxidative stress. Compounds currently in clinical trials are directed toward improving mitochondrial function and lessening oxidative stress. Iron chelators and compounds that increase frataxin expression are under evaluation. Further elucidation of frataxin's function should lead to additional therapeutic approaches.
Collapse
Affiliation(s)
- Robert B Wilson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19106, USA.
| |
Collapse
|
32
|
Lodi R, Tonon C, Calabrese V, Schapira AHV. Friedreich's ataxia: from disease mechanisms to therapeutic interventions. Antioxid Redox Signal 2006; 8:438-43. [PMID: 16677089 DOI: 10.1089/ars.2006.8.438] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Friedreich's ataxia (FRDA) is the most common inherited ataxia. FRDA is an autosomal recessive degenerative disorder caused by a GAA triplet expansion or point mutations in the FRDA gene on chromosome 9q13. The FRDA gene product, frataxin, is a widely expressed mitochondrial protein that is severely reduced in FRDApatients. The function of frataxin has not been established yet. Studies of the yeast and animal model of the disease as well as of tissues from FRDA patients have demonstrated that deficit of frataxin is associated with mitochondrial iron accumulation, increased sensitivity to oxidative stress, deficit of respiratory chain complex activities and in vivo impairment of tissue energy metabolism. Pilot studies have shown the potential effect of antioxidant therapy in this condition and provide a strong rationale for designing larger clinical randomized trials.
Collapse
Affiliation(s)
- Raffaele Lodi
- Dipartimento di Medicina Clinica e Biotecnologia Applicata, Universita' di Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
33
|
Tarnopolsky MA, Raha S. Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 2006; 37:2086-93. [PMID: 16331134 DOI: 10.1249/01.mss.0000177341.89478.06] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondrial myopathies are caused by genetic mutations that directly influence the functioning of the electron transport chain (ETC). It is estimated that 1 of 8,000 people have pathology inducing mutations affecting mitochondrial function. Diagnosis often requires a multifaceted approach with measurements of serum lactate and pyruvate, urine organic acids, magnetic resonance spectroscopy (MRS), muscle histology and ultrastructure, enzymology, genetic analysis, and exercise testing. The ubiquitous distribution of the mitochondria in the human body explains the multiple organ involvement. Exercise intolerance is a common but often an overlooked hallmark of mitochondrial myopathies. The muscle consequences of ETC dysfunction include increased reliance on anaerobic metabolism (lactate generation, phosphocreatine degradation), enhanced free radical production, reduced oxygen extraction and electron flux through ETC, and mitochondrial proliferation or biogenesis (see article by Hood in current issue). Treatments have included antioxidants (vitamin E, alpha lipoic acid), electron donors and acceptors (coenzyme Q10, riboflavin), alternative energy sources (creatine monohydrate), lactate reduction strategies (dichloroacetate) and exercise training. Exercise is a particularly important modality in diagnosis as well as therapy (see article by Taivassalo in current issue). Increased awareness of these disorders by exercise physiologists and sports medicine practitioners should lead to more accurate and more rapid diagnosis and the opportunity for therapy and genetic counseling.
Collapse
|
34
|
Calabrese V, Lodi R, Tonon C, D'Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AMG, Butterfield DA. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. J Neurol Sci 2005; 233:145-62. [PMID: 15896810 DOI: 10.1016/j.jns.2005.03.012] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is significant evidence that the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Friedreich's ataxia (FRDA), multiple sclerosis and amyotrophic lateral sclerosis, may involve the generation of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) associated with mitochondrial dysfunction. The mitochondrial genome may play an essential role in the pathogenesis of these diseases, and evidence for mitochondria being a site of damage in neurodegenerative disorders is based in part on observed decreases in the respiratory chain complex activities in Parkinson's, Alzheimer's, and Huntington's disease. Such defects in respiratory complex activities, possibly associated with oxidant/antioxidant imbalance, are thought to underlie defects in energy metabolism and induce cellular degeneration. The precise sequence of events in FRDA pathogenesis is uncertain. The impaired intramitochondrial metabolism with increased free iron levels and a defective mitochondrial respiratory chain, associated with increased free radical generation and oxidative damage, may be considered possible mechanisms that compromise cell viability. Recent evidence suggests that frataxin might detoxify ROS via activation of glutathione peroxidase and elevation of thiols, and in addition, that decreased expression of frataxin protein is associated with FRDA. Many approaches have been undertaken to understand FRDA, but the heterogeneity of the etiologic factors makes it difficult to define the clinically most important factor determining the onset and progression of the disease. However, increasing evidence indicates that factors such as oxidative stress and disturbed protein metabolism and their interaction in a vicious cycle are central to FRDA pathogenesis. Brains of FRDA patients undergo many changes, such as disruption of protein synthesis and degradation, classically associated with the heat shock response, which is one form of stress response. Heat shock proteins are proteins serving as molecular chaperones involved in the protection of cells from various forms of stress. In the central nervous system, heat shock protein (HSP) synthesis is induced not only after hyperthermia, but also following alterations in the intracellular redox environment. The major neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Huntington's disease (HD) and FRDA are all associated with the presence of abnormal proteins. Among the various HSPs, HSP32, also known as heme oxygenase I (HO-1), has received considerable attention, as it has been recently demonstrated that HO-1 induction, by generating the vasoactive molecule carbon monoxide and the potent antioxidant bilirubin, could represent a protective system potentially active against brain oxidative injury. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing the heat shock response. This may open up new perspectives in medicine, as molecules inducing this defense mechanism appear to be possible candidates for novel cytoprotective strategies. In particular, manipulation of endogenous cellular defense mechanisms, such as the heat shock response, through nutritional antioxidants, pharmacological compounds or gene transduction, may represent an innovative approach to therapeutic intervention in diseases causing tissue damage, such as neurodegeneration.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Faculty of Medicine, University of Catania, Catania, Viale Andrea Doria 6, 95100 Catania, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
AIMS Mitochondria are responsible for meeting the majority of the energetic demand of most tissues. They also play a major role in regulating cell survival. These dual roles of mitochondria place them at the centre of many pathologies leading to tissue degeneration and disruption of energy balance. The prominent role of mitochondria in ageing and disease has led to a tremendous growth in mitochondrial research at the cellular and molecular level. We describe below a new non-invasive approach to measure mitochondrial function that will bridge the gap between our understanding of mitochondrial function in vitro and that in the intact organism. METHODS AND RESULTS This approach uses optical and magnetic resonance spectroscopy to measure in vivo O2 consumption and ATP synthesis rates, respectively, from skeletal muscle. These values lead to a quantitative assessment of the mitochondrial ATP/O2 or P/O. The P/O represents the efficiency of coupling between phosphorylation and oxygen consumption in the mitochondria, which is a measure of mitochondrial dysfunction. CONCLUSIONS This work represents a significant advance in research on the role of mitochondria in degenerative disease and ageing because it allows a quantitative measure of mitochondrial pathology in vivo. The non-invasive nature of this approach also enables repeated measures of mitochondrial function on the same individual, thereby making this a potentially useful diagnostic technique. The results from this work have led to insights into the coupling of ATP synthesis to oxidation and the regulation of oxidative phosphorylation by intracellular PO2.
Collapse
Affiliation(s)
- D J Marcinek
- Department of Radiology, University of Washington Medical Center, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Karasuno H, Morozumi K, Fujiwara T, Goh AC, Yamamoto I, Senga F. Changes in Intramuscular Blood Volume Induced by Continuous Shortwave Diathermy. J Phys Ther Sci 2005. [DOI: 10.1589/jpts.17.71] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hiroshi Karasuno
- Research Institution of Health Science and Education
- Ito Co., Ltd
| | | | | | | | | | | |
Collapse
|