1
|
Harrison Z, Montgomery EC, Bush JR, Gupta N, Bumgardner JD, Fujiwara T, Baker DL, Jennings JA. Cis-2-Decenoic Acid and Bupivacaine Delivered from Electrospun Chitosan Membranes Increase Cytokine Production in Dermal and Inflammatory Cell Lines. Pharmaceutics 2023; 15:2476. [PMID: 37896236 PMCID: PMC10610339 DOI: 10.3390/pharmaceutics15102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Wound dressings serve to protect tissue from contamination, alleviate pain, and facilitate wound healing. The biopolymer chitosan is an exemplary choice in wound dressing material as it is biocompatible and has intrinsic antibacterial properties. Infection can be further prevented by loading dressings with cis-2-decenoic acid (C2DA), a non-antibiotic antimicrobial agent, as well as bupivacaine (BUP), a local anesthetic that also has antibacterial capabilities. This study utilized a series of assays to elucidate the responses of dermal cells to decanoic anhydride-modified electrospun chitosan membranes (DA-ESCMs) loaded with C2DA and/or BUP. Cytocompatibility studies determined the toxic loading ranges for C2DA, BUP, and combinations, revealing that higher concentrations (0.3 mg of C2DA and 1.0 mg of BUP) significantly decreased the viability of fibroblasts and keratinocytes. These high concentrations also inhibited collagen production by fibroblasts, with lower loading concentrations promoting collagen deposition. These findings provide insight into preliminary cellular responses to DA-ESCMs and can guide future research on their clinical application as wound dressings.
Collapse
Affiliation(s)
- Zoe Harrison
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (Z.H.); (E.C.M.); (J.R.B.); (N.G.); (J.D.B.)
| | - Emily C. Montgomery
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (Z.H.); (E.C.M.); (J.R.B.); (N.G.); (J.D.B.)
| | - Joshua R. Bush
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (Z.H.); (E.C.M.); (J.R.B.); (N.G.); (J.D.B.)
| | - Nidhi Gupta
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (Z.H.); (E.C.M.); (J.R.B.); (N.G.); (J.D.B.)
| | - Joel D. Bumgardner
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (Z.H.); (E.C.M.); (J.R.B.); (N.G.); (J.D.B.)
| | - Tomoko Fujiwara
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (T.F.); (D.L.B.)
| | - Daniel L. Baker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (T.F.); (D.L.B.)
| | - Jessica Amber Jennings
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (Z.H.); (E.C.M.); (J.R.B.); (N.G.); (J.D.B.)
| |
Collapse
|
2
|
Steverink JG, Piluso S, Malda J, Verlaan JJ. Comparison of in vitro and in vivo Toxicity of Bupivacaine in Musculoskeletal Applications. FRONTIERS IN PAIN RESEARCH 2022; 2:723883. [PMID: 35295435 PMCID: PMC8915669 DOI: 10.3389/fpain.2021.723883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The recent societal debate on opioid use in treating postoperative pain has sparked the development of long-acting, opioid-free analgesic alternatives, often using the amino-amide local anesthetic bupivacaine as active pharmaceutical ingredient. A potential application is musculoskeletal surgeries, as these interventions rank amongst the most painful overall. Current literature showed that bupivacaine induced dose-dependent myo-, chondro-, and neurotoxicity, as well as delayed osteogenesis and disturbed wound healing in vitro. These observations did not translate to animal and clinical research, where toxic phenomena were seldom reported. An exception was bupivacaine-induced chondrotoxicity, which can mainly occur during continuous joint infusion. To decrease opioid consumption and provide sustained pain relief following musculoskeletal surgery, new strategies incorporating high concentrations of bupivacaine in drug delivery carriers are currently being developed. Local toxicity of these high concentrations is an area of further research. This review appraises relevant in vitro, animal and clinical studies on musculoskeletal local toxicity of bupivacaine.
Collapse
Affiliation(s)
- Jasper G Steverink
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Utrecht, Utrecht University, Utrecht, Netherlands
| | - Susanna Piluso
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, Netherlands
| | - Jos Malda
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jorrit-Jan Verlaan
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
3
|
Sun KT, Cheung KK, Au SWN, Yeung SS, Yeung EW. Overexpression of Mechano-Growth Factor Modulates Inflammatory Cytokine Expression and Macrophage Resolution in Skeletal Muscle Injury. Front Physiol 2018; 9:999. [PMID: 30140235 PMCID: PMC6094977 DOI: 10.3389/fphys.2018.00999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
In muscle regeneration, infiltrating myeloid cells, such as macrophages mediate muscle inflammation by releasing key soluble factors. One such factor, insulin-like growth factor 1 (IGF-1), suppresses inflammatory cytokine expression and mediates macrophage polarization to anti-inflammatory phenotype during muscle injury. Previously the IGF-1Ea isoform was shown to be anti-inflammatory. Another isoform of IGF-1, mechano-growth factor (MGF), is structurally and functionally distinct from IGF-1Ea, but its role in muscle inflammation has not yet been characterized. In this study, we hypothesized that MGF expression in muscle injury modulates muscle inflammation. We first investigated changes of transcription and expression of MGF in response to skeletal muscle injury induced by cardiotoxin (CTX) in vivo. At 1–2 days post-injury, Mgf expression was significantly upregulated and positively correlated with that of inflammatory cytokines. Immunostaining revealed that infiltration of neutrophils and macrophages coincided with Mgf upregulation. Furthermore, infiltrating neutrophils and macrophages expressed Mgf, suggesting their contribution to MGF upregulation in muscle injury. Macrophages seem to be the predominant source of MGF in muscle injury, whereas neutrophil depletion did not affect muscle Mgf expression. Given the association of MGF and macrophages, we then studied whether MGF could affect macrophage infiltration and polarization. To test this, we overexpressed MGF in CTX-injured muscles and evaluated inflammatory marker expression, macrophage populations, and muscle regeneration outcomes. MGF overexpression delayed the resolution of macrophages, particularly the pro-inflammatory phenotype. This coincided with upregulation of inflammatory markers. Annexin V-based flow cytometry revealed that MGF overexpression likely delays macrophage resolution by limiting macrophage apoptosis. Although MGF overexpression did not obviously affect muscle regeneration outcomes, the findings are novel and provide insights on the physiological roles of MGF in muscle regeneration.
Collapse
Affiliation(s)
- Keng-Ting Sun
- Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kwok-Kuen Cheung
- Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shannon W N Au
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Simon S Yeung
- Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ella W Yeung
- Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
4
|
Sugihara H, Miyaji K, Yamanouchi K, Matsuwaki T, Nishihara M. Progranulin deficiency leads to prolonged persistence of macrophages, accompanied with myofiber hypertrophy in regenerating muscle. J Vet Med Sci 2017; 80:346-353. [PMID: 29249750 PMCID: PMC5836776 DOI: 10.1292/jvms.17-0638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle has an ability to regenerate in response to injury due to the presence of satellite cells. Injury in skeletal muscle causes infiltration of pro-inflammatory macrophages (M1 macrophages) to remove necrotic myofibers, followed by their differentiation into anti-inflammatory macrophages (M2 macrophages) to terminate the inflammation. Since both M1 and M2 macrophages play important roles, coordinated regulation of their kinetics is important to complete muscle regeneration successfully. Progranulin (PGRN) is a pluripotent growth factor, having a protective role against the inflamed tissue. In the central nervous system, PGRN regulates inflammation by inhibiting the activation of microglia. Here we used muscle injury model of PGRN-knockout (PGRN-KO) mice to elucidate whether it has a role in the kinetics of macrophages during muscle regeneration. We found the prolonged persistence of macrophages at the late phase of regeneration in PGRN-KO mice, and these macrophages were suggested to be M2 macrophages since this was accompanied with an increased CD206 expression. We also observed muscle hypertrophy in PGRN-KO mice at the late stage of muscle regeneration. Since M2 macrophages are known to have a role in maturation of myofibers, this muscle hypertrophy may be due to the presence of increased number of M2 macrophages. Our results suggest that PGRN plays a role in the regulation of kinetics of macrophages for the systemic progress of muscle regeneration.
Collapse
Affiliation(s)
- Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kei Miyaji
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Öz Gergin Ö, Yıldız K, Bayram A, Sencar L, Coşkun G, Yay A, Biçer C, Özdamar S, Polat S. Comparison of the Myotoxic Effects of Levobupivacaine, Bupivacaine, and Ropivacaine: An Electron Microscopic Study. Ultrastruct Pathol 2015; 39:169-76. [DOI: 10.3109/01913123.2015.1014610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
|
7
|
White JP, Baltgalvis KA, Sato S, Wilson LB, Carson JA. Effect of nandrolone decanoate administration on recovery from bupivacaine-induced muscle injury. J Appl Physiol (1985) 2009; 107:1420-30. [PMID: 19745189 DOI: 10.1152/japplphysiol.00668.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although testosterone administration elicits well-documented anabolic effects on skeletal muscle mass, the enhancement of muscle regeneration after injury has not been widely examined. The purpose of this study was to determine whether anabolic steroid administration improves skeletal muscle regeneration from bupivacaine-induced injury. Male C57BL/6 mice were castrated 2 wk before muscle injury induced by an intramuscular bupivacaine injection into the tibialis anterior (TA) muscle. Control mice received an intramuscular PBS injection. Anabolic steroid [nandrolone decanoate (ND), 6 mg/kg] or sesame seed oil was administered at the time of initial injury and continued every 7 days for the study's duration. Mice were randomly assigned to one of four treatment groups for 5, 14, or 42 days of recovery, as follows: 1) control (uninjured); 2) ND only (uninjured + ND); 3) bupivacaine only (injured); or 4) bupivacaine + ND (injured + ND). TA morphology, protein, and gene expression were analyzed at 14 and 42 days after injury; protein expression was analyzed at 5 days after injury. After 14 days of recovery, the injury and injury + ND treatments induced small-diameter myofiber incidence and also decreased mean myofiber area. The increase in small-myofiber incidence was 65% greater in injury + ND muscle compared with injury alone. At 14 days, injury + ND induced a fivefold increase in muscle IGF-I mRNA expression, which was greater than injury alone. Muscle Akt activity and glycogen synthetase kinase-3beta activity were also induced by injury + ND at 14 days of recovery, but not by injury alone. ND had a main effect for increasing muscle MyoD and cyclin D1 mRNA expression at 14 days. After 42 days of recovery, injury + ND increased large-diameter myofiber incidence compared with injury only. Nandrolone decanoate (ND) administration can enhance castrated mouse muscle regeneration during the recovery from bupivacaine-induced injury.
Collapse
Affiliation(s)
- James P White
- Integrative Muscle Biology Laboratory, Exercise Science Department, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
8
|
Yamanouchi K, Yada E, Ishiguro N, Hosoyama T, Nishihara M. Increased adipogenicity of cells from regenerating skeletal muscle. Exp Cell Res 2006; 312:2701-11. [PMID: 16750191 DOI: 10.1016/j.yexcr.2006.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 04/04/2006] [Accepted: 04/06/2006] [Indexed: 11/24/2022]
Abstract
Adipose tissue development is observed in some muscle pathologies, however, mechanisms that induce accumulation of this tissue as well as its cellular origin are unknown. The adipogenicity of cells from bupivacaine hydrochloride (BPVC)-treated and untreated muscle was compared in vitro. Culturing cells from both BPVC-treated and untreated muscles in adipogenic differentiation medium (ADM) for 10 days resulted in the appearance of mature adipocytes, but their number was 3.5-fold higher in cells from BPVC-treated muscle. Temporal expressions of PPARgamma and the presence of lipid droplets during adipogenic differentiation were examined. On day 2 of culture in ADM, only cells from BPVC-treated muscle were positive both for PPARgamma and lipid droplets. Pref-1 was expressed in cells from untreated muscle, whereas its expression was absent in cells from BPVC-treated muscle. In ADM, the presence of insulin, which negates an inhibitory effect of Pref-1 on adipogenic differentiation, was required for PPARgamma2 expression in cells from untreated muscle, but not for cells from BPVC-treated muscle. These results indicate that BPVC-induced degenerative/regenerative changes in muscle lead to increased adipogenicity of cells, and suggest that this increased adipogenicity not only involves an increase in the number of cells having adipogenic potential, but also contributes to the progression of these cells toward adipogenic differentiation.
Collapse
Affiliation(s)
- Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
9
|
Vozzelli MA, Mason SN, Whorton MH, Auten RL. Antimacrophage chemokine treatment prevents neutrophil and macrophage influx in hyperoxia-exposed newborn rat lung. Am J Physiol Lung Cell Mol Physiol 2004; 286:L488-93. [PMID: 12588706 DOI: 10.1152/ajplung.00414.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophage-derived cytokines may provoke the inflammatory response in lung injury. Because macrophage influx is a prominent feature of the cellular inflammatory response accompanying the development of bronchopulmonary dysplasia, we hypothesized that blocking macrophage influx would reduce overall cellular influx and oxidative damage. Newborn rats were exposed at birth to 95% O(2) or air for 1 wk, and hyperoxia-exposed pups were injected with anti-monocyte chemoattractant protein-1 (MCP-1) or IgG control on days 3-5. MCP-1 was increased in bronchoalveolar lavage fluid and in histological sections from the 95% O(2)-exposed, IgG-injected pups compared with air-exposed controls. At 1 wk, anti-MCP-1-treated pups had reduced leukocyte numbers, both macrophages and neutrophils, in bronchoalveolar lavage fluid compared with IgG-treated controls. Cytokine-induced neutrophil chemoattractant-1, the rat analog of IL-8, was not significantly decreased in lavage fluid but was reduced in lung cells in anti-MCP-1-treated pups. Tissue carbonyls, a measure of protein oxidation, were decreased in anti-MCP-1-treated pups. Anti-MCP-1 treatment prevented neutrophil influx and reduced protein oxidation in hyperoxia-exposed newborn rats.
Collapse
Affiliation(s)
- Michael A Vozzelli
- Department of Pediatrics, Division of Neonatal Medicine, Neonatal-Perinatal Research Institute, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
10
|
Hollmann MW, Kurz K, Herroeder S, Struemper D, Hahnenkamp K, Berkelmans NS, den Bakker CG, Durieux ME. The Effects of S(???)-, R(+)-, and Racemic Bupivacaine on Lysophosphatidate-Induced Priming of Human Neutrophils. Anesth Analg 2003; 97:1053-1058. [PMID: 14500156 DOI: 10.1213/01.ane.0000080157.07960.93] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Local anesthetics modulate inflammatory responses and may therefore be potentially useful in mitigating perioperative inflammatory injury. The inflammatory modulating effects of S(-)-bupivacaine are not known. Therefore, we compared the effects of S(-)-bupivacaine, R(+)-bupivacaine, and racemic bupivacaine on neutrophil function and receptor signaling. Priming (by lysophosphatidic acid [LPA]) and activation (by N-formylmethionine-leucyl-phenylalanine) of superoxide release by isolated human neutrophils was studied by using a cytochrome c-reduction assay. LPA receptor signaling in Xenopus oocytes was studied by using voltage clamp. All three local anesthetics were without effect on activation. S(-)-Bupivacaine inhibited priming more than did racemic bupivacaine; R(+)-bupivacaine was without effect. At 10(-4) M, S(-)-bupivacaine inhibited approximately 50%. Comparable results were obtained in our recombinant model, where S(-)-bupivacaine most effectively inhibited LPA signaling. Compared with racemic bupivacaine and other anesthetics, S(-)-bupivacaine appears particularly effective in suppressing neutrophil priming, a process responsible in part for the overactive neutrophil response. IMPLICATIONS Overactive inflammatory responses underlie several perioperative disorders. Compared with racemic bupivacaine and other anesthetics, S(-)-bupivacaine appears particularly effective in suppressing neutrophil priming, a process responsible in part for the overactive neutrophil response.
Collapse
Affiliation(s)
- Markus W Hollmann
- *Department of Anesthesiology, University of Heidelberg, Germany; †Department of Anesthesiology, University Hospital Maastricht, The Netherlands; and ‡Department of Anesthesiology, University Hospital Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|