1
|
Schon KR, O'Donovan DG, Briggs M, Rowe JB, Wijesekera L, Chinnery PF, van den Ameele J. Multisystem pathology in McLeod syndrome. Neuropathology 2024; 44:109-114. [PMID: 37438874 DOI: 10.1111/neup.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
We present a comprehensive characterization of clinical, neuropathological, and multisystem features of a man with genetically confirmed McLeod neuroacanthocytosis syndrome, including video and autopsy findings. A 61-year-old man presented with a movement disorder and behavioral change. Examination showed dystonic choreiform movements in all four limbs, reduced deep-tendon reflexes, and wide-based gait. He had oromandibular dyskinesia causing severe dysphagia. Elevated serum creatinine kinase (CK) was first noted in his thirties, but investigations, including muscle biopsy at that time, were inconclusive. Brain magnetic resonance imaging showed white matter volume loss, atrophic basal ganglia, and chronic small vessel ischemia. Despite raised CK, electromyography did not show myopathic changes. Exome gene panel testing was negative, but targeted genetic analysis revealed a hemizygous pathogenic variant in the XK gene c.895C > T p.(Gln299Ter), consistent with a diagnosis of McLeod syndrome. The patient died of sepsis, and autopsy showed astrocytic gliosis and atrophy of the basal ganglia, diffuse iron deposition in the putamen, and mild Alzheimer's pathology. Muscle pathology was indicative of mild chronic neurogenic atrophy without overt myopathic features. He had non-specific cardiomyopathy and splenomegaly. McLeod syndrome is an ultra-rare neurodegenerative disorder caused by X-linked recessive mutations in the XK gene. Diagnosis has management implications since patients are at risk of severe transfusion reactions and cardiac complications. When a clinical diagnosis is suspected, candidate genes should be interrogated rather than solely relying on exome panels.
Collapse
Affiliation(s)
- Katherine R Schon
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Dominic G O'Donovan
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Mayen Briggs
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Lokesh Wijesekera
- Department of Clinical Neurophysiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Jelle van den Ameele
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Walker RH, Peikert K, Jung HH, Hermann A, Danek A. Neuroacanthocytosis Syndromes: The Clinical Perspective. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231210339. [PMID: 38090146 PMCID: PMC10714877 DOI: 10.1177/25152564231210339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 09/05/2024]
Abstract
The two very rare neurodegenerative diseases historically known as the "neuroacanthocytosis syndromes" are due to mutations of either VPS13A or XK. These are phenotypically similar disorders that affect primarily the basal ganglia and hence result in involuntary abnormal movements as well as neuropsychiatric and cognitive alterations. There are other shared features such as abnormalities of red cell membranes which result in acanthocytes, whose relationship to neurodegeneration is not yet known. Recent insights into the functions of these two proteins suggest dysfunction of lipid processing and trafficking at the subcellular level and may provide a mechanism for neuronal dysfunction and death, and potentially a target for therapeutic interventions.
Collapse
Affiliation(s)
- Ruth H. Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Neurology, Mount Sinai School of Medicine, New York City, NY, USA
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- United Neuroscience Campus Lund-Rostock (UNC), Rostock, Germany
| | - Hans H. Jung
- Department of Neurology, University and University Hospital Zürich, Zürich, Switzerland
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Adrian Danek
- Neurologische Klinik, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
3
|
Abstract
There is increasing evidence of central nervous system involvement in numerous neuromuscular disorders primarily considered diseases of skeletal muscle. Our knowledge on cerebral affection in myopathies is expanding continuously due to a better understanding of the genetic background and underlying pathophysiological mechanisms. Intriguingly, there is a remarkable overlap of brain pathology in muscular diseases with pathomechanisms involved in neurodegenerative or neurodevelopmental disorders. A rapid progress in advanced neuroimaging techniques results in further detailed insight into structural and functional cerebral abnormalities. The spectrum of clinical manifestations is broad and includes movement disorders, neurovascular complications, paroxysmal neurological symptoms like migraine and epileptic seizures, but also behavioural abnormalities and cognitive dysfunction. Cerebral involvement implies a high socio-economic and personal burden in adult patients sometimes exceeding the everyday challenges associated with muscle weakness. It is especially important to clarify the nature and natural history of brain affection against the background of upcoming specific treatment regimen in hereditary myopathies that should address the brain as a secondary target. This review aims to highlight the character and extent of central nervous system involvement in patients with hereditary myopathies manifesting in adulthood, however also includes some childhood-onset diseases with brain abnormalities that transfer into adult neurological care.
Collapse
Affiliation(s)
- Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| |
Collapse
|
4
|
Walker RH. Management of Neuroacanthocytosis Syndromes. Tremor Other Hyperkinet Mov (N Y) 2015; 5:346. [PMID: 26504667 PMCID: PMC4613733 DOI: 10.7916/d8w66k48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The two core neuroacanthocytosis (NA) syndromes, chorea-acanthocytosis (ChAc) and McLeod syndrome, are progressive neurodegenerative disorders that primarily affect the basal ganglia. The characteristic phenotype comprises a variety of movement disorders including chorea, dystonia, and parkinsonism, as well as psychiatric and cognitive symptoms attributable to basal ganglia dysfunction. These disorders are symptomatically managed on a case-by-case basis, with very few practitioners seeing more than a single case in their careers. METHODS A literature search was performed on PubMed utilizing the terms neuroacanthocytosis, chorea-acanthocytosis, and McLeod syndrome, and articles were reviewed for mentions of therapies, successful or otherwise. RESULTS There have been no blinded, controlled trials and only one retrospective case series describing ChAc. The various therapies that have been used in patients with NA syndromes are summarized. DISCUSSION Management remains at present purely symptomatic, which is similar in principle to other more common basal ganglia neurodegenerative disorders such as Huntington's disease (HD) and Parkinson's disease (PD). However, there are some specific issues particular to NA syndromes that merit attention. An integrated multidisciplinary approach is the ideal management strategy for these complex and multifaceted neurodegenerative disorders.
Collapse
Affiliation(s)
- Ruth H. Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Neurology, Mount Sinai School of Medicine, New York City, NY, USA
| |
Collapse
|
5
|
Walker RH. Untangling the Thorns: Advances in the Neuroacanthocytosis Syndromes. J Mov Disord 2015; 8:41-54. [PMID: 26090076 PMCID: PMC4460540 DOI: 10.14802/jmd.15009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/25/2022] Open
Abstract
There have been significant advances in neuroacanthocytosis (NA) syndromes in the past 20 years, however, confusion still exists regarding the precise nature of these disorders and the correct nomenclature. This article seeks to clarify these issues and to summarise the recent literature in the field. The four key NA syndromes are described here-chorea-acanthocytosis, McLeod syndrome, Huntington's disease-like 2, and pantothenate kinase- associated neurodegeneration. In the first two, acanthocytosis is a frequent, although not invariable, finding; in the second two, it occurs in approximately 10% of patients. Degeneration affecting the basal ganglia is the key neuropathologic finding, thus the clinical presentations can be remarkably similar. The characteristic phenotype comprises a variety of movement disorders, including chorea, dystonia, and parkinsonism, and also psychiatric and cognitive symptoms attributable to basal ganglia dysfunction. The age of onset, inheritance patterns, and ethnic background differ in each condition, providing diagnostic clues. Other investigations, including routine blood testing and neuroimaging can be informative. Genetic diagnosis, if available, provides a definitive diagnosis, and is important for genetic counseling, and hopefully molecular therapies in the future. In this article I provide a historical perspective on each NA syndrome. The first 3 disorders, chorea-acanthocytosis, McLeod syndrome, Huntington's disease-like 2, are discussed in detail, with a comprehensive review of the literature to date for each, while pantothenate kinase-associated neurodegeneration is presented in summary, as this disorder has recently been reviewed in this journal. Therapy for all of these diseases is, at present, purely symptomatic.
Collapse
Affiliation(s)
- Ruth H. Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Genetics of Huntington Disease (HD), HD-Like Disorders, and Other Choreiform Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Shah JR, Patkar DP, Kamat RN. A case of McLeod phenotype of neuroacanthocytosis brain MR features and literature review. Neuroradiol J 2013; 26:21-6. [PMID: 23859162 DOI: 10.1177/197140091302600103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/22/2012] [Indexed: 11/15/2022] Open
Abstract
Huntington's disease and neuroacanthocytosis may present similar clinical and MRI features. It is important to differentiate these findings since treatment and prognosis vary vastly between them. The aim of this article is to familiarize radiologists with the differentiating features of Huntington's disease and various diseases comprising neuroacanthocytosis. A 40-year-old Indian man with extrapyramidal symptoms was referred for MRI. The clinical diagnosis was Huntington's disease, but there were a few atypical clinical features such as a history of biting the tongue, tics, marked hyporeflexia and lower limb muscle wasting. MR showed atrophy of the caudate nucleus and putamen with iron deposition in the basal ganglia, which can be seen in Huntington's disease and in neuroacanthocytosis. An increased blood acanthocyte level was subsequently confirmed. Further work-up revealed increased serum creatine phosphokinase levels, normal serum lipoprotein levels and depressed K cell antigen activity on serological studies, confirming the diagnosis of McLeod syndrome. McLeod syndrome is one of the distinct phenotypes of neuroacanthocytosis. Neuroacanthocytosis is a group of disorders with increased serum acanthocyte counts and neurological involvement. Various causes of neuroacanthocytosis are discussed. It is important to consider the possibility of neuroacanthocytosis when features typical of Huntington's disease are encountered on imaging.
Collapse
Affiliation(s)
- J R Shah
- Gokuldas Tejpal Hospital Spectrum CT MRI Centre, Mumbai, India.
| | | | | |
Collapse
|
8
|
Jung HH, Danek A, Walker RH. Neuroacanthocytosis syndromes. Orphanet J Rare Dis 2011; 6:68. [PMID: 22027213 PMCID: PMC3212896 DOI: 10.1186/1750-1172-6-68] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 10/25/2011] [Indexed: 11/10/2022] Open
Abstract
Neuroacanthocytosis (NA) syndromes are a group of genetically defined diseases characterized by the association of red blood cell acanthocytosis and progressive degeneration of the basal ganglia. NA syndromes are exceptionally rare with an estimated prevalence of less than 1 to 5 per 1'000'000 inhabitants for each disorder. The core NA syndromes include autosomal recessive chorea-acanthocytosis and X-linked McLeod syndrome which have a Huntington´s disease-like phenotype consisting of a choreatic movement disorder, psychiatric manifestations and cognitive decline, and additional multi-system features including myopathy and axonal neuropathy. In addition, cardiomyopathy may occur in McLeod syndrome. Acanthocytes are also found in a proportion of patients with autosomal dominant Huntington's disease-like 2, autosomal recessive pantothenate kinase-associated neurodegeneration and several inherited disorders of lipoprotein metabolism, namely abetalipoproteinemia (Bassen-Kornzweig syndrome) and hypobetalipoproteinemia leading to vitamin E malabsorption. The latter disorders are characterized by a peripheral neuropathy and sensory ataxia due to dorsal column degeneration, but movement disorders and cognitive impairment are not present. NA syndromes are caused by disease-specific genetic mutations. The mechanism by which these mutations cause neurodegeneration is not known. The association of the acanthocytic membrane abnormality with selective degeneration of the basal ganglia, however, suggests a common pathogenetic pathway. Laboratory tests include blood smears to detect acanthocytosis and determination of serum creatine kinase. Cerebral magnetic resonance imaging may demonstrate striatal atrophy. Kell and Kx blood group antigens are reduced or absent in McLeod syndrome. Western blot for chorein demonstrates absence of this protein in red blood cells of chorea-acanthocytosis patients. Specific genetic testing is possible in all NA syndromes. Differential diagnoses include Huntington disease and other causes of progressive hyperkinetic movement disorders. There are no curative therapies for NA syndromes. Regular cardiologic studies and avoidance of transfusion complications are mandatory in McLeod syndrome. The hyperkinetic movement disorder may be treated as in Huntington disease. Other symptoms including psychiatric manifestations should be managed in a symptom-oriented manner. NA syndromes have a relentlessly progressive course usually over two to three decades.
Collapse
Affiliation(s)
- Hans H Jung
- Department of Neurology, University Hospital Zürich, Zürich, Switzerland.
| | | | | |
Collapse
|
9
|
Abstract
The term "neuroacanthocytosis" describes a heterogeneous group of molecularly-defined disorders which result in progressive neurodegeneration, predominantly of the basal ganglia, and erythrocyte acanthocytosis. The clinical presentation of neuroacanthocytosis syndromes typically involves chorea and dystonia, but a range of other movement disorders may be seen. Psychiatric and cognitive symptoms may be prominent. There can be considerable phenotypic overlap; however, features of inheritance, age of onset, neuroimaging and laboratory findings, in addition to the spectrum of central and peripheral neurological abnormalities and extraneuronal involvement, can help to distinguish the specific syndromes. The two core neuroacanthocytosis syndromes, in which acanthocytosis is a typical, although not invariable finding, are autosomal recessive chorea-acanthocytosis and X-linked McLeod syndrome. Acanthocytes are found in a smaller proportion of patients with Huntington's disease-like 2 and pantothenate kinase-associated neurodegeneration. Additionally, acanthocytosis has been reported in a few patients with other neurological disorders. The causative genes do not appear to be linked by a specific function or pathway, although abnormalities of membrane processing may be implicated. The connection between the erythrocyte membrane abnormality, which results in the characteristic "thorny" protrusions, the vulnerability of the basal ganglia, and the respective genetic mutations, is obscure.
Collapse
Affiliation(s)
- Ruth H Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx and Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
10
|
Abstract
Myopathies are frequently not confined to the skeletal muscles but also involve other organs or tissues. One of the most frequently affected organ in addition to the skeletal muscle is the heart (cardiac involvement, CI). CI manifests as impulse generation or conduction defects, focal or diffuse myocardial thickening, dilation of the cardiac cavities, relaxation abnormality, hypertrophic, dilated, restrictive cardiomyopathy, apical form of hypertrophic cardiomyopathy, noncompaction, Takotsubo phenomenon, secondary valve insufficiency, intra-cardiac thrombus formation, or heart failure with systolic or diastolic dysfunction. CI occurs in dystrophinopathies, Emery-Dreifuss muscular dystrophy, facioscapulohumeral muscular dystrophy, limb girdle muscular dystrophies, laminopathies, congenital muscular dystrophies, myotonic dystrophies, congenital myopathies, metabolic myopathies, desminopathies, myofibrillar myopathy, Barth syndrome, McLeod syndrome, Senger's syndrome, and Bethlem myopathy. Patients with myopathy should be cardiologically investigated as soon as their neurological diagnosis is established, since supportive cardiac therapy is available, which markedly influences prognosis and outcome of CI in these patients.
Collapse
|
11
|
Klempír J, Roth J, Zárubová K, Písacka M, Spacková N, Tilley L. The McLeod syndrome without acanthocytes. Parkinsonism Relat Disord 2008; 14:364-6. [PMID: 17870653 DOI: 10.1016/j.parkreldis.2007.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 07/10/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
A 45-year-old man developed chorea, behavioural changes, moderate amyotrophy and polyneuropathy. Hypertrophic cardiomyopathy and increased serum lactate dehydrogenase and creatine kinase (CK) were found. Acanthocytes were not detected. The absence of XK protein and faintly expressed Kell antigens on erythrocytes were found. Genetic test revealed a R133X mutation of the XK gene, confirming the McLeod syndrome. After 7 years he suddenly developed delirium followed by severe hypoglycaemia, hyperthermia, rhabdomyolysis, hepatic and renal failure. Malignant arrhythmia caused death.
Collapse
Affiliation(s)
- Jirí Klempír
- Department of Neurology, 1st Medical Faculty, Charles University, Katerinská 30, 12000 Prague 2, Czech Republic.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The X-linked McLeod syndrome is defined by absent Kx red blood cell antigen and weak expression of Kell antigens, and this constellation may be accidentally detected in routine screening of apparently healthy blood donors. Most carriers of this McLeod blood group phenotype have acanthocytosis and elevated serum creatine kinase levels and are prone to develop a severe neurological disorder resembling Huntington's disease. Onset of neurological symptoms ranges between 25 and 60 years, and the penetrance of the disorder appears to be high. Additional symptoms of the McLeod neuroacanthocytosis syndrome that warrant therapeutic and diagnostic considerations include generalized seizures, neuromuscular symptoms leading to weakness and atrophy, and cardiopathy mainly manifesting with atrial fibrillation, malignant arrhythmias and dilated cardiomyopathy. Therefore, asymptomatic carriers of the McLeod blood group phenotype should have a careful genetic counseling, neurological examination and a cardiologic evaluation for the presence of a treatable cardiomyopathy.
Collapse
Affiliation(s)
- H H Jung
- Department of Neurology, University Hospital Zürich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland.
| | | | | |
Collapse
|
13
|
Walker RH, Jung HH, Tison F, Lee S, Danek A. Phenotypic variation among brothers with the McLeod neuroacanthocytosis syndrome. Mov Disord 2007; 22:244-8. [PMID: 17133513 DOI: 10.1002/mds.21224] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
McLeod syndrome is an X-linked multisystem disorder affecting red blood cells, the peripheral and central nervous systems, and skeletal and cardiac muscle. No clear correlations of the clinical findings with the genotype of XK mutations have yet been uncovered. Here, we report the clinical features and progression in 10 affected brothers from 4 families with McLeod syndrome. There is significant variation in clinical presentation within families, including in causes of morbidity and mortality. This phenotypic variation, despite shared mutations, suggests the action of disease-modifying factors that may explain some of the difficulties with genotype-phenotype correlation in McLeod syndrome.
Collapse
Affiliation(s)
- Ruth H Walker
- Departments of Neurology, Veterans Affairs Medical Center, New York, New York 10468, USA.
| | | | | | | | | |
Collapse
|
14
|
Serum creatine kinase levels in chronic psychosis patients--a comparison between atypical and conventional antipsychotics. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:1277-82. [PMID: 16806625 DOI: 10.1016/j.pnpbp.2006.04.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 03/23/2006] [Accepted: 04/15/2006] [Indexed: 10/24/2022]
Abstract
Creatine kinase is an important enzyme in the energy metabolism of many cell types, including muscle cells. Increased serum levels of creatine kinase may serve as a marker of enhanced creatine kinase synthesis in muscle cells or muscle cell membrane damage. The purpose of this study was to compare serum creatine kinase levels in chronic psychosis patients treated with either atypical or conventional antipsychotics. Forty-nine patients, receiving clozapine (n=18), or olanzapine (n=18), or conventional agents (n=13), were studied. Fasting serum samples were analyzed for creatine kinase. A significant difference in median creatine kinase level was found among the treatment groups (p=0.03), in that the creatine kinase level was higher both in the patients receiving clozapine and in the patients receiving olanzapine, compared to that in patients receiving conventional antipsychotics, p=0.001 and p<0.0001, respectively. In addition, elevated creatine kinase levels above the upper limit of normal were found in 6 (17%) of the patients treated with clozapine or olanzapine, but in none of the patients treated with conventional agents. In summary, the present results indicate that therapy with atypical antipsychotics like clozapine and olanzapine, in contrast to conventional agents, may be associated with serum creatine kinase elevation.
Collapse
|
15
|
Walker RH, Danek A, Dobson-Stone C, Guerrini R, Jung HH, Lafontaine AL, Rampoldi L, Tison F, Andermann E. Developments in neuroacanthocytosis: Expanding the spectrum of choreatic syndromes. Mov Disord 2006; 21:1794-805. [PMID: 16958034 DOI: 10.1002/mds.21108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As with other neurodegenerative disorders, research into the group of diseases known under the umbrella term of "neuroacanthocytosis" has greatly benefited from the identification of causative genes. The distinct and unifying aspect of these disorders is the presence of thorny deformations of circulating erythrocytes. This may be due to abnormal properties of red cell membranes, which could lead to insights into mechanisms of neurodegeneration. Research approaches in this field, in addition to examining functions and protein interactions of the affected proteins with particular respect to neurons, have also drawn upon the expertise of hematologists and red cell membrane biologists. In this article, recent developments in the field are presented.
Collapse
Affiliation(s)
- Ruth H Walker
- Department of Neurology, Veterans Affairs Medical Center, Bronx, and Mount Sinai School of Medicine, New York, NY 10468, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Danek A, Jung HH, Melone MAB, Rampoldi L, Broccoli V, Walker RH. Neuroacanthocytosis: new developments in a neglected group of dementing disorders. J Neurol Sci 2005; 229-230:171-86. [PMID: 15760637 DOI: 10.1016/j.jns.2004.11.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neurological abnormalities associated with spiculated, "acanthocytic" red cells in blood have been summarized as neuroacanthocytosis. This is a heterogeneous group of conditions that can now be clearly subdivided on the basis of genetic discoveries. The core neuroacanthocytosis syndromes are autosomal recessive chorea-acanthocytosis (ChAc) and the X-linked McLeod syndrome (MLS). Huntington's disease-like 2 (HLD2) and pantothenate kinase associated neurodegeneration (PKAN) can now also be included. All of these share dyskinesias, cognitive deterioration and progressive neurodegeneration mainly of the basal ganglia, but they are sufficiently distinct to permit a specific working diagnosis on the basis of clinical, laboratory and imaging findings. In addition, the VPS13A (formerly called CHAC), XK, JPH3 and PANK2 genes, respectively, may be examined for mutations. Unfortunately, little is yet known about the normal and abnormal physiology of the protein products of these genes, but they appear to be involved in membrane function and intracellular protein sorting. Since no cures are yet available, development and study of disease models in experimental animals (mouse, C. elegans) is a priority for current research. From a clinical point of view, the common occurrence of cardiomyopathy in MLS, the transfusion hazards due to the McLeod Kell phenotype and the possibility of improving the violent trunk spasms and orofacial dyskinesias typical for ChAc (with subsequent lip or tongue mutilations and feeding dystonia) by deep brain surgery or stimulation should be considered in patient management.
Collapse
Affiliation(s)
- Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität Marchioninistr. 15 D-81366 Munich, Germany.
| | | | | | | | | | | |
Collapse
|