1
|
Alharbi A, Li J, Womack E, Farrow M, Yarar-Fisher C. The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Cross-Sectional Area and Inflammatory Signaling. Int J Mol Sci 2024; 25:11095. [PMID: 39456876 PMCID: PMC11507577 DOI: 10.3390/ijms252011095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
In individuals with a spinal cord injury (SCI), rapid skeletal muscle atrophy and metabolic dysfunction pose profound rehabilitation challenges, often resulting in substantial loss of muscle mass and function. This study evaluates the effect of combined neuromuscular electrical stimulation (Comb-NMES) on skeletal muscle cross-sectional area (CSA) and inflammatory signaling within the acute phase of SCI. We applied a novel Comb-NMES regimen, integrating both high-frequency resistance and low-frequency aerobic protocols on the vastus lateralis muscle, to participants early post-SCI. Muscle biopsies were analyzed for CSA and inflammatory markers pre- and post-intervention. The results suggest a potential preservation of muscle CSA in the Comb-NMES group compared to a control group. Inflammatory signaling proteins such as TLR4 and Atrogin-1 were downregulated, whereas markers associated with muscle repair and growth were modulated beneficially in the Comb-NMES group. The study's findings suggest that early application of Comb-NMES post-SCI may attenuate inflammatory pathways linked to muscle atrophy and promote muscle repair. However, the small sample size and variability in injury characteristics emphasize the need for further research to corroborate these results across a more diverse and extensive SCI population.
Collapse
Affiliation(s)
- Amal Alharbi
- Department of Physical Therapy, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jia Li
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Erika Womack
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA;
| | - Matthew Farrow
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Gibbs JC, Patsakos EM, Maltais DB, Wolfe DL, Gagnon DH, Craven BC. Rehabilitation interventions to modify endocrine-metabolic disease risk in individuals with chronic spinal cord injury living in the community (RIISC): A systematic search and review of prospective cohort and case-control studies. J Spinal Cord Med 2023; 46:6-25. [PMID: 33596167 PMCID: PMC9897753 DOI: 10.1080/10790268.2020.1863898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CONTEXT Endocrine-metabolic disease (EMD) is associated with functional disability, social isolation, hospitalization and even death in individuals living with a chronic spinal cord injury (SCI). There is currently very low-quality evidence that rehabilitation interventions can reduce EMD risk during chronic SCI. Non-randomized trials and alternative study designs are excluded from traditional knowledge synthesis. OBJECTIVE To characterize evidence from level 3-4 studies evaluating rehabilitation interventions for their effectiveness to improve EMD risk in community-dwelling adults with chronic SCI. METHODS Systematic searches of MEDLINE PubMed, EMBASE Ovid, CINAHL, Cochrane Database of Systematic Reviews, and PsychInfo were completed. All longitudinal trials, prospective cohort, case-control studies, and case series evaluating the effectiveness of rehabilitation/therapeutic interventions to modify/associate with EMD outcomes in adults with chronic SCI were eligible. Two authors independently selected studies and abstracted data. Mean changes from baseline were reported for EMD outcomes. The Downs and Black Checklist was used to rate evidence quality. RESULTS Of 489 articles identified, 44 articles (N = 842) were eligible for inclusion. Individual studies reported statistically significant effects of electrical stimulation-assisted training on lower-extremity bone outcomes, and the combined effects of exercise and dietary interventions to improve body composition and cardiometabolic biomarkers (lipid profiles, glucose regulation). In contrast, there were also reports of no clinically important changes in EMD outcomes, suggesting lower quality evidence (study bias, inconsistent findings). CONCLUSION Longitudinal multicentre pragmatic studies involving longer-term exercise and dietary intervention and follow-up periods are needed to fully understand the impact of these rehabilitation approaches to mitigate EMD risk. Our broad evaluation of prospective cohort and case-control studies provides new perspectives on alternative study designs, a multi-impairment paradigm approach of studying EMD outcomes, and knowledge gaps related to SCI rehabilitation.
Collapse
Affiliation(s)
- Jenna C. Gibbs
- Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, QC, Canada
| | - Eleni M. Patsakos
- KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, ON, Canada
| | - Desiree B. Maltais
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Dalton L. Wolfe
- Parkwood Institute Research, Lawson Health Research Institute, London, ON, Canada
- Department of Physical Medicine and Rehabilitation, Western University, London, ON, Canada
| | - Dany H. Gagnon
- Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - B. Catharine Craven
- KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, ON, Canada
- Division of Physical Therapy and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Bersch I, Alberty M, Fridén J. Robot-assisted training with functional electrical stimulation enhances lower extremity function after spinal cord injury. Artif Organs 2022; 46:2009-2014. [PMID: 35976046 DOI: 10.1111/aor.14386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/04/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Functional Electrical Stimulation (FES) synchronized with robot-assisted lower extremity training is used in spinal cord injury (SCI) rehabilitation to promote residual function. METHODS Data of SCI inpatients who trained lower limb mobilization on a stationary robotic system were retrospectively analyzed. The primary outcome was the improvement of muscle strength from the first through to the last training session during FES-induced as well as voluntarily induced flexion and extension. The secondary outcome was the sum score of voluntary muscle function in the lower limbs before and after the training period. RESULTS Data from 72 patients with SCI (AIS A-D) were analyzed. For extension, FES-assisted strength increased (p<0.001) from 25.2 to 44.0 N, voluntary force (p<0.001) from 24.4 to 39.9 N. For flexion, FES-assisted flexion (p<0.006) increased from 14.1 to 19.0 N, voluntary flexion (p<0.005) from 12.6 to 17.1 N. There was a significant correlation between the increase in FES-assisted force and voluntary flexion (r=0.730, p=0.001) as well as between the increase in FES-assisted force and voluntary extension (r=0.881, p<0.001). The sum score in muscle test increased from 15 to 24 points. CONCLUSION Robot-assisted training with FES seems to support the regeneration of residual functions after SCI. This is evidenced by an improvement in motor function and strength in the lower limbs.
Collapse
Affiliation(s)
- Ines Bersch
- International FES Centre®, Swiss Paraplegic Centre Nottwil, Switzerland
| | - Marie Alberty
- International FES Centre®, Swiss Paraplegic Centre Nottwil, Switzerland
| | - Jan Fridén
- International FES Centre®, Swiss Paraplegic Centre Nottwil, Switzerland.,Department of Tetrahand Surgery, Swiss Paraplegic Centre Nottwil, Switzerland
| |
Collapse
|
4
|
Panisset MG, El-Ansary D, Dunlop SA, Marshall R, Clark J, Churilov L, Galea MP. Factors influencing thigh muscle volume change with cycling exercises in acute spinal cord injury - a secondary analysis of a randomized controlled trial. J Spinal Cord Med 2022; 45:510-521. [PMID: 32970970 PMCID: PMC9246176 DOI: 10.1080/10790268.2020.1815480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Objective: To conduct a per-protocol analysis on thigh muscle volume outcomes from the Spinal Cord Injury and Physical Activity (SCIPA) Switch-On Trial.Design: Secondary analysis from an assessor-blind randomized, controlled trial.Setting: Four acute/sub-acute hospitals in Australia and New Zealand.Participants: 24 adults (1 female) within four weeks of motor complete or incomplete spinal cord injury (SCI)Intervention: Functional electrical stimulation-assisted cycling (FESC) or passive cycling (PC) 4x/week for 12 weeks.Outcome Measures: Whole thigh and muscle group volumes calculated from manually segmented MR images.Results: 19/24 participants completed ≥ twelve weeks of the intervention. Five participants experienced hypertrophy (4 FESC; 1 PC) and eight attenuation of atrophy (<20% volume loss) (3 FESC; 5 PC) in thigh muscle volume. Six participants were non-responders, exhibiting atrophy >20% (3 FESC; 3 PC). Mean (SD) change for FESC was -2.3% (25.3%) and PC was -14.0% (12.3%). After controlling for baseline muscle volumes, a strong significant correlation was found between mean weekly exercise frequency and quadriceps and hamstring volumes (r=6.25, P=0.006), regardless of mode. Average watts was highly correlated to quadriceps volumes only (r=5.92, P=0.01), while total number of sessions was strongly correlated with hamstring volumes only (r=5.91, P=0.01).Conclusion: This per-protocol analysis of FESC and PC early after SCI reports a partial response in 42% and a beneficial response in 25% of patients who completed 12 weeks intervention, regardless of mode. Strong correlations show a dose-response according to exercise frequency. Characteristics of non-responders are discussed to inform clinical decision-making.
Collapse
Affiliation(s)
- Maya G. Panisset
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Australia,Correspondence to: Maya G. Panisset, Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC3052, Australia; Ph: (+61) 0405 027 127.
| | - Doa El-Ansary
- Department of Nursing and Allied Health, Swinburne University of Technology, Hawthorne, Australia,Department of Physiotherapy, The University of Melbourne, Parkville, Australia
| | - Sarah Alison Dunlop
- School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Ruth Marshall
- Hampstead Rehabilitation Centre, Northfield, Australia
| | - Jillian Clark
- Hampstead Rehabilitation Centre, Lightsview, Australia
| | | | - Mary P. Galea
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Australia
| |
Collapse
|
5
|
Bekhet AH, Jahan AM, Bochkezanian V, Musselman KE, Elsareih AA, Gorgey AS. Effects of Electrical Stimulation Training on Body Composition Parameters After Spinal Cord Injury: A Systematic Review. Arch Phys Med Rehabil 2022; 103:1168-1178. [PMID: 34687676 DOI: 10.1016/j.apmr.2021.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/10/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine the effects of neuromuscular electrical stimulation (NMES) or functional electrical stimulation (FES), or both, training on different body composition parameters in individuals with spinal cord injury. DATA SOURCES Three independent reviewers searched PubMed, Web of Science, Scopus, Cochrane Central, and Virtual Health Library until March 2020. STUDY SELECTION Studies were included if they applied NMES/FES on the lower limb muscles after spinal cord injury, reported stimulation parameters (frequency, pulse duration, and amplitude of current), and body composition parameters, which included muscle cross-sectional area (CSA), fat-free mass, lean mass (LM), fat mass, visceral adipose tissue, and intramuscular fat. DATA SYNTHESIS A total of 46 studies were included in the final analysis with a total sample size of 414 subjects. NMES loading exercise and FES cycling exercise were commonly used for training. Increases in muscle CSA ranged from 5.7-75%, with an average of 26% (n=33). Fifteen studies reported changes (both increase and decrease) in LM or fat-free mas ranged from -4% to 35%, with an average of less than 5%. Changes in fat mass (n=10) were modest. The effect on ectopic adipose tissue is inconclusive, with 2 studies showing an average reduction in intramuscular fat by 9.9%. Stimulation parameters ranged from 200-1000 μs for pulse duration, 2-60 Hz for the frequency, and 10-200 mA in amplitude. Finally, increase in weekly training volumes after NMES loading exercise resulted in a remarkable increase in percentage changes in LM or muscle CSA. CONCLUSIONS NMES/FES is an effective rehabilitation strategy for muscle hypertrophy and increasing LM. Weekly training volumes are associated with muscle hypertrophy after NMES loading exercise. Furthermore, positive muscle adaptations occur despite the applied stimulation parameters. Finally, the included studies reported wide range of stimulation parameters without reporting rationale for such selection.
Collapse
Affiliation(s)
| | - Alhadi M Jahan
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, Canada
| | - Vanesa Bochkezanian
- Department of Exercise and Health Sciences, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Kristin E Musselman
- KITE, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada; Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, Canada; Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Amr A Elsareih
- Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Ashraf S Gorgey
- Faculty of Physical Therapy, Cairo University, Giza, Egypt; Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, 1201 Broad Rock Boulevard, Richmond, VA; Virginia Commonwealth University, Department of Physical Medicine & Rehabilitation, Richmond, VA.
| |
Collapse
|
6
|
Fenton JM, King JA, Hoekstra SP, Valentino SE, Phillips SM, Goosey-Tolfrey VL. Protocols aiming to increase muscle mass in persons with motor complete spinal cord injury: a systematic review. Disabil Rehabil 2022; 45:1433-1443. [PMID: 35465798 DOI: 10.1080/09638288.2022.2063420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of this review was to compare all intervention modalities aimed at increasing skeletal muscle mass (SMM) in the paralysed limbs of persons with chronic (>1-year post-injury), motor complete spinal cord injury (SCI). MATERIALS AND METHODS A systematic review of EMBASE, MEDLINE, Scopus, and SPORTDiscus databases was conducted from inception until December 2021. Published intervention studies aimed to increase SMM (measured by magnetic resonance imaging, computed tomography, ultrasound, muscle biopsy, or lean soft tissue mass by dual X-ray absorptiometry) in the paralysed limbs of adults (>18 years) with SCI were included. RESULTS Fifty articles were included that, overall, demonstrated a high risk of bias. Studies were categorised into six groups: neuromuscular electrical stimulation (NMES) with and without external resistance, functional electrical stimulation cycling, walking- and standing-based interventions, pharmacological treatments, and studies that compared or combined intervention modalities. Resistance training (RT) using NMES on the quadriceps produced the largest and most consistent increases in SMM of all intervention modalities. CONCLUSIONS Current evidence suggests that clinical practise aiming to increase SMM in the paralysed limbs of persons with motor complete SCI should perform NMES-RT. However, more high-quality randomised control trials are needed to determine how training variables, such as exercise volume and intensity, can be optimised for increasing SMM. Implications for rehabilitationPersons with spinal cord injury (SCI) experience severe reductions in skeletal muscle mass (SMM) post-injury, which may exacerbate their risk of obesity and metabolic disease.Out of all exercise and non-exercise-based interventions, this systematic review shows that neuromuscular electrical stimulation-based resistance training demonstrates the most robust and consistent evidence for increasing skeletal muscle mass in the paralysed limbs of adults with motor complete spinal cord injury.The findings from this review can be used to inform evidence-based practise for exercise practitioners, as well as direct future research focused on increasing muscle mass in this population.
Collapse
Affiliation(s)
- Jordan M. Fenton
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | - James A. King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Sven P. Hoekstra
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | | | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Victoria L. Goosey-Tolfrey
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| |
Collapse
|
7
|
Richley Geigle P, Ogonowska-Slodownik A, Smith JE, James K, Scott WH. Metabolic and cardiopulmonary impact of aquatic exercise and nutritional guidance for four individuals with chronic motor incomplete spinal cord injury: a case series. Physiother Theory Pract 2022:1-10. [PMID: 35196186 DOI: 10.1080/09593985.2022.2042632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Persons living with chronic spinal cord injury (SCI) demonstrate an increased risk of cardiovascular diseases. Purpose The aim of this report was to assess the cardiopulmonary and metabolic impact of prescribed aquatic exercise in combination with dietary guidance for four individuals experiencing chronic SCI. CASE DESCRIPTION We measured peak oxygen consumption (peak VO2), resting energy expenditure (REE), weight, food logs, fasting glucose, insulin and glycated hemoglobin (HbA1C) in four men with incomplete SCI, aged 34 to 63 years. INTERVENTION The men received a group aquatic exercise program three times per week for 10 weeks, and a weekly individual nutritional consultation by phone. OUTCOMES Peak VO2 increased by 7.9% and 34.4% in participants #3 and #4 and decreased by 12% and 16.4% in #1 and #2. Glucose values decreased by 19.6% and 14.2% for #1 and #3, and increased by 9.3% for both #2 and #4. Body mass decreased by 9.9%, 3.0% and 5.7% for participants #1, #2 and #3, but demonstrated no change for participant #4. Dietary guidance and education produced positive changes, including reduced fat, carbohydrate, daily sugar, and average calorie intake. CONCLUSION Moderate exercise with weekly nutritional guidance appeared to positively impact body mass and dietary selections with varied metabolic and cardiopulmonary results.
Collapse
Affiliation(s)
| | - Anna Ogonowska-Slodownik
- Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | | | | | - William H Scott
- Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| |
Collapse
|
8
|
Figoni SF, Dolbow DR, Crawford EC, White ML, Pattanaik S. Does aerobic exercise benefit persons with tetraplegia from spinal cord injury? A systematic review. J Spinal Cord Med 2021; 44:690-703. [PMID: 32043944 PMCID: PMC8477928 DOI: 10.1080/10790268.2020.1722935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CONTEXT This review synthesizes the findings of previous research studies on the cardiovascular and metabolic benefits of aerobic exercise for individuals with tetraplegia secondary to spinal cord injury. They are often less active due to muscular paralysis, sensory loss, and sympathetic nervous system dysfunction that result from injury. Consequently, these persons are at higher risk for exercise intolerance and secondary health conditions. OBJECTIVE To evaluate the evidence concerning efficacy of aerobic exercise training for improving health and exercise performance in persons with tetraplegia from cervical injury. METHODS The search engines PubMed and Google Scholar were used to locate published research. The final 75 papers were selected on the basis of inclusion criteria. The studies were then rank-ordered using Physiotherapy Evidence Database. RESULTS Studies combining individuals with tetraplegia and paraplegia show that voluntary arm-crank training can increase mean peak power output by 33%. Functional electrical stimulation leg cycling was shown to induce higher peak cardiac output and stroke volume than arm-crank exercise. A range of peak oxygen uptake (VO2peak) values have been reported (0.57-1.32 L/min). Both VO2peak and cardiac output may be enhanced via increased muscle pump in the legs and venous return to the heart. Hybrid exercise (arm-crank and functional electrical stimulation leg cycling) can result in greater peak oxygen uptake and cardiovascular responses. CONCLUSION Evidence gathered from this systematic review of literature is inconclusive due to the lack of research focusing on those with tetraplegia. Higher power studies (level 1-3) are needed with the focus on those with tetraplegia.
Collapse
Affiliation(s)
- Stephen F Figoni
- Spinal Cord Injury/Disorders Healthcare Group (128), Tibor Rubin VA Medical Center, Long Beach, California, USA
| | - David R Dolbow
- Physical Therapy Program, William Carey University, Hattiesburg, Mississippi, USA
| | - Edwin C Crawford
- Physical Therapy Program, William Carey University, Hattiesburg, Mississippi, USA
| | - Margaret L White
- Physical Therapy Program, William Carey University, Hattiesburg, Mississippi, USA
| | - Sambit Pattanaik
- College of Osteopathic Medicine, William Carey University, Hattiesburg, Mississippi, USA
| |
Collapse
|
9
|
van der Scheer JW, Goosey-Tolfrey VL, Valentino SE, Davis GM, Ho CH. Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. J Neuroeng Rehabil 2021; 18:99. [PMID: 34118958 PMCID: PMC8196442 DOI: 10.1186/s12984-021-00882-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The objective of this review was to summarize and appraise evidence on functional electrical stimulation (FES) cycling exercise after spinal cord injury (SCI), in order to inform the development of evidence-based clinical practice guidelines. METHODS PubMed, the Cochrane Central Register of Controlled Trials, EMBASE, SPORTDiscus, and CINAHL were searched up to April 2021 to identify FES cycling exercise intervention studies including adults with SCI. In order to capture the widest array of evidence available, any outcome measure employed in such studies was considered eligible. Two independent reviewers conducted study eligibility screening, data extraction, and quality appraisal using Cochranes' Risk of Bias or Downs and Black tools. Each study was designated as a Level 1, 2, 3 or 4 study, dependent on study design and quality appraisal scores. The certainty of the evidence for each outcome was assessed using GRADE ratings ('High', 'Moderate', 'Low', or 'Very low'). RESULTS Ninety-two studies met the eligibility criteria, comprising 999 adults with SCI representing all age, sex, time since injury, lesion level and lesion completeness strata. For muscle health (e.g., muscle mass, fiber type composition), significant improvements were found in 3 out of 4 Level 1-2 studies, and 27 out of 32 Level 3-4 studies (GRADE rating: 'High'). Although lacking Level 1-2 studies, significant improvements were also found in nearly all of 35 Level 3-4 studies on power output and aerobic fitness (e.g., peak power and oxygen uptake during an FES cycling test) (GRADE ratings: 'Low'). CONCLUSION Current evidence indicates that FES cycling exercise improves lower-body muscle health of adults with SCI, and may increase power output and aerobic fitness. The evidence summarized and appraised in this review can inform the development of the first international, evidence-based clinical practice guidelines for the use of FES cycling exercise in clinical and community settings of adults with SCI. Registration review protocol: CRD42018108940 (PROSPERO).
Collapse
Affiliation(s)
- Jan W van der Scheer
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
- The Healthcare Improvement Studies (THIS) Institute, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Clifford Allbutt Building, Cambridge, CB2 OAH, UK
| | - Victoria L Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Sydney E Valentino
- Department of Kinesiology, McMaster University, Room IWC EG115, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | - Glen M Davis
- Discipline of Exercise and Sport Sciences, Faculty of Medicine and Health, Sydney School of Health Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Chester H Ho
- Division of Physical Medicine & Rehabilitation, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
10
|
Gonnelli F, Rejc E, Giovanelli N, Floreani M, Porcelli S, Harkema S, Willhite A, Stills S, Richardson T, Lazzer S. Effects of NMES pulse width and intensity on muscle mechanical output and oxygen extraction in able-bodied and paraplegic individuals. Eur J Appl Physiol 2021; 121:1653-1664. [PMID: 33656575 DOI: 10.1007/s00421-021-04647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/15/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Neuromuscular Electrical Stimulation (NMES) is commonly used in neuromuscular rehabilitation protocols, and its parameters selection substantially affects the characteristics of muscle activation. Here, we investigated the effects of short pulse width (200 µs) and higher intensity (short-high) NMES or long pulse width (1000 µs) and lower intensity (long-low) NMES on muscle mechanical output and fractional oxygen extraction. Muscle contractions were elicited with 100 Hz stimulation frequency, and the initial torque output was matched by adjusting stimulation intensity. METHODS Fourteen able-bodied and six spinal cord-injured (SCI) individuals participated in the study. The NMES protocol (75 isometric contractions, 1-s on-3-s off) targeting the knee extensors was performed with long-low or short-high NMES applied over the midline between anterior superior iliac spine and patella protrusion in two different days. Muscle work was estimated by torque-time integral, contractile properties by rate of torque development and half-relaxation time, and vastus lateralis fractional oxygen extraction was assessed by Near-Infrared Spectroscopy (NIRS). RESULTS Torque-time integral elicited by the two NMES paradigms was similar throughout the stimulation protocol, with differences ranging between 1.4% (p = 0.877; able-bodied, mid-part of the protocol) and 9.9% (p = 0.147; SCI, mid-part of the protocol). Contractile properties were also comparable in the two NMES paradigms. However, long-low NMES resulted in higher fractional oxygen extraction in able-bodied (+ 36%; p = 0.006). CONCLUSION Long-low and short-high NMES recruited quadriceps femoris motor units that demonstrated similar contractile and fatigability properties. However, long-low NMES conceivably resulted in the preferential recruitment of vastus lateralis muscle fibers as detected by NIRS.
Collapse
Affiliation(s)
- Federica Gonnelli
- Department of Medicine, University of Udine, Udine, Italy.,School of Sport Sciences, University of Udine, Udine, Italy.,Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY, 40202, USA
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY, 40202, USA. .,Department of Neurosurgery, University of Louisville, Louisville, KY, USA.
| | - Nicola Giovanelli
- Department of Medicine, University of Udine, Udine, Italy.,School of Sport Sciences, University of Udine, Udine, Italy
| | - Mirco Floreani
- Department of Medicine, University of Udine, Udine, Italy.,School of Sport Sciences, University of Udine, Udine, Italy
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Susan Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY, 40202, USA.,Department of Neurosurgery, University of Louisville, Louisville, KY, USA.,Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Andrea Willhite
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY, 40202, USA
| | - Sean Stills
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY, 40202, USA
| | - Tine Richardson
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY, 40202, USA
| | - Stefano Lazzer
- Department of Medicine, University of Udine, Udine, Italy.,School of Sport Sciences, University of Udine, Udine, Italy
| |
Collapse
|
11
|
Arpin DJ, Ugiliweneza B, Forrest G, Harkema SJ, Rejc E. Optimizing Neuromuscular Electrical Stimulation Pulse Width and Amplitude to Promote Central Activation in Individuals With Severe Spinal Cord Injury. Front Physiol 2019; 10:1310. [PMID: 31681016 PMCID: PMC6813182 DOI: 10.3389/fphys.2019.01310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) is one of the most effective treatments for counteracting the deleterious skeletal muscle adaptations that occur after spinal cord injury (SCI). Additionally, previous findings suggest that NMES can activate motor units via both peripheral and central mechanisms; however, this NMES-promoted central activation is not well understood. In this study, we aimed at investigating the effects of NMES on central activation in 10 individuals with motor complete SCI, focusing on understanding how to optimize NMES pulse width and amplitude for promoting central activation in this population. To this end, we used NMES to generate isometric contractions of the knee extensors and ankle plantarflexors while electromyographic (EMG) activity was recorded from the vastus lateralis and gastrocnemius medialis, respectively. We used EMG activity that persisted after the termination of NMES delivery (post-NMES) as a neurophysiological marker to assess central activation and explored differences in post-NMES EMG activity promoted by 500 and 1,000 μs pulse width NMES. Additionally, we explored the relationships between post-NMES EMG amplitude, torque output, and stimulation amplitude. Our results show that the higher pulse width (1,000 μs) demonstrated a greater effect on central activation as quantified by more frequent occurrences of post-NMES EMG activity (p = 0.002) and a 3.551 μV higher EMG amplitude (p = 0.003) when controlling for the torque output generated by 500 and 1,000 μs pulse width NMES. Importantly, we also found that the interplay among central activation, stimulation amplitude, and muscle torque output differs across SCI individuals, conceivably because of the individual-specific characteristics of the cord lesion and following plasticity of the spinal circuitry. These results suggest that NMES can be optimized to promote central activation, which may lead to novel opportunities for motor function recovery after SCI.
Collapse
Affiliation(s)
- David J Arpin
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Gail Forrest
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Frazier Rehab Institute, KentuckyOne Health, Louisville, KY, United States
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| |
Collapse
|
12
|
Rashnavadi T, Macnab A, Cheung A, Shadgan A, Kwon BK, Shadgan B. Monitoring spinal cord hemodynamics and tissue oxygenation: a review of the literature with special focus on the near-infrared spectroscopy technique. Spinal Cord 2019; 57:617-625. [PMID: 31164734 DOI: 10.1038/s41393-019-0304-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/05/2023]
Abstract
STUDY DESIGN Review. OBJECTIVES Clinical studies have shown that the hemodynamic management of patients following acute spinal cord injury (SCI) is an important aspect of their treatment for maintaining spinal cord (SC) perfusion and minimizing ischemic secondary injury to the SC. While this highlights the importance of ensuring adequate perfusion and oxygenation to the injured cord, a method for the real-time monitoring of these hemodynamic measures within the SC is lacking. The purpose of this review is to discuss current and potential methods for SC hemodynamic monitoring with special focus on applications using near-infrared spectroscopy (NIRS). METHODS A literature search using the PubMed database. All peer-reviewed articles on NIRS monitoring of SC published from inception to May 2019 were reviewed. RESULTS Among 125 papers related to SC hemodynamics monitoring, 26 focused on direct/indirect NIRS monitoring of the SC. DISCUSSION Current options for continuous, non-invasive, and real-time monitoring of SC hemodynamics are challenging and limited in scope. As a relatively new technique, NIRS has been successfully used for monitoring human cerebral hemodynamics, and has shown promising results in intraoperative assessment of SC hemodynamics in both human and animal models. Although utilizing NIRS to monitor the SC has been validated, applying NIRS clinically following SCI requires further development and investigation. CONCLUSIONS NIRS is a promising non-invasive technique with the potential to provide real-time monitoring of relevant parameters in the SC. Currently, in its first developmental stages, further clinical and experimental studies are mandatory to ensure the validity and safety of NIRS techniques.
Collapse
Affiliation(s)
- Tahereh Rashnavadi
- The University of British Columbia, School of Biomedical Engineering, Vancouver, BC, V6T 1Z1, Canada
| | - Andrew Macnab
- International Collaborations on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, Vancouver, Canada
| | - Amanda Cheung
- International Collaborations on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, Vancouver, Canada
| | - Armita Shadgan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Brian K Kwon
- International Collaborations on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, Vancouver, Canada.,Department of Orthopaedics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Babak Shadgan
- The University of British Columbia, School of Biomedical Engineering, Vancouver, BC, V6T 1Z1, Canada. .,International Collaborations on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, Vancouver, Canada. .,Department of Orthopaedics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
13
|
Gorman PH, Scott W, VanHiel L, Tansey KE, Sweatman WM, Geigle PR. Comparison of peak oxygen consumption response to aquatic and robotic therapy in individuals with chronic motor incomplete spinal cord injury: a randomized controlled trial. Spinal Cord 2019; 57:471-481. [DOI: 10.1038/s41393-019-0239-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 01/17/2023]
|
14
|
Arpin DJ, Forrest G, Harkema SJ, Rejc E. Submaximal Marker for Investigating Peak Muscle Torque Using Neuromuscular Electrical Stimulation after Paralysis. J Neurotrauma 2018; 36:930-936. [PMID: 30226407 DOI: 10.1089/neu.2018.5848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spinal cord injury (SCI) results in deleterious skeletal muscle adaptations, such as relevant atrophy and loss of force. In particular, the relevant loss of lower-limb force-generating capacity may limit functional mobility even if neuronal control was sufficient. Currently, methods of assessing maximal force-generating capacity using neuromuscular electrical stimulation (NMES) are limited in individuals who cannot tolerate higher stimulation amplitudes, such as those with residual sensation and those at risk of fracture. In this study, we examined the relationship between NMES amplitude and muscle torque exerted (recruitment curve) in order to determine whether maximal torque output can be characterized by a submaximal marker. Recruitment curves for knee extensors, knee flexors, and ankle plantarflexors were recorded from 30 individuals with motor complete SCI. NMES was delivered starting with an amplitude of 5 mA, and increasing by 5 mA for every subsequent stimulation until either the participant requested to stop the stimulation or the maximum stimulation amplitude (140 mA) was reached. Significant correlations between peak slope of the recruitment curve and peak torque for all muscle groups were found (knee extensors, r = 0.75; p < 0.0001; knee flexors, r = 0.68; p < 0.0001; ankle plantarflexors, r = 0.91; p < 0.0001), indicating that muscles that show greater peak slope of the recruitment curve tend to generate a greater peak torque. This suggests that peak slope, which was achieved at an average stimulation intensity (55.0 mA) that was 43% smaller than that corresponding to peak torque (97.4 mA), may be used as a submaximal marker for characterizing maximal torque output in individuals with SCI.
Collapse
Affiliation(s)
- David J Arpin
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Gail Forrest
- 3 Human Performance and Engineering Research, Kessler Foundation, West Orange, New Jersey.,4 Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Susan J Harkema
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,5 Frazier Rehab Institute, Kentucky One Health, Louisville, Kentucky
| | - Enrico Rejc
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| |
Collapse
|
15
|
Taylor MJ, Fornusek C, Ruys AJ. The duty cycle in Functional Electrical Stimulation research. Part II: Duty cycle multiplicity and domain reporting. Eur J Transl Myol 2018; 28:7733. [PMID: 30662696 PMCID: PMC6317134 DOI: 10.4081/ejtm.2018.7733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
In part I of this review, we introduced the duty cycle as a fundamental parameter in controlling the effect of electrical stimulation pulse trains on muscle structural and functional properties with special emphasis on fatigue. Following on from a survey of the literature, we discuss here the relative ability of intermittent and continuous stimulation to fatigue muscle. In addition, pertinent literature is explored on a more deeper level, highlighting contentions regarding the duty cycle across studies. In response to literature inconsistencies, we propose frameworks upon which the duty cycle parameter may be specified. We present the idea of domain reporting for the duty cycle, and illustrate with practical examples. In addition we dig further into the literature and present a set of notations that have been used by different researchers to report the duty cycle. We also propose the idea of the duty cycle multiple, which together with domain reporting, will help researchers understand more precisely duty cycles of electrical stimulation. As a case study, we also show how the duty cycle has been looked at by researchers in the context of pressure sore attenuation in patients. Together with part I, it is hoped that the frameworks suggested provide a complete picture of how duty cycle has been discussed across the literature, and gives researchers a more trans-theoretical basis upon which they may report the duty cycle in their studies. This may also lead to a more precise specification of electrical stimulation protocols used in patients.
Collapse
Affiliation(s)
- Matthew J. Taylor
- Faculty of Engineering and IT, University of Sydney, Camperdown, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, Australia
| | - Ché Fornusek
- Faculty of Medicine and Health, University of Sydney, Lidcombe, Australia
| | - Andrew J. Ruys
- Faculty of Engineering and IT, University of Sydney, Camperdown, Australia
| |
Collapse
|
16
|
Hasnan N, Mohamad Saadon NS, Hamzaid NA, Teoh MXH, Ahmadi S, Davis GM. Muscle oxygenation during hybrid arm and functional electrical stimulation-evoked leg cycling after spinal cord injury. Medicine (Baltimore) 2018; 97:e12922. [PMID: 30412097 PMCID: PMC6221724 DOI: 10.1097/md.0000000000012922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study compared muscle oxygenation (StO2) during arm cranking (ACE), functional electrical stimulation-evoked leg cycling (FES-LCE), and hybrid (ACE+FES-LCE) exercise in spinal cord injury individuals. Eight subjects with C7-T12 lesions performed exercises at 3 submaximal intensities. StO2 was measured during rest and exercise at 40%, 60%, and 80% of subjects' oxygen uptake (VO2) peak using near-infrared spectroscopy. StO2 of ACE showed a decrease whereas in ACE+FES-LCE, the arm muscles demonstrated increasing StO2 from rest in all of VO2) peak respectively. StO2 of FES-LCE displayed a decrease at 40% VO2 peak and steady increase for 60% and 80%, whereas ACE+FES-LCE revealed a steady increase from rest at all VO2 peak. ACE+FES-LCE elicited greater StO2 in both limbs which suggested that during this exercise, upper- and lower-limb muscles have higher blood flow and improved oxygenation compared to ACE or FES-LCE performed alone.
Collapse
Affiliation(s)
- Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine
| | | | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Mira Xiao-Hui Teoh
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Sirous Ahmadi
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sport Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| | - Glen M. Davis
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sport Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
17
|
Yarar-Fisher C, Polston KFL, Eraslan M, Henley KY, Kinikli GI, Bickel CS, Windham ST, McLain AB, Oster RA, Bamman MM. Paralytic and nonparalytic muscle adaptations to exercise training versus high-protein diet in individuals with long-standing spinal cord injury. J Appl Physiol (1985) 2018; 125:64-72. [PMID: 29494292 PMCID: PMC6086973 DOI: 10.1152/japplphysiol.01029.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/31/2018] [Accepted: 02/28/2018] [Indexed: 02/08/2023] Open
Abstract
This study compares the effects of an 8-wk isocaloric high-protein (HP) diet versus a combination exercise (Comb-Ex) regimen on paralytic vastus lateralis (VL) and nonparalytic deltoid muscle in individuals with long-standing spinal cord injury (SCI). Fiber-type distribution, cross-sectional area (CSA), levels of translation initiation signaling proteins (Erk-1/2, Akt, p70S6K1, 4EBP1, RPS6, and FAK), and lean thigh mass were analyzed at baseline and after the 8-wk interventions. A total of 11 participants (C5-T12 levels, 21.8 ± 6.3 yr postinjury; 6 Comb-Ex and 5 HP diet) completed the study. Comb-Ex training occurred 3 days/wk and consisted of upper body resistance training (RT) in addition to neuromuscular electrical stimulation (NMES)-induced-RT for paralytic VL muscle. Strength training was combined with high-intensity arm-cranking exercises (1-min intervals at 85-90%, V̇o2peak) for improving cardiovascular endurance. For the HP diet intervention, protein and fat each comprised 30%, and carbohydrate comprised 40% of total energy. Clinical tests and muscle biopsies were performed 24 h before and after the last exercise or diet session. The Comb-Ex intervention increased Type IIa myofiber distribution and CSA in VL muscle and Type I and IIa myofiber CSA in deltoid muscle. In addition, Comb-Ex increased lean thigh mass, V̇o2peak, and upper body strength ( P < 0.05). These results suggest that exercise training is required to promote favorable changes in paralytic and nonparalytic muscles in individuals with long-standing SCI, and adequate dietary protein consumption alone may not be sufficient to ameliorate debilitating effects of paralysis. NEW & NOTEWORTHY This study is the first to directly compare the effects of an isocaloric high-protein diet and combination exercise training on clinical and molecular changes in paralytic and nonparalytic muscles of individuals with long-standing spinal cord injury. Our results demonstrated that muscle growth and fiber-type alterations can best be achieved when the paralyzed muscle is sufficiently loaded via neuromuscular electrical stimulation-induced resistance training.
Collapse
Affiliation(s)
- Ceren Yarar-Fisher
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Keith F L Polston
- University of Tennessee Health Science Center College of Medicine , Memphis, Tennessee
| | - Mualla Eraslan
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kathryn Y Henley
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Gizem I Kinikli
- Physical Therapy and Rehabilitation, Hacettepe University , Ankara , Turkey
| | - C Scott Bickel
- Physical Therapy and Rehabilitation, Samford University , Birmingham, Alabama
| | - Samuel T Windham
- Department of Surgery, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amie B McLain
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert A Oster
- Department of Medicine/Division of Preventive Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Geriatric Research, Education, and Clinical Center, Birmingham VA Medical Center , Birmingham, Alabama
| |
Collapse
|
18
|
Deley G, Denuziller J, Casillas JM, Babault N. One year of training with FES has impressive beneficial effects in a 36-year-old woman with spinal cord injury. J Spinal Cord Med 2017; 40:107-112. [PMID: 26832125 PMCID: PMC5376139 DOI: 10.1080/10790268.2015.1117192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
CONTEXT Reductions of muscular and cardiorespiratory functions are often observed in people with spinal cord injury (SCI) and several studies demonstrated the benefits of aerobic and strengthening exercise training for this population. Functional Electrical Stimulation (FES) of paralyzed muscles has been proposed as a strategy to assist patients in executing functional movement but its utilization during long durations has never been investigated. The purpose of the present study was to assess the effects of a one-year training program with FES (strengthening and rowing) in one subject with SCI. Evoked torque, quadriceps muscle thickness, aerobic exercise capacity and bone mineral density were tested. FINDINGS All parameters increased after training: average evoked torque +151%, quadriceps muscle thickness +136%, thigh circumference +14%, bone density +19%, maximal oxygen uptake +76% and oxygen uptake at ventilatory threshold +111%. CONCLUSION These impressive improvements demonstrate that FES training offers several interesting clinical benefits in a patient with SCI.
Collapse
Affiliation(s)
- Gaëlle Deley
- Centre d'Expertise de la Performance Gilles Cometti, Faculté des Sciences du Sport, Dijon, France,INSERM – U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, BP 27877, 21078 Dijon Cedex, France,Correspondence to: Gaëlle Deley, INSERM – U1093 Coginition, Action et Plasticité Sensorimotrice, Université de Bourgogne, BP 27877, 21078 Dijon Cedex, France.
| | - Jérémy Denuziller
- Centre d'Expertise de la Performance Gilles Cometti, Faculté des Sciences du Sport, Dijon, France,INSERM – U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, BP 27877, 21078 Dijon Cedex, France
| | - Jean-Marie Casillas
- INSERM – U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, BP 27877, 21078 Dijon Cedex, France
| | - Nicolas Babault
- Centre d'Expertise de la Performance Gilles Cometti, Faculté des Sciences du Sport, Dijon, France,INSERM – U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, BP 27877, 21078 Dijon Cedex, France
| |
Collapse
|
19
|
Bersch I, Tesini S, Bersch U, Frotzler A. Functional Electrical Stimulation in Spinal Cord Injury: Clinical Evidence Versus Daily Practice. Artif Organs 2016; 39:849-54. [PMID: 26471135 DOI: 10.1111/aor.12618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Functional electrical stimulation (FES) has clinical evidence in the rehabilitation of patients with spinal cord injury as indicated by several studies. Both inpatients and outpatients benefit from the therapeutic effect of the FES. The application areas are multifaceted and can be customized on the need for patients. This is represented by the individuality of the programmability of the stimulators and the variety of stimulation schedules that are based on the knowledge about the effects of FES on structural and functional level. Nevertheless, looking into daily clinical practice, the use of FES is rather poor. Expenditure of time, complexity of technical equipment, and compliance and acceptance of therapists and patients should be taken into account as limiting factors.
Collapse
Affiliation(s)
- Ines Bersch
- Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| | | | - Ulf Bersch
- Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| | | |
Collapse
|
20
|
Bersch I, Fridén J. Role of Functional Electrical Stimulation in Tetraplegia Hand Surgery. Arch Phys Med Rehabil 2016; 97:S154-9. [DOI: 10.1016/j.apmr.2016.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 12/19/2015] [Accepted: 01/01/2016] [Indexed: 11/17/2022]
|
21
|
De Brandt J, Spruit MA, Derave W, Hansen D, Vanfleteren LEGW, Burtin C. Changes in structural and metabolic muscle characteristics following exercise-based interventions in patients with COPD: a systematic review. Expert Rev Respir Med 2016; 10:521-45. [PMID: 26901573 DOI: 10.1586/17476348.2016.1157472] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Patients with COPD suffer from lower-limb muscle dysfunction characterized by lower muscle oxidative capacity and muscle mass. Exercise-based training is expected to attenuate lower-limb intramuscular characteristics, but a detailed systematic approach to review the available evidence has not been performed yet. PUBMED and PEDro databases were searched. Twenty-five studies that implemented an exercise-based training program (aerobic and/or resistance training, high intensity interval training, electrical or magnetic stimulation) and reported muscle biopsy data of patients with COPD were critically appraised. The coverage of results includes changes in muscle structure, muscle protein turnover regulation, mitochondrial enzyme activity, oxidative and nitrosative stress, and inflammation after exercise-based training interventions. Study design and training modalities varied among studies, which partly explains the observed heterogeneous response in muscle characteristics. Gaps in the current knowledge are identified and recommendations for future research are made to enhance our knowledge on exercise training effects in patients with COPD.
Collapse
Affiliation(s)
- Jana De Brandt
- a REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences , Hasselt University , Diepenbeek , Belgium
| | - Martijn A Spruit
- a REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences , Hasselt University , Diepenbeek , Belgium.,b Department of Research and Education , CIRO, Center of Expertise for Chronic Organ Failure , Horn , The Netherlands
| | - Wim Derave
- c Department of Movement and Sports Sciences , Ghent University , Ghent , Belgium
| | - Dominique Hansen
- a REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences , Hasselt University , Diepenbeek , Belgium
| | - Lowie E G W Vanfleteren
- b Department of Research and Education , CIRO, Center of Expertise for Chronic Organ Failure , Horn , The Netherlands
| | - Chris Burtin
- a REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences , Hasselt University , Diepenbeek , Belgium
| |
Collapse
|
22
|
Sakudo A. Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clin Chim Acta 2016; 455:181-8. [PMID: 26877058 DOI: 10.1016/j.cca.2016.02.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/29/2023]
Abstract
The near-infrared radiation (NIR) window, also known as the "optical window" or "therapeutic window", is the range of wavelengths that has the maximum depth of penetration in tissue. Indeed, because NIR is minimally absorbed by water and hemoglobin, spectra readings can be easily collected from the body surface. Recent reports have shown the potential of NIR spectroscopy in various medical applications, including functional analysis of the brain and other tissues, as well as an analytical tool for diagnosing diseases. The broad applicability of NIR spectroscopy facilitates the diagnosis and therapy of diseases as well as elucidating their pathophysiology. This review introduces recent advances and describes new studies in NIR to demonstrate potential clinical applications of NIR spectroscopy.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| |
Collapse
|
23
|
Dolbow DR, Gorgey AS, Recio AC, Stiens SA, Curry AC, Sadowsky CL, Gater DR, Martin R, McDonald JW. Activity-Based Restorative Therapies after Spinal Cord Injury: Inter-institutional conceptions and perceptions. Aging Dis 2015; 6:254-61. [PMID: 26236547 DOI: 10.14336/ad.2014.1105] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/12/2014] [Accepted: 11/05/2014] [Indexed: 11/01/2022] Open
Abstract
This manuscript is a review of the theoretical and clinical concepts provided during an inter-institutional training program on Activity-Based Restorative Therapies (ABRT) and the perceptions of those in attendance. ABRT is a relatively recent high volume and intensity approach toward the restoration of neurological deficits and decreasing the risk of secondary conditions associated with paralysis after spinal cord injury (SCI). ABRT is guided by the principle of neuroplasticity and the belief that even those with chronic SCI can benefit from repeated activation of the spinal cord pathways located both above and below the level of injury. ABRT can be defined as repetitive-task specific training using weight-bearing and external facilitation of neuromuscular activation. The five key components of ABRT are weight-bearing activities, functional electrical stimulation, task-specific practice, massed practice and locomotor training which includes body weight supported treadmill walking and water treadmill training. The various components of ABRT have been shown to improve functional mobility, and reverse negative body composition changes after SCI leading to the reduction of cardiovascular and other metabolic disease risk factors. The consensus of those who received the ABRT training was that ABRT has much potential for enhancement of recovery of those with SCI. Although various institutions have their own strengths and challenges, each institution was able to initiate a modified ABRT program.
Collapse
Affiliation(s)
- David R Dolbow
- University of Southern Mississippi, College of Health, Human Performance and Recreation, Hattiesburg, MS 39406, USA
| | - Ashraf S Gorgey
- Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury and Disorders Center, Richmond, VA 23224, USA. ; Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Albert C Recio
- Kennedy Krieger Institute, International Center for Spinal Cord Injury, Baltimore MD 21205, USA. ; Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | | | - Amanda C Curry
- VA Boston Healthcare System, Physical Medicine and Rehabilitation, West Roxbury, MA 02132, USA
| | - Cristina L Sadowsky
- Kennedy Krieger Institute, International Center for Spinal Cord Injury, Baltimore MD 21205, USA. ; Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - David R Gater
- Penn State Hershey Medical Center and Health System, Hershey, PA 17033, USA. ; Penn State College of Medicine, Hershey, PA 17033
| | - Rebecca Martin
- Kennedy Krieger Institute, International Center for Spinal Cord Injury, Baltimore MD 21205, USA
| | - John W McDonald
- Kennedy Krieger Institute, International Center for Spinal Cord Injury, Baltimore MD 21205, USA. ; Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| |
Collapse
|
24
|
Functional electrical stimulation: cardiorespiratory adaptations and applications for training in paraplegia. Sports Med 2015; 45:71-82. [PMID: 25205000 DOI: 10.1007/s40279-014-0250-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Regular exercise can be broadly beneficial to health and quality of life in humans with spinal cord injury (SCI). However, exercises must meet certain criteria, such as the intensity and muscle mass involved, to induce significant benefits. SCI patients can have difficulty achieving these exercise requirements since the paralysed muscles cannot contribute to overall oxygen consumption. One solution is functional electrical stimulation (FES) and, more importantly, hybrid training that combines volitional arm and electrically controlled contractions of the lower limb muscles. However, it might be rather complicated for therapists to use FES because of the wide variety of protocols that can be employed, such as stimulation parameters or movements induced. Moreover, although the short-term physiological and psychological responses during different types of FES exercises have been extensively reported, there are fewer data regarding the long-term effects of FES. Therefore, the purpose of this brief review is to provide a critical appraisal and synthesis of the literature on the use of FES for exercise in paraplegic individuals. After a short introduction underlying the importance of exercise for SCI patients, the main applications and effects of FES are reviewed and discussed. Major findings reveal an increased physiological demand during FES hybrid exercises as compared with arms only exercises. In addition, when repeated within a training period, FES exercises showed beneficial effects on muscle characteristics, force output, exercise capacity, bone mineral density and cardiovascular parameters. In conclusion, there appears to be promising evidence of beneficial effects of FES training, and particularly FES hybrid training, for paraplegic individuals.
Collapse
|
25
|
Szecsi J, Straube A, Fornusek C. A biomechanical cause of low power production during FES cycling of subjects with SCI. J Neuroeng Rehabil 2014; 11:123. [PMID: 25128292 PMCID: PMC4143553 DOI: 10.1186/1743-0003-11-123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 08/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The goal of Functional Electrical Stimulation (FES) cycling is to provide the health benefits of exercise to persons with paralysis. To achieve the greatest health advantages, patients should produce the highest possible mechanical power. However, the mechanical power output (PO) produced during FES cycling is very low. Unfavorable biomechanics is one of the important factors reducing PO. The purpose of this study was to investigate the primary joints and muscles responsible for power generation and the role of antagonistic co-contraction in FES cycling. METHODS Sixteen subjects with complete spinal cord injury (SCI) pedaled a stationary recumbent FES tricycle at 60 rpm and a workload of 15 W per leg, while pedal forces and crank angle were recorded. The joint muscle moments, power and work were calculated using inverse dynamics equations. RESULTS Two characteristic patterns were found; in 12 subjects most work was generated by the knee extensors in the propulsion phase (83% of total work), while in 4 subjects most work was shared between by the knee extensors (42%) and flexors (44%), respectively during propulsive and recovery phases. Hip extensors produced only low net work (12 & 7%). For both patterns, extra concentric work was necessary to overcome considerable eccentric work (-82 & -96%). CONCLUSIONS The primary power sources were the knee extensors of the quadriceps and the knee flexors of the hamstrings. The antagonistic activity was generally low in subjects with SCI because of the weakness of the hamstrings (compared to quadriceps) and the superficial and insufficient hamstring mass activation with FES.
Collapse
Affiliation(s)
- Johann Szecsi
- Department of Neurology, Center for Sensorimotor Research, Ludwig-Maximilians University, Marchioninistrasse 23, Munich 81377, Germany.
| | | | | |
Collapse
|
26
|
Arija-Blázquez A, Ceruelo-Abajo S, Díaz-Merino MS, Godino-Durán JA, Martínez-Dhier L, Martin JLR, Florensa-Vila J. Effects of electromyostimulation on muscle and bone in men with acute traumatic spinal cord injury: A randomized clinical trial. J Spinal Cord Med 2014; 37:299-309. [PMID: 24090427 PMCID: PMC4064579 DOI: 10.1179/2045772313y.0000000142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To study the effect of 14 weeks of electromyostimulation (EMS) training (47 minutes/day, 5 days/week) on both muscle and bone loss prevention in persons with recent, complete spinal cord injury (SCI). DESIGN Prospective, experimental, controlled, single-blind randomized trial with external blind evaluation by third parties. METHODS Eight men with recent SCI (8 weeks from injury; ASIA Impairment Scale (AIS) "A") were randomized into the intervention or the control groups. Cross-sectional area of the quadriceps femoris (QF) muscle was quantified using magnetic resonance imaging. Bone mineral density changes were assessed with a dual-energy X-ray absorptiometry. Several bone biomarkers (i.e. total testosterone, cortisol, growth hormone, insulin-growth factor I, osteocalcin, serum type I collagen C-telopeptide), lipid, and lipoprotein profiles were quantified. A standard oral glucose tolerance test was performed before and after the 14-week training. All analyses were conducted at the beginning and after the intervention. RESULTS The intervention group showed a significant increase in QF muscle size when compared with the control group. Bone losses were similar in both groups. Basal levels of bone biomarkers did not change over time. Changes in lipid and lipoprotein were similar in both groups. Glucose and insulin peaks moved forward after the training in the intervention group. CONCLUSIONS This study indicates that skeletal muscle of patients with complete SCI retains the ability to grow in response to a longitudinal EMS training, while bone does not respond to similar external stimulus. Increases in muscle mass might have induced improvements in whole body insulin-induced glucose uptake.
Collapse
Affiliation(s)
- Alfredo Arija-Blázquez
- GENUD Toledo Research Group, University of Castilla-La Mancha, Toledo, Spain,Correspondence to: Alfredo Arija-Blázquez, GENUD Toledo Research Group, University of Castilla-La Mancha, Campus Tecnológico Fábrica de Armas, Avda. Carlos III, s/n, 45071, Toledo, Spain.
| | | | | | | | | | - José L. R. Martin
- Centro de Excelencia de Investigación en Salud y Ciencias de la Vida, Escuela de Doctorado e Investigación, Universidad Europea de Madrid, Spain
| | | |
Collapse
|
27
|
Stimulation of Shank Muscles During Functional Electrical Stimulation Cycling Increases Ankle Excursion in Individuals With Spinal Cord Injury. Arch Phys Med Rehabil 2012; 93:1930-6. [PMID: 22634232 DOI: 10.1016/j.apmr.2012.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/06/2012] [Accepted: 05/14/2012] [Indexed: 11/23/2022]
|
28
|
Fornusek C, Davis GM, Russold MF. Pilot study of the effect of low-cadence functional electrical stimulation cycling after spinal cord injury on thigh girth and strength. Arch Phys Med Rehabil 2012; 94:990-3. [PMID: 23123504 DOI: 10.1016/j.apmr.2012.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/06/2012] [Accepted: 10/16/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the long-term effects of functional electrical stimulation (FES)-evoked cycle training cadence on leg muscle hypertrophy and electrically evoked strength. DESIGN Open intervention study. SETTING Laboratory setting. PARTICIPANTS Untrained individuals with chronic spinal cord injury (N=8). INTERVENTIONS Six weeks (3d/wk) of training on an isokinetic FES cycle ergometer. For each subject, 1 leg was randomly allocated to cycling at 10 revolutions per minute (rpm) (LOW) for 30min/d, and the other cycling at 50rpm (HIGH) for 30min/d. MAIN OUTCOME MEASURES Pre- and posttraining measurements of lower limb circumference were performed at the distal and middle position of each thigh. Electrically evoked quadriceps muscle torque during an isometric contraction was also assessed. RESULTS Six weeks of FES cycle training significantly increased thigh girth in both LOW and HIGH groups. At midthigh, girth increases induced by LOW (6.6%±1.2%) were significantly greater than those by HIGH (3.6%±0.8%). LOW also produced greater gains in electrically evoked isometric torque than HIGH after training. CONCLUSIONS These results suggest that lower pedaling cadences evoke greater muscle hypertrophy and electrically stimulated muscle strength compared with higher cadences.
Collapse
Affiliation(s)
- Ché Fornusek
- Clinical Exercise and Rehabilitation Unit, Exercise Health and Performance Research Group, The University of Sydney, Sydney, Australia.
| | | | | |
Collapse
|
29
|
Galea MP. Physical modalities in the treatment of neurological dysfunction. Clin Neurol Neurosurg 2012; 114:483-8. [DOI: 10.1016/j.clineuro.2012.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
|
30
|
Arija-Blázquez A, Ceruelo-Abajo S, Díaz-Merino MS, Godino-Durán JA, Martínez-Dhier L, Florensa-Vila J. Time-course response in serum markers of bone turnover to a single-bout of electrical stimulation in patients with recent spinal cord injury. Eur J Appl Physiol 2012; 113:89-97. [PMID: 22576416 DOI: 10.1007/s00421-012-2416-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/30/2012] [Indexed: 12/14/2022]
Abstract
The objective of the present repeat-measures study was to determine whether plasma serum levels of testosterone, cortisol, osteocalcin or type I collagen C-telopeptide (CT) are acutely affected following an electro-myostimulation (EMS) bout, and their relation to bone mineral density and muscle mass. Ten men with recent (8 weeks) thoracic spinal cord injury (SCI) (ASIA A) and 10 age-matched able-bodied (AB) men performed one EMS bout on the quadriceps femoris muscle. Blood samples were drawn at basal condition, immediately after EMS, and 15 min, 30 min, 24 h and 48 h post-EMS. Muscle cross-sectional area was measured by magnetic resonance imaging. Bone mineral density (BMD) was determined by dual-energy X-ray absorptiometry. In the SCI group, a significant decrease in testosterone, cortisol and CT together with a significant increase in testosterone/cortisol ratio and osteocalcin/CT ratio was observed after EMS. For the AB subjects, only testosterone and CT decreased significantly following EMS. Muscle size was only related to testosterone/cortisol ratio in the SCI sample (R = 0.659, p < 0.05), whereas BMD did not show any relation to any biomarker. Acute EMS in recent spinal cord injured men seems to induce positive effects on bone turnover biomarkers, and anabolic and catabolic hormones.
Collapse
|
31
|
Hakansson NA, Hull ML. Can the efficacy of electrically stimulated pedaling using a commercially available ergometer BE improved by minimizing the muscle stress-time integral? Muscle Nerve 2012; 45:393-402. [PMID: 22334174 DOI: 10.1002/mus.22302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION The cardiorespiratory and muscular strength benefits of functional electrical stimulation (FES) pedaling for spinal cord injury (SCI) subjects are limited because the endurance of electrically stimulated muscle is low. METHODS We tested new electrical stimulation timing patterns (Stim3, designed using a forward dynamic simulation to minimize the muscle stress-time integral) to determine whether SCI subjects could increase work and metabolic responses when pedaling a commercial FES ergometer. Work, rate of oxygen uptake (VO(2)), and blood lactate data were taken from 11 subjects (injury level T4-T12) on repeated trials. RESULTS Subjects performed 11% more work pedaling with Stim3 than with existing stimulation patterns (StimErg) (P = 0.043). Average (VO(2)) and blood lactate concentrations were not significantly different between Stim3 (442 ml/min, 5.9 mmol/L) and StimErg (417 ml/min, 5.9 mmol/L). CONCLUSION The increased mechanical work performed with Stim3 supports the use of patterns that minimize the muscle stress-time integral to prolong FES pedaling.
Collapse
Affiliation(s)
- Nils A Hakansson
- Mechanical Engineering Department, University of Delaware, 126 Spencer Laboratory, Newark, Delaware 19711, USA.
| | | |
Collapse
|
32
|
The effects of exercise training on physical capacity, strength, body composition and functional performance among adults with spinal cord injury: a systematic review. Spinal Cord 2011; 49:1103-27. [DOI: 10.1038/sc.2011.62] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Dudley-Javoroski S, Littmann AE, Chang SH, McHenry CL, Shields RK. Enhancing muscle force and femur compressive loads via feedback-controlled stimulation of paralyzed quadriceps in humans. Arch Phys Med Rehabil 2011; 92:242-9. [PMID: 21272720 DOI: 10.1016/j.apmr.2010.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To compare paralyzed quadriceps force properties and femur compressive loads in an upright functional task during conventional constant-frequency stimulation and force feedback-modulated stimulation. DESIGN Crossover trial. SETTING Research laboratory. PARTICIPANTS Subjects (N=13; 12 men, 1 woman) with motor-complete spinal cord injury. INTERVENTIONS Subjects performed 2 bouts of 60 isometric quadriceps contractions while supported in a standing frame. On separate days, subjects received constant-frequency stimulation at 20Hz (CONST) or frequency-modulated stimulation triggered by a change in force (FDBCK). During FDBCK, a computer algorithm responded to each 10% reduction in force with a 20% increase in stimulation frequency. MAIN OUTCOME MEASURES A biomechanical model was used to derive compressive loads on the femur, with a target starting dose of load equal to 1.5 times body weight. RESULTS Peak quadriceps force and fatigue index were higher for FDBCK than CONST (P<.05). Within-train force decline was greater during FDBCK bouts, but mean force remained above CONST values (P<.05). As fatigue developed during repetitive stimulation, FDBCK was superior to CONST for maintenance of femur compressive loads (P<.05). CONCLUSIONS Feedback-modulated stimulation in electrically activated stance is a viable method to maximize the physiologic performance of paralyzed quadriceps muscle. Compared with CONST, FDBCK yielded compressive loads that were closer to a targeted dose of stress with known osteogenic potential. Optimization of muscle force with FDBCK may be a useful tactic for future training-based antiosteoporosis protocols.
Collapse
Affiliation(s)
- Shauna Dudley-Javoroski
- Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
34
|
Adams CM, Suneja M, Dudley-Javoroski S, Shields RK. Altered mRNA expression after long-term soleus electrical stimulation training in humans with paralysis. Muscle Nerve 2011; 43:65-75. [PMID: 21171097 DOI: 10.1002/mus.21831] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In humans, spinal cord injury (SCI) induces deleterious changes in skeletal muscle that may be prevented or reversed by electrical stimulation muscle training. The molecular mechanisms underlying muscle stimulation training remain unknown. We studied two unique SCI subjects whose right soleus received >6 years of training (30 minutes/day, 5 days/week). Training preserved torque, fatigue index, contractile speed, and cross-sectional area in the trained leg, but not the untrained leg. Training decreased 10 mRNAs required for fast-twitch contractions and mRNA that encodes for myostatin, an autocrine/paracrine hormone that inhibits muscle growth. Conversely, training increased 69 mRNAs that mediate the slow-twitch, oxidative phenotype, including PGC-1α, a transcriptional coactivator that inhibits muscle atrophy. When we discontinued right soleus training, training-induced effects diminished slowly, with some persisting for >6 months. Training of paralyzed muscle induces localized and long-lasting changes in skeletal muscle mRNA expression that improve muscle mass and function.
Collapse
Affiliation(s)
- Christopher M Adams
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | |
Collapse
|
35
|
|
36
|
Duffell LD, Rowlerson AM, Donaldson NDN, Harridge SDR, Newham DJ. Effects of endurance and strength-directed electrical stimulation training on the performance and histological properties of paralyzed human muscle: a pilot study. Muscle Nerve 2010; 42:756-63. [PMID: 20976779 DOI: 10.1002/mus.21746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrical stimulation (ES) improves muscle properties after spinal cord injury (SCI), but cycling power output (PO) remains low. We investigated the effect of endurance and strength ES training on these parameters. Assessments of quadriceps strength and fatigue resistance, cycling PO, and muscle biopsies were made in four well-trained SCI subjects (three cyclists and one rower) before and after additional weight training in the cyclists and once in the rower. Weight training improved muscle strength, but cycling PO was low in all subjects. There was no effect of training type on biopsy data. Biopsies showed non-specific signs of pathology, predominance of type IIa fibers, and uniform metabolic activity. Oxidative activity was low, as were capillary:fiber ratios in the cyclists. Cycling PO is limited by factors other than muscle strength. Future ES training studies should attempt to improve muscle oxidative capacity to optimize the potential benefits of ES exercise.
Collapse
Affiliation(s)
- Lynsey D Duffell
- Division of Applied Biomedical Research, King's College London, London, UK
| | | | | | | | | |
Collapse
|
37
|
Video game-based neuromuscular electrical stimulation system for calf muscle training: a case study. Med Eng Phys 2010; 33:249-55. [PMID: 21036093 DOI: 10.1016/j.medengphy.2010.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 10/07/2010] [Accepted: 10/10/2010] [Indexed: 11/21/2022]
Abstract
A video game-based training system was designed to integrate neuromuscular electrical stimulation (NMES) and visual feedback as a means to improve strength and endurance of the lower leg muscles, and to increase the range of motion (ROM) of the ankle joints. The system allowed the participants to perform isotonic concentric and isometric contractions in both the plantarflexors and dorsiflexors using NMES. In the proposed system, the contractions were performed against exterior resistance, and the angle of the ankle joints was used as the control input to the video game. To test the practicality of the proposed system, an individual with chronic complete spinal cord injury (SCI) participated in the study. The system provided a progressive overload for the trained muscles, which is a prerequisite for successful muscle training. The participant indicated that he enjoyed the video game-based training and that he would like to continue the treatment. The results show that the training resulted in a significant improvement of the strength and endurance of the paralyzed lower leg muscles, and in an increased ROM of the ankle joints. Video game-based training programs might be effective in motivating participants to train more frequently and adhere to otherwise tedious training protocols. It is expected that such training will not only improve the properties of their muscles but also decrease the severity and frequency of secondary complications that result from SCI.
Collapse
|
38
|
Muthalib M, Jubeau M, Millet GY, Maffiuletti NA, Ferrari M, Nosaka K. Biceps brachii muscle oxygenation in electrical muscle stimulation. Clin Physiol Funct Imaging 2010; 30:360-368. [PMID: 20618357 DOI: 10.1111/j.1475-097x.2010.00953.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23-39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2-3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0.05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0.05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0.05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.
Collapse
Affiliation(s)
- Makii Muthalib
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Institute of Health and Biomedical Innovation & School of Human Movement Studies, Queensland University of Technology, Brisbane, Australia
| | - Marc Jubeau
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Laboratory INSERM U887, Faculty of Sport Sciences, University of Burgundy, Dijon, France
| | - Guillaume Y Millet
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Exercise Physiology Laboratory, Jean Monnet University, Saint-Etienne, France
| | | | - Marco Ferrari
- Department of Health Sciences, University of L'Aquila, L'Aquila, Italy
| | - Kazunori Nosaka
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
39
|
Gorgey AS, Shepherd C. Skeletal muscle hypertrophy and decreased intramuscular fat after unilateral resistance training in spinal cord injury: case report. J Spinal Cord Med 2010; 33:90-5. [PMID: 20397451 PMCID: PMC2853337 DOI: 10.1080/10790268.2010.11689681] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy is a common adaptation after spinal cord injury (SCI) that results in numerous health-related complications. Neuromuscular electrical stimulation (NMES) has been recognized as an effective tool, which attenuates atrophy and evokes hypertrophy. OBJECTIVE To investigate the effects of NMES resistance training (RT) on individual muscle groups and adipose tissue of the right thigh after stimulation of the knee extensor muscle group in a man with chronic SCI. PARTICIPANT A 22-year-old man with a complete SCI sustained in a motorcycle accident 5 years prior to participation in this study. METHODS The participant underwent training twice a week for 12 weeks, including unilateral progressive RT of the right knee extensor muscle group using NMES and ankle weights. The stimulation was applied to knee extensors while the participant was sitting in his wheelchair. A series of T1-weighted magnetic resonance images were acquired for the whole right thigh prior to and after training. Skeletal muscle cross-sectional areas were measured of the whole thigh, knee extensors, hip adductors, hamstrings, and sartorius and gracilis muscle groups. Additionally, intramuscular fat and subcutaneous fat of the thigh were measured. RESULTS At the end of 12 weeks, the participant was able to lift 17 lbs during full knee extension. Average skeletal muscle cross-sectional areas increased in all of the measured muscle groups (12%-43%). Hypertrophy ranging from 30% to 112% was detected in multiaxial slices after the NMES RT protocol. Intramuscular fat decreased by more than 50% and subcutaneous fat increased by 24%. CONCLUSION Unilateral NMES RT protocol evoked hypertrophy in the knee extensor and adjacent skeletal muscle groups and was associated with a reduction in intramuscular fat in a person with a chronic SCI. Additionally, subcutaneous adipose tissue cross-sectional areas increased in response to RT.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Department of Physical Medicine and Rehabilitation, Hunter Holmes McGuire Medical Center, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA.
| | | |
Collapse
|
40
|
Biering-Sørensen B, Kristensen IB, Kjaer M, Biering-Sørensen F. Muscle after spinal cord injury. Muscle Nerve 2009; 40:499-519. [PMID: 19705475 DOI: 10.1002/mus.21391] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The morphological and contractile changes of muscles below the level of the lesion after spinal cord injury (SCI) are dramatic. In humans with SCI, a fiber-type transformation away from type I begins 4-7 months post-SCI and reaches a new steady state with predominantly fast glycolytic IIX fibers years after the injury. There is a progressive drop in the proportion of slow myosin heavy chain (MHC) isoform fibers and a rise in the proportion of fibers that coexpress both the fast and slow MHC isoforms. The oxidative enzymatic activity starts to decline after the first few months post-SCI. Muscles from individuals with chronic SCI show less resistance to fatigue, and the speed-related contractile properties change, becoming faster. These findings are also present in animals. Future studies should longitudinally examine changes in muscles from early SCI until steady state is reached in order to determine optimal training protocols for maintaining skeletal muscle after paralysis.
Collapse
Affiliation(s)
- Bo Biering-Sørensen
- Clinic for Spinal Cord Injuries, NeuroScience Centre, Rigshospitalet, Copenhagen University Hospital, Havnevej 25, DK-3100 Hornbaek, Denmark.
| | | | | | | |
Collapse
|
41
|
Kim KE, Oh SH, Lee SU, Chung SG. Application of isometric load on a facial muscle--the zygomaticus major. Clin Biomech (Bristol, Avon) 2009; 24:606-12. [PMID: 19631428 DOI: 10.1016/j.clinbiomech.2009.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND As an initial step to study facial muscle strengthening by loaded neuromuscular electrical stimulation, we examined the feasibility of applying load to the zygomaticus major, quantified the maximal isometric force of the muscle by volition and electrical stimulation, and compared the measured forces with the results of facial kinematic analysis and electrodiagnostic study. METHODS Eleven healthy subjects and two female patients with chronic unilateral facial palsy were enrolled. A custom made plastic bridge instrument with a centrally mounted load cell was attached at the mouth angle and to the skin overlying the zygomatic bone using double-sided adhesive tape to provide isometric resistance to skin movement during the muscle contraction. FINDINGS The force by maximal voluntary contraction of the zygomaticus major averaged 196.4 g force and the contraction force by maximally tolerated stimulation reached 60.1%, on average, of the force by maximal voluntary contraction in normal subjects. There was a significant correlation only between the force by maximally tolerated stimulation and the amplitude of compound muscle action potentials. The force by maximal voluntary contraction of the paralytic side in the patients showed 32.3% and 20.1% of the mean value of the normal subjects. INTERPRETATIONS This study demonstrates that an isometric load was possibly applied and a significant intensity of electrical stimulation could be tolerated and delivered to the isometrically loaded facial muscle. The isometric loading would be utilized for loaded facial neuromuscular electrical stimulation therapeutically and also for measurement of the force generation capacity of the zygomaticus major diagnostically.
Collapse
Affiliation(s)
- Kyoung-Eun Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
42
|
Hamzaid NA, Davis G. Health and Fitness Benefits of Functional Electrical Stimulation-Evoked Leg Exercise for Spinal Cord–Injured Individuals. Top Spinal Cord Inj Rehabil 2009. [DOI: 10.1310/sci1404-88] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Dudley-Javoroski S, Shields RK. Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. ACTA ACUST UNITED AC 2009; 45:283-96. [PMID: 18566946 DOI: 10.1682/jrrd.2007.02.0031] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The paralyzed musculoskeletal system retains a remarkable degree of plasticity after spinal cord injury (SCI). In response to reduced activity, muscle atrophies and shifts toward a fast-fatigable phenotype arising from numerous changes in histochemistry and metabolic enzymes. The loss of routine gravitational and muscular loads removes a critical stimulus for maintenance of bone mineral density (BMD), precipitating neurogenic osteoporosis in paralyzed limbs. The primary adaptations of bone to reduced use are demineralization of epiphyses and thinning of the diaphyseal cortical wall. Electrical stimulation of paralyzed muscle markedly reduces deleterious post-SCI adaptations. Recent studies demonstrate that physiological levels of electrically induced muscular loading hold promise for preventing post-SCI BMD decline. Rehabilitation specialists will be challenged to develop strategies to prevent or reverse musculoskeletal deterioration in anticipation of a future cure for SCI. Quantifying the precise dose of stress needed to efficiently induce a therapeutic effect on bone will be paramount to the advancement of rehabilitation strategies.
Collapse
Affiliation(s)
- Shauna Dudley-Javoroski
- Graduate Program in Physical Therapy and Rehabilitation Science, The University of Iowa, Iowa City, IA 52242-1190, USA
| | | |
Collapse
|
44
|
de Abreu DCC, Cliquet A, Rondina JM, Cendes F. Electrical stimulation during gait promotes increase of muscle cross-sectional area in quadriplegics: a preliminary study. Clin Orthop Relat Res 2009; 467:553-7. [PMID: 18791775 PMCID: PMC2628524 DOI: 10.1007/s11999-008-0496-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 08/20/2008] [Indexed: 01/31/2023]
Abstract
Increases in muscular cross-sectional area (CSA) occur in quadriplegics after training, but the effects of neuromuscular electrical stimulation (NMES) along with training are unknown. Thus, we addressed two questions: (1) Does NMES during treadmill gait training increase the quadriceps CSA in complete quadriplegics?; and (2) Is treadmill gait training alone enough to observe an increase in CSA? Fifteen quadriplegics were divided into gait (n = 8) and control (n = 7) groups. The gait group performed training with NMES for 6 months twice a week for 20 minutes each time. After 6 months of traditional therapy, the control group received the same gait training protocol but without NMES for an additional 6 months. Axial images of the thigh were acquired at the beginning of the study, at 6 months (for both groups), and at 12 months for the control group to determine the average quadriceps CSA. After 6 months, there was an increase of CSA in the gait group (from 49.8 +/- 9.4 cm(2) to 57.3 +/- 10.3 cm(2)), but not in the control group (from 43.6 +/- 7.6 cm(2) to 41.8 +/- 8.4 cm(2)). After another 6 months of gait without NMES in the control group, the CSA did not change (from 41.8 +/- 8.4 cm(2) to 41.7 +/- 7.9 cm(2)). The increase in quadriceps CSA after gait training in patients with chronic complete quadriplegia appears associated with NMES.
Collapse
Affiliation(s)
- Daniela Cristina Carvalho de Abreu
- Biomechanics, Medicine and Rehabilitation of Locomotor System Department, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Av Bandeirantes, 3900 Ribeirão Preto, SP Brazil
| | - Alberto Cliquet
- Orthopaedics Department, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Jane Maryan Rondina
- Neuroimage Laboratory, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Fernando Cendes
- Neuroimage Laboratory, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| |
Collapse
|
45
|
Fong AJ, Roy RR, Ichiyama RM, Lavrov I, Courtine G, Gerasimenko Y, Tai Y, Burdick J, Edgerton VR. Recovery of control of posture and locomotion after a spinal cord injury: solutions staring us in the face. PROGRESS IN BRAIN RESEARCH 2009; 175:393-418. [PMID: 19660669 PMCID: PMC2904312 DOI: 10.1016/s0079-6123(09)17526-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past 20 years, tremendous advances have been made in the field of spinal cord injury research. Yet, consumed with individual pieces of the puzzle, we have failed as a community to grasp the magnitude of the sum of our findings. Our current knowledge should allow us to improve the lives of patients suffering from spinal cord injury. Advances in multiple areas have provided tools for pursuing effective combination of strategies for recovering stepping and standing after a severe spinal cord injury. Muscle physiology research has provided insight into how to maintain functional muscle properties after a spinal cord injury. Understanding the role of the spinal networks in processing sensory information that is important for the generation of motor functions has focused research on developing treatments that sharpen the sensitivity of the locomotor circuitry and that carefully manage the presentation of proprioceptive and cutaneous stimuli to favor recovery. Pharmacological facilitation or inhibition of neurotransmitter systems, spinal cord stimulation, and rehabilitative motor training, which all function by modulating the physiological state of the spinal circuitry, have emerged as promising approaches. Early technological developments, such as robotic training systems and high-density electrode arrays for stimulating the spinal cord, can significantly enhance the precision and minimize the invasiveness of treatment after an injury. Strategies that seek out the complementary effects of combination treatments and that efficiently integrate relevant technical advances in bioengineering represent an untapped potential and are likely to have an immediate impact. Herein, we review key findings in each of these areas of research and present a unified vision for moving forward. Much work remains, but we already have the capability, and more importantly, the responsibility, to help spinal cord injury patients now.
Collapse
Affiliation(s)
- Andy J. Fong
- Division of Engineering, Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Roland R. Roy
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Igor Lavrov
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Yury Gerasimenko
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA, USA
- Pavlov Institute of Physiology, St. Petersburg, Russia
| | - Y.C. Tai
- Division of Engineering, Bioengineering, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering, Mechanical Engineering Options, California Institute of Technology, Pasadena, CA, USA
| | - Joel Burdick
- Division of Engineering, Bioengineering, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering, Mechanical Engineering Options, California Institute of Technology, Pasadena, CA, USA
| | - V. Reggie Edgerton
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
46
|
Duffell LD, Donaldson NDN, Perkins TA, Rushton DN, Hunt KJ, Kakebeeke TH, Newham DJ. Long-term intensive electrically stimulated cycling by spinal cord-injured people: Effect on muscle properties and their relation to power output. Muscle Nerve 2008; 38:1304-11. [DOI: 10.1002/mus.21060] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Davis GM, Hamzaid NA, Fornusek C. Cardiorespiratory, Metabolic, and Biomechanical Responses During Functional Electrical Stimulation Leg Exercise: Health and Fitness Benefits. Artif Organs 2008; 32:625-9. [DOI: 10.1111/j.1525-1594.2008.00622.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Dudley-Javoroski S, Littmann AE, Iguchi M, Shields RK. Doublet stimulation protocol to minimize musculoskeletal stress during paralyzed quadriceps muscle testing. J Appl Physiol (1985) 2008; 104:1574-82. [PMID: 18436697 DOI: 10.1152/japplphysiol.00892.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With long-term electrical stimulation training, paralyzed muscle can serve as an effective load delivery agent for the skeletal system. Muscle adaptations to training, however, will almost certainly outstrip bone adaptations, exposing participants in training protocols to an elevated risk for fracture. Assessing the physiological properties of the chronically paralyzed quadriceps may transmit unacceptably high shear forces to the osteoporotic distal femur. We devised a two-pulse doublet strategy to measure quadriceps physiological properties while minimizing the peak muscle force. The purposes of the study were 1) to determine the repeatability of the doublet stimulation protocol, and 2) to compare this protocol among individuals with and without spinal cord injury (SCI). Eight individuals with SCI and four individuals without SCI underwent testing. The doublet force-frequency relationship shifted to the left after SCI, likely reflecting enhancements in the twitch-to-tetanus ratio known to exist in paralyzed muscle. Posttetanic potentiation occurred to a greater degree in subjects with SCI (20%) than in non-SCI subjects (7%). Potentiation of contractile rate occurred in both subject groups (14% and 23% for SCI and non-SCI, respectively). Normalized contractile speed (rate of force rise, rate of force fall) reflected well-known adaptations of paralyzed muscle toward a fast fatigable muscle. The doublet stimulation strategy provided repeatable and sensitive measurements of muscle force and speed properties that revealed meaningful differences between subjects with and without SCI. Doublet stimulation may offer a unique way to test muscle physiological parameters of the quadriceps in subjects with uncertain musculoskeletal integrity.
Collapse
|
49
|
Cardiovascular and Metabolic Responses During Functional Electric Stimulation Cycling at Different Cadences. Arch Phys Med Rehabil 2008; 89:719-25. [DOI: 10.1016/j.apmr.2007.09.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 11/24/2022]
|
50
|
Dose estimation and surveillance of mechanical loading interventions for bone loss after spinal cord injury. Phys Ther 2008; 88:387-96. [PMID: 18202080 PMCID: PMC3270311 DOI: 10.2522/ptj.20070224] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE The interpretation of the results of previous anti-osteoporosis interventions after spinal cord injury (SCI) is undermined by incomplete information about the intervention dose or patient adherence to dose requirements. Rehabilitation research as a whole traditionally has struggled with these same issues. The purpose of this case report is to offer proof of the concepts that careful dose selection and surveillance of patient adherence should be integral components in rehabilitation interventions. CASE DESCRIPTION A 21-year-old man with T4 complete paraplegia (7 weeks) enrolled in a unilateral soleus muscle electrical stimulation protocol. Compressive loads applied to the tibia approximated 1.4 times body weight. Over 4.8 years of home-based training, data logging software provided surveillance of adherence. Soleus muscle torque and fatigue index adaptations to training as well as bone mineral density (BMD) adaptations in the distal tibia were measured. OUTCOMES The patient performed nearly 8,000 soleus muscle contractions per month, with occasional fluctuations. Adherence tracking permitted intervention when adherence fell below acceptable values. The soleus muscle torque and fatigue index increased rapidly in response to training. The BMD of the untrained tibia declined approximately 14% per year. The BMD of the trained tibia declined only approximately 7% per year. The BMD was preferentially preserved in the posterior half of the tibia; this region experienced only a 2.6% annual decline. DISCUSSION Early administration of a load intervention, careful estimation of the loading dose, and detailed surveillance of patient adherence aided in the interpretation of a patient's adaptations to a mechanical load protocol. These concepts possess wider applicability to rehabilitation research and should be emphasized in future physical therapy investigations.
Collapse
|