1
|
Koutlas A, Smilios I, Kokkinou EM, Myrkos A, Kounoupis A, Dipla K, Zafeiridis A. NIRS-Derived Muscle-Deoxygenation and Microvascular Reactivity During Occlusion-Reperfusion at Rest Are Associated With Whole-Body Aerobic Fitness. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:127-139. [PMID: 36689603 DOI: 10.1080/02701367.2022.2159309] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Purpose: Near-infrared spectroscopy (NIRS) indices during arterial occlusion-reperfusion maneuver have been used to examine the muscle's oxidative metabolism and microvascular function-important determinants of whole-body aerobic-fitness. The association of NIRS-derived parameters with whole-body VO2max was previously examined using a method requiring exercise (or electrical stimulation) followed by multiple arterial occlusions. We examined whether NIRS-derived indices of muscle deoxygenation and microvascular reactivity assessed during a single occlusion-reperfusion at rest are (a) associated with maximal/submaximal indices of whole-body aerobic-fitness and (b) could discriminate individuals with different VO2max. We, also, investigated which NIRS-parameter during occlusion-reperfusion correlates best with whole-body aerobic-fitness. Methods: Twenty-five young individuals performed an arterial occlusion-reperfusion at rest. Changes in oxygenated- and deoxygenated-hemoglobin (O2Hb and HHb, respectively) in vastus-lateralis were monitored; adipose tissue thickness (ATT) at NIRS-application was assessed. Participants also underwent a maximal incremental exercise test for VO2max, maximal aerobic velocity (MAV), and ventilatory-thresholds (VTs) assessments. Results: The HHbslope and HHbmagnitude of increase (occlusion-phase) and O2Hbmagnitude of increase (reperfusion-phase) were strongly correlated with VO2max (r = .695-.763, p < .001) and moderately with MAV (r = .468-.530; p < .05). O2Hbmagnitude was moderately correlated with VTs (r = .399-.414; p < .05). After controlling for ATT, the correlations remained significant for VO2max (r = .672-.704; p < .001) and MAV (r = .407; p < .05). Individuals in the high percentiles after median and tritile splits for HHbslope and O2Hbmagnitude had significantly greater VO2max vs. those in low percentiles (p < .01-.05). The HHbslope during occlusion was the best predictor of VO2max. Conclusion: NIRS-derived muscle deoxygenation/reoxygenation indices during a single arterial occlusion-reperfusion maneuver are strongly associated with whole-body maximal indices of aerobic-fitness (VO2max, MAV) and may discriminate individuals with different VO2max.
Collapse
|
2
|
Jávor P, Donka T, Horváth T, Sándor L, Török L, Szabó A, Hartmann P. Impairment of Mesenteric Perfusion as a Marker of Major Bleeding in Trauma Patients. J Clin Med 2023; 12:jcm12103571. [PMID: 37240677 DOI: 10.3390/jcm12103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of potentially preventable mortality in trauma patients is related to bleeding; therefore, early recognition and effective treatment of hemorrhagic shock impose a cardinal challenge for trauma teams worldwide. The reduction in mesenteric perfusion (MP) is among the first compensatory responses to blood loss; however, there is no adequate tool for splanchnic hemodynamic monitoring in emergency patient care. In this narrative review, (i) methods based on flowmetry, CT imaging, video microscopy (VM), measurement of laboratory markers, spectroscopy, and tissue capnometry were critically analyzed with respect to their accessibility, and applicability, sensitivity, and specificity. (ii) Then, we demonstrated that derangement of MP is a promising diagnostic indicator of blood loss. (iii) Finally, we discussed a new diagnostic method for the evaluation of hemorrhage based on exhaled methane (CH4) measurement. Conclusions: Monitoring the MP is a feasible option for the evaluation of blood loss. There are a wide range of experimentally used methodologies; however, due to their practical limitations, only a fraction of them could be integrated into routine emergency trauma care. According to our comprehensive review, breath analysis, including exhaled CH4 measurement, would provide the possibility for continuous, non-invasive monitoring of blood loss.
Collapse
Affiliation(s)
- Péter Jávor
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| | - Tibor Donka
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| | - Tamara Horváth
- Institute of Surgical Research, University of Szeged, H-6724 Szeged, Hungary
| | - Lilla Sándor
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| | - László Török
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
- Department of Sports Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, H-6724 Szeged, Hungary
| | - Petra Hartmann
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
de Lira CAB, Minozzo FC, Costa TG, de Oliveira VN, Costa GCT, Oliveira ASB, Quadros AAJ, Vancini RL, Sousa BS, da Silva AC, Andrade MS. Functional exercise capacity in maximal and submaximal activities of individuals with polio sequelae. Eur J Appl Physiol 2023; 123:711-719. [PMID: 36401622 DOI: 10.1007/s00421-022-05095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Poliomyelitis is an infectious disease that can cause total paralysis. Furthermore, poliomyelitis survivors may develop new signs and symptoms, including muscular weakness and fatigue, years after the acute phase of the disease, i.e., post-polio syndrome (PPS). Thus, the objective was to compare the functional exercise capacity during maximal and submaximal exercises among individuals with polio sequelae (without PPS diagnosis), PPS, and a control group. METHODS Thirty individuals participated in three groups: a control group (CG, n = 10); a group of individuals with polio sequelae but without PPS diagnosis (PG, n = 10); and a PPS group (PPSG, n = 10). All participants underwent (i) a cardiopulmonary exercise test to determine their maximal oxygen uptake ([Formula: see text]) and (ii) a series of functional field tests (i.e., walking test, sit-to-stand test, and stair climbing test). RESULTS [Formula: see text]O2max was 30% lower in PPSG than in CG and PG. Regarding functional field tests, walking and stair climbing test performances were significantly different among all groups. The PPSG sit-to-stand performance was lower than CG. CONCLUSION The sequelae of paralytic poliomyelitis impair functional exercise capacity obtained from maximal and submaximal tests, especially in patients with PPS. Furthermore, submaximal variables appear to be more negatively impacted than maximal variables.
Collapse
Affiliation(s)
- Claudio Andre Barbosa de Lira
- Faculty of Physical Education and Dance, Federal University of Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, Brazil.
| | | | - Thalles Guilarducci Costa
- Faculty of Physical Education and Dance, Federal University of Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, Brazil
| | - Vinnycius Nunes de Oliveira
- Faculty of Physical Education and Dance, Federal University of Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, Brazil
| | - Gustavo Conti Teixeira Costa
- Faculty of Physical Education and Dance, Federal University of Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, Brazil
| | | | | | - Rodrigo Luiz Vancini
- Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | | |
Collapse
|
4
|
Cayot TE, Herbert B, Klika RJ. Treatment side affects exercising microvascular oxygenation response in active breast cancer survivors: A pilot study. Clin Physiol Funct Imaging 2023; 43:96-102. [PMID: 36376074 DOI: 10.1111/cpf.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/19/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Cancer treatment is associated with cardiovascular toxicity, skeletal muscle dysfunction and interruptions in mitochondrial respiration. Microvascular oxygenation responses, measured via near-infrared spectroscopy (NIRS), at peak exercise intensity has previously been associated with aerobic capacity. Specifically, the greater magnitude of microvascular deoxygenation observed at peak exercise intensity has been associated with higher aerobic capacity. Therefore, a pilot study investigated if diagnosis side (uninvolved side, treatment side) and/or exercise side (paddle side, non-paddle side) affected microvascular oxygenation responses at peak intensity during paddle exercise. Thirty-three breast cancer survivors (age = 57 ± 9 years, height = 1.64 ± 0.05 m, weight = 76.5 ± 15.6 kg, 7 ± 7 years since treatment) who also competed as dragon boat racers performed a unilateral (paddle), discontinuous graded exercise test (2-min exercise, 1-min rest) on a rowing ergometer to volitional fatigue. Tissue oxygenation saturation (StO2DIFF ) and total haemoglobin concentration (total[heme]DIFF ) responses at peak exercise intensity were measured bilaterally from the posterior deltoids using NIRS. Two-way analysis of variance determined if diagnosis side and/or exercise side effected StO2DIFF or total[heme]DIFF . Diagnosis side elicited a moderate effect (effect size = 0.66) on StO2DIFF , as the treatment side deoxygenated less (-6.0 ± 14.7 ∆BSL) compared to the uninvolved side (-16.9 ± 16.9 ∆BSL) at peak exercise intensity. No other significant main effects or interactions were observed for StO2DIFF or total[heme]DIFF . The pilot findings suggest that the ability of the exercising muscle to use oxygen for the purpose of mitochondrial oxidative respiration may be impaired on the treatment side.
Collapse
Affiliation(s)
- Trent E Cayot
- Department of Kinesiology, Health, and Sport Sciences, University of Indianapolis, Indianapolis, Indiana, USA
| | - Brooklyn Herbert
- Department of Kinesiology, Health, and Sport Sciences, University of Indianapolis, Indianapolis, Indiana, USA
| | - Riggs J Klika
- Department of Kinesiology, Health, and Sport Sciences, University of Indianapolis, Indianapolis, Indiana, USA.,Aspen Cancer Survivor Center, Aspen, Colorado, USA
| |
Collapse
|
5
|
Sturm G, Karan KR, Monzel AS, Santhanam B, Taivassalo T, Bris C, Ware SA, Cross M, Towheed A, Higgins-Chen A, McManus MJ, Cardenas A, Lin J, Epel ES, Rahman S, Vissing J, Grassi B, Levine M, Horvath S, Haller RG, Lenaers G, Wallace DC, St-Onge MP, Tavazoie S, Procaccio V, Kaufman BA, Seifert EL, Hirano M, Picard M. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun Biol 2023; 6:22. [PMID: 36635485 PMCID: PMC9837150 DOI: 10.1038/s42003-022-04303-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/26/2022] [Indexed: 01/13/2023] Open
Abstract
Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases.
Collapse
Affiliation(s)
- Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Kalpita R Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Balaji Santhanam
- Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, Clinical and Translational Research Building, University of Florida, Gainesville, FL, USA
| | - Céline Bris
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Sarah A Ware
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marissa Cross
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Atif Towheed
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Internal Medicine-Pediatrics Residency Program, University of Pittsburgh Medical Centre, Pittsburgh, PA, USA
| | - Albert Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Meagan J McManus
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Elissa S Epel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, and Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | | | | | - Ronald G Haller
- Neuromuscular Center, Institute for Exercise and Environmental Medicine of Texas Health Resources and Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guy Lenaers
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie-Pierre St-Onge
- Center of Excellence for Sleep & Circadian Research and Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Saeed Tavazoie
- Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Vincent Procaccio
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Brett A Kaufman
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erin L Seifert
- Department of Pathology and Genomic Medicine, and MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Metabolic myopathies are disorders that affect skeletal muscle substrate oxidation. Although some drugs and hormones can affect metabolism in skeletal muscle, this review will focus on the genetic metabolic myopathies. RECENT FINDINGS Impairments in glycogenolysis/glycolysis (glycogen storage disease), fatty acid transport/oxidation (fatty acid oxidation defects), and mitochondrial metabolism (mitochondrial myopathies) represent most metabolic myopathies; however, they often overlap clinically with structural genetic myopathies, referred to as pseudometabolic myopathies. Although metabolic myopathies can present in the neonatal period with hypotonia, hypoglycemia, and encephalopathy, most cases present clinically in children or young adults with exercise intolerance, rhabdomyolysis, and weakness. In general, the glycogen storage diseases manifest during brief bouts of high-intensity exercise; in contrast, fatty acid oxidation defects and mitochondrial myopathies usually manifest during longer-duration endurance-type activities, often with fasting or other metabolic stressors (eg, surgery, fever). The neurologic examination is often normal between events (except in the pseudometabolic myopathies) and evaluation requires one or more of the following tests: exercise stress testing, blood (eg, creatine kinase, acylcarnitine profile, lactate, amino acids), urine (eg, organic acids, myoglobin), muscle biopsy (eg, histology, ultrastructure, enzyme testing), and targeted (specific gene) or untargeted (myopathy panels) genetic tests. SUMMARY Definitive identification of a specific metabolic myopathy often leads to specific interventions, including lifestyle, exercise, and nutritional modifications; cofactor treatments; accurate genetic counseling; avoidance of specific triggers; and rapid treatment of rhabdomyolysis.
Collapse
|
7
|
Gollie JM, Guccione AA, Keyser RE, Chin LMK, Panza GS, Herrick JE. Walking endurance, muscle oxygen extraction, and perceived fatigability after overground locomotor training in incomplete spinal cord injury: A pilot study. J Spinal Cord Med 2022; 45:381-389. [PMID: 32795157 PMCID: PMC9135420 DOI: 10.1080/10790268.2020.1798137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: The purpose of this study was to examine the effects of overground locomotor training (OLT) on walking endurance and gastrocnemius oxygen extraction in people with chronic cervical motor-incomplete spinal cord injury (SCI).Design: Prospective single-arm pre-post pilot study.Setting: Human Performance Research Laboratory.Participants: Adult men with traumatic chronic cervical SCI (n = 6; age = 30.8 ± 12.5).Intervention: Twenty-four sessions of structured OLT.Outcome measures: Walking endurance was determined during a constant work-rate time-to-exhaustion treadmill test. Normalized perceived fatigability was calculated by dividing subjective ratings of tiredness by walking time. Cardiorespiratory outcomes and muscle oxygen extraction were analyzed using breath-by-breath gas-exchange and near-infrared spectroscopy.Results: OLT resulted in large effects on walking endurance (1232 ± 446 s vs 1645 ± 255 s; d = 1.1; P = 0.045) and normalized perceived fatigability (5.3 ± 1.5 a.u. vs 3.6 ± 0.9 a.u.; d = 1.3; P = 0.033). Small-to-medium effects on absolute (2.8 ± 2.5 a.u. vs 4.2 ± 3.5 a.u.; d = 0.42; P = 0.035) and isotime (2.8 ± 2.5 a.u. vs 3.8 ± 3.0 a.u.; d = 0.33; P = 0.023) muscle oxygen extraction were also observed after OLT.Conclusion: These findings provide preliminary data supporting the potential for improved walking endurance, enhanced muscle O2 extraction, and reduced perceived fatigability in people with chronic cervical motor-incomplete SCI following the OLT program described in this study.
Collapse
Affiliation(s)
- Jared M. Gollie
- Research Services, Veterans Affairs Medical Center, Washington, District of Columbi, USA
- Department of Health, Human Function, and Rehabilitation Sciences, The George Washington University, Washington, District of Columbi, USA
- Rehabilitation Science Department, George Mason University, Fairfax, Virginia, USA
| | - Andrew A. Guccione
- Rehabilitation Science Department, George Mason University, Fairfax, Virginia, USA
| | - Randall E. Keyser
- Rehabilitation Science Department, George Mason University, Fairfax, Virginia, USA
- Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa M. K. Chin
- Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Gino S. Panza
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
- Research Services, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, USA
| | - Jeffrey E. Herrick
- Department of Exercise Physiology, University of Lynchburg, Lynchburg, Virginia, USA
| |
Collapse
|
8
|
Grillet PE, Badiou S, Lambert K, Sutra T, Plawecki M, Raynaud de Mauverger E, Brun JF, Mercier J, Gouzi F, Cristol JP. Biomarkers of Redox Balance Adjusted to Exercise Intensity as a Useful Tool to Identify Patients at Risk of Muscle Disease through Exercise Test. Nutrients 2022; 14:1886. [PMID: 35565853 PMCID: PMC9105000 DOI: 10.3390/nu14091886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The screening of skeletal muscle diseases constitutes an unresolved challenge. Currently, exercise tests or plasmatic tests alone have shown limited performance in the screening of subjects with an increased risk of muscle oxidative metabolism impairment. Intensity-adjusted energy substrate levels of lactate (La), pyruvate (Pyr), β-hydroxybutyrate (BOH) and acetoacetate (AA) during a cardiopulmonary exercise test (CPET) could constitute alternative valid biomarkers to select "at-risk" patients, requiring the gold-standard diagnosis procedure through muscle biopsy. Thus, we aimed to test: (1) the validity of the V'O2-adjusted La, Pyr, BOH and AA during a CPET for the assessment of the muscle oxidative metabolism (exercise and mitochondrial respiration parameters); and (2) the discriminative value of the V'O2-adjusted energy and redox markers, as well as five other V'O2-adjusted TCA cycle-related metabolites, between healthy subjects, subjects with muscle complaints and muscle disease patients. Two hundred and thirty subjects with muscle complaints without diagnosis, nine patients with a diagnosed muscle disease and ten healthy subjects performed a CPET with blood assessments at rest, at the estimated 1st ventilatory threshold and at the maximal intensity. Twelve subjects with muscle complaints presenting a severe alteration of their profile underwent a muscle biopsy. The V'O2-adjusted plasma levels of La, Pyr, BOH and AA, and their respective ratios showed significant correlations with functional and muscle fiber mitochondrial respiration parameters. Differences in exercise V'O2-adjusted La/Pyr, BOH, AA and BOH/AA were observed between healthy subjects, subjects with muscle complaints without diagnosis and muscle disease patients. The energy substrate and redox blood profile of complaining subjects with severe exercise intolerance matched the blood profile of muscle disease patients. Adding five tricarboxylic acid cycle intermediates did not improve the discriminative value of the intensity-adjusted energy and redox markers. The V'O2-adjusted La, Pyr, BOH, AA and their respective ratios constitute valid muscle biomarkers that reveal similar blunted adaptations in muscle disease patients and in subjects with muscle complaints and severe exercise intolerance. A targeted metabolomic approach to improve the screening of "at-risk" patients is discussed.
Collapse
Affiliation(s)
- Pierre-Edouard Grillet
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| | - Stéphanie Badiou
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| | - Karen Lambert
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
| | - Thibault Sutra
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| | - Maëlle Plawecki
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| | - Eric Raynaud de Mauverger
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Physiology, University of Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Frédéric Brun
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Physiology, University of Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Jacques Mercier
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Physiology, University of Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Fares Gouzi
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Physiology, University of Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Paul Cristol
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| |
Collapse
|
9
|
Barroso de Queiroz Davoli G, Bartels B, Mattiello-Sverzut AC, Takken T. Cardiopulmonary exercise testing in neuromuscular disease: a systematic review. Expert Rev Cardiovasc Ther 2021; 19:975-991. [PMID: 34826261 DOI: 10.1080/14779072.2021.2009802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cardiopulmonary exercise testing (CPET) is increasingly used to determine aerobic fitness in health and disability conditions. Patients with neuromuscular diseases (NMDs) often present with symptoms of cardiac and/or skeletal muscle dysfunction and fatigue that might impede the ability to deliver maximal cardiopulmonary effort. Although an increasing number of studies report on NMDs' physical fitness, the applicability of CPET remains largely unknown. AREAS COVERED This systematic review synthesized evidence about the quality and feasibility of CPET in NMDs and patient's aerobic fitness. The review followed the PRISMA guidelines (PROSPERO number CRD42020211068). Between September and October 2020 one independent reviewer searched the PubMed/MEDLINE, EMBASE, SCOPUS, and Web of Science databases. Excluding reviews and protocol description articles without baseline data, all study designs using CPET to assess adult or pediatric patients with NMDs were included. The methodological quality was assessed according to the American Thoracic Society/American College of Chest Physicians (ATS/ACCP) recommendations. EXPERT OPINION CPET is feasible for ambulatory patients with NMDs when their functional level and the exercise modality are taken into account. However, there is still a vast potential for standardizing and designing disease-specific CPET protocols for patients with NMDs. Moreover, future studies are urged to follow the ATS/ACCP recommendations.
Collapse
Affiliation(s)
| | - Bart Bartels
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Tim Takken
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Stubbs H, Church C, Johnson M, Thomson S. Impairment of skeletal muscle oxygen extraction and cardiac output are matched in precapillary pulmonary hypertension. ERJ Open Res 2021; 7:00449-2021. [PMID: 34476249 PMCID: PMC8405871 DOI: 10.1183/23120541.00449-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterised by pathological pulmonary vascular remodelling and increased resistance leading to right heart failure and death [1]. It is thought that exercise intolerance in PAH arises from an impairment in oxygen transport and delivery, driven by a reduced stroke volume [2]. In precapillary pulmonary hypertension, exercising muscles extract oxygen to a similar level seen in healthy individuals. Exercise limitation is a result of impaired oxygen delivery, which is matched to any impairment in skeletal muscle oxygen extraction.https://bit.ly/3hQUY8m
Collapse
Affiliation(s)
- Harrison Stubbs
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, UK
| | - Colin Church
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, UK
| | - Martin Johnson
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, UK.,Joint last authors
| | - Stephen Thomson
- Dept of Respiratory Medicine, Queen Elizabeth University Hospital, Glasgow, UK.,Joint last authors
| |
Collapse
|
11
|
Korzeniewski B. Mechanisms of the effect of oxidative phosphorylation deficiencies on the skeletal muscle bioenergetic system in patients with mitochondrial myopathies. J Appl Physiol (1985) 2021; 131:768-777. [PMID: 34197225 DOI: 10.1152/japplphysiol.00196.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Simulations carried out using a previously developed model of the skeletal muscle bioenergetic system, involving the "inorganic phosphate (Pi) double-threshold" mechanism of muscle fatigue, lead to the conclusion that a decrease in the oxidative phosphorylation (OXPHOS) activity, caused by mutations in mitochondrial or nuclear DNA, is the main mechanism underlying the changes in the kinetic properties of the system in mitochondrial myopathies (MM). These changes generally involve the very-heavy-exercise-like behavior and exercise termination because of fatigue at low work intensities. In particular, a sufficiently large (at a given work intensity) decrease in OXPHOS activity leads to slowing of the primary phase II of the oxygen uptake (V̇o2) on-kinetics, decrease in maximal V̇o2 (V̇o2max), appearance of the slow component of the V̇o2 on-kinetics, exercise intolerance, and lactic acidosis at relatively low power outputs encountered in experimental studies in patients with MM. Thus, the "Pi double-threshold" mechanism of muscle fatigue is able to account, at least semiquantitatively, for various kinetic effects of inborn OXPHOS deficiencies of the skeletal muscle bioenergetic system. Exercise can be potentially lengthened and V̇o2max elevated in patients with MM through an increase in peak Pi (Pipeak), at which exercise is terminated because of fatigue. Generally, a mechanism underlying the kinetic effects of OXPHOS deficiencies on the skeletal muscle bioenergetic system in MM is proposed that was absent in the literature.NEW & NOTEWORTHY A mechanism of the OXPHOS deficiencies-induced changes of the skeletal muscle bioenergetic system in patients with mitochondrial myopathies (MM), namely, appearance of the slow component of the V̇o2 on-kinetics at relatively low work intensities, slowed primary phase II of the V̇o2 on-kinetics, lowered V̇o2max, and lactic acidosis is proposed. It involves a decrease in OXPHOS activity acting through the "Pi double-threshold" mechanism of muscle fatigue comprising initiation of the additional ATP usage and termination of exercise.
Collapse
|
12
|
Rodriguez-Miguelez P, Seigler N, Ishii H, Crandall R, McKie KT, Forseen C, Harris RA. Exercise Intolerance in Cystic Fibrosis: Importance of Skeletal Muscle. Med Sci Sports Exerc 2021; 53:684-693. [PMID: 33105385 PMCID: PMC7969358 DOI: 10.1249/mss.0000000000002521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Exercise intolerance, evaluated by O2 consumption, predicts mortality in cystic fibrosis (CF). People with CF exhibit skeletal muscle dysfunctions that may contribute to an imbalance between O2 delivery and utilization. Sildenafil, a phosphodiesterase type 5 inhibitor, increases blood flow and improves O2 consumption, although the exact mechanisms in CF have yet to be elucidated. Thus, we hypothesized that exercise intolerance in CF is limited primarily by an impaired skeletal muscle O2 utilization, and sildenafil improves exercise tolerance in CF by addressing this mismatch between O2 demand and extraction. METHODS Fifteen individuals with mild to moderate CF and 18 healthy controls completed an incremental exercise test and measurements of gaseous exchange, chronotropic response, hemodynamics, and O2 extraction and utilization. People with CF also completed a 4-wk treatment with sildenafil with a subsequent follow-up evaluation after treatment. RESULTS Skeletal muscle O2 extraction and utilization during exercise were reduced in people with CF when compared with controls. Exercise capacity in our CF population was minimally limited by hemodynamic or chronotopic responses, whereas peripheral O2 extraction was more closely associated with exercise capacity. The study also demonstrated that 4 wk of sildenafil improved skeletal muscle O2 utilization during exercise to similar values observed in healthy individuals. CONCLUSIONS Individuals with mild to moderate CF exhibit exercise intolerance secondary to a reduction in O2 utilization by the exercising skeletal muscle. The present study demonstrated that 4 wk of sildenafil treatment improves the capacity of the skeletal muscle to use O2 more efficiently during exercise. Findings from the present study highlight the importance of targeting skeletal muscle O2 utilization to improve exercise tolerance in CF.
Collapse
Affiliation(s)
- Paula Rodriguez-Miguelez
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
- Georgia Prevention Institute, Augusta University, Augusta GA
| | - Nichole Seigler
- Georgia Prevention Institute, Augusta University, Augusta GA
| | - Haruki Ishii
- Georgia Prevention Institute, Augusta University, Augusta GA
| | - Reva Crandall
- Georgia Prevention Institute, Augusta University, Augusta GA
| | | | - Caralee Forseen
- Pulmonary and Critical Care Medicine, Augusta University, Augusta GA
| | - Ryan A. Harris
- Georgia Prevention Institute, Augusta University, Augusta GA
- Sport and Exercise Science Research Institute, University of Ulster, Jordanstown, United Kingdom
| |
Collapse
|
13
|
Montes J, Goodwin AM, McDermott MP, Uher D, Hernandez FM, Coutts K, Cocchi J, Hauschildt M, Cornett KM, Rao AK, Monani UR, Ewing Garber C, De Vivo DC. Diminished muscle oxygen uptake and fatigue in spinal muscular atrophy. Ann Clin Transl Neurol 2021; 8:1086-1095. [PMID: 33788421 PMCID: PMC8108417 DOI: 10.1002/acn3.51353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To estimate muscle oxygen uptake and quantify fatigue during exercise in ambulatory individuals with spinal muscular atrophy (SMA) and healthy controls. METHODS Peak aerobic capacity (VO2peak ) and workload (Wpeak ) were measured by cardiopulmonary exercise test (CPET) in 19 ambulatory SMA patients and 16 healthy controls. Submaximal exercise (SME) at 40% Wpeak was performed for 10 minutes. Change in vastus lateralis deoxygenated hemoglobin, measured by near-infrared spectroscopy, determined muscle oxygen uptake (ΔHHb) at rest and during CPET and SME. Dual energy X-ray absorptiometry assessed fat-free mass (FFM%). Fatigue was determined by percent change in workload or distance in the first compared to the last minute of SME (FatigueSME ) and six-minute walk test (Fatigue6MWT ), respectively. RESULTS ΔHHb-PEAK, ΔHHb-SME, VO2peak , Wpeak , FFM%, and 6MWT distance were lower (P < 0.001), and Fatigue6MWT and FatigueSME were higher (P < 0.001) in SMA compared to controls. ΔHHb-PEAK correlated with FFM% (r = 0.50) and VO2peak (r = 0.41) only in controls. Only in SMA, Fatigue6MWT was inversely correlated with Wpeak (r = -0.69), and FatigueSME was inversely correlated with FFM% (r = -0.55) and VO2peak (r = -0.69). INTERPRETATION This study provides further support for muscle mitochondrial dysfunction in SMA patients. During exercise, we observed diminished muscle oxygen uptake but no correlation with aerobic capacity or body composition. We also observed increased fatigue which correlated with decreased aerobic capacity, workload, and body composition. Understanding the mechanisms underlying diminished muscle oxygen uptake and increased fatigue during exercise in SMA may identify additional therapeutic targets that rescue symptomatic patients and mitigate their residual disease burden.
Collapse
Affiliation(s)
- Jacqueline Montes
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ashley M Goodwin
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA.,Department of Neurology, University of Rochester, Rochester, New York, USA
| | - David Uher
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Feliz Marie Hernandez
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Kayla Coutts
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Julia Cocchi
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Margarethe Hauschildt
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Kayla M Cornett
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ashwini K Rao
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Umrao R Monani
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA.,Center for Motor Neuron Biology & Disease, New York, New York, USA
| | - Carol Ewing Garber
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Darryl C De Vivo
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA.,Center for Motor Neuron Biology & Disease, New York, New York, USA
| |
Collapse
|
14
|
Wakasugi T, Morishita S, Kaida K, Ikegame K, Uchiyama Y, Domen K. Muscle oxygen extraction and lung function are related to exercise tolerance after allogeneic hematopoietic stem cell transplantation. Support Care Cancer 2021; 29:6039-6048. [PMID: 33786668 DOI: 10.1007/s00520-021-06178-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE This study aimed to investigate the relationship between exercise intolerance, muscle oxidative metabolism, and cardiopulmonary function following allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a sterile isolation room setting. METHODS This was a prospective observational cohort study conducted in a single center. Fourteen patients with hematopoietic malignancies who had undergone allo-HSCT were included in this study from June 2015 to April 2020. Patients received donor HSCT after high dose-chemotherapy and total-body irradiation. Physical activity was limited during treatments. Outcome measures included body anthropometric measurements, exercise tolerance tests using the ramp protocol, pulmonary function tests, and near-infrared spectroscopy (NIRS) measurements. Data of pre- and posttransplant measurements were compared using the paired t test or nonparametric Wilcoxon U test. Associations were assessed using the Pearson or nonparametric Spearman correlations. RESULTS NIRS showed reduced muscle consumption and extraction of oxygen in the posttransplant period compared to the pretransplant period (ΔStO2 min pre: -18.6% vs. post: -13.0%, P = 0.04; ΔHHb max pre: 4.21μmol/l vs. post: 3.31μmol/l: P = 0.048). Exercise tolerance had reduced following allo-HSCT (Peak workload pre: 70.3 W vs. post: 58.0 W: P = 0.014). Furthermore, exercise intolerance was associated with pulmonary function, muscle oxygen consumption, and muscle oxygen extraction (all P <0.05). CONCLUSION This analysis revealed that exercise intolerance following allo-HSCT was associated with pulmonary dysfunction and muscle oxidative dysfunction. These findings could help identify the physical function associated with impaired tissue oxygen transport leading to exercise intolerance following allo-HSCT.
Collapse
Affiliation(s)
- Tatsushi Wakasugi
- Department of Rehabilitation, Hyogo College of Medicine College Hospital, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Shinichiro Morishita
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Katsuji Kaida
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yuki Uchiyama
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kazuhisa Domen
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
15
|
Glancy B, Kane DA, Kavazis AN, Goodwin ML, Willis WT, Gladden LB. Mitochondrial lactate metabolism: history and implications for exercise and disease. J Physiol 2021; 599:863-888. [PMID: 32358865 PMCID: PMC8439166 DOI: 10.1113/jp278930] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/25/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial structures were probably observed microscopically in the 1840s, but the idea of oxidative phosphorylation (OXPHOS) within mitochondria did not appear until the 1930s. The foundation for research into energetics arose from Meyerhof's experiments on oxidation of lactate in isolated muscles recovering from electrical contractions in an O2 atmosphere. Today, we know that mitochondria are actually reticula and that the energy released from electron pairs being passed along the electron transport chain from NADH to O2 generates a membrane potential and pH gradient of protons that can enter the molecular machine of ATP synthase to resynthesize ATP. Lactate stands at the crossroads of glycolytic and oxidative energy metabolism. Based on reported research and our own modelling in silico, we contend that lactate is not directly oxidized in the mitochondrial matrix. Instead, the interim glycolytic products (pyruvate and NADH) are held in cytosolic equilibrium with the products of the lactate dehydrogenase (LDH) reaction and the intermediates of the malate-aspartate and glycerol 3-phosphate shuttles. This equilibrium supplies the glycolytic products to the mitochondrial matrix for OXPHOS. LDH in the mitochondrial matrix is not compatible with the cytoplasmic/matrix redox gradient; its presence would drain matrix reducing power and substantially dissipate the proton motive force. OXPHOS requires O2 as the final electron acceptor, but O2 supply is sufficient in most situations, including exercise and often acute illness. Recent studies suggest that atmospheric normoxia may constitute a cellular hyperoxia in mitochondrial disease. As research proceeds appropriate oxygenation levels should be carefully considered.
Collapse
Affiliation(s)
- Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel A. Kane
- Department of Human Kinetics, St. Francis Xavier University, NS B2G 2W5, Antigonish, Canada
| | | | - Matthew L. Goodwin
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wayne T. Willis
- College of Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85724-5099, USA
| | - L. Bruce Gladden
- School of Kinesiology, Auburn University, Auburn, AL 36849-5323, USA
| |
Collapse
|
16
|
Abstract
Metabolic myopathies are muscle disorders caused by a biochemical defect of the skeletal muscle energy system resulting in exercise intolerance. The primary aim of this research was to evaluate the oxygen cost (∆V’O2/∆Work-Rate) during incremental exercise in patients with metabolic myopathies as compared with patients with non-metabolic myalgia and healthy subjects. The study groups consisted of eight patients with muscle glycogenoses (one Tarui and seven McArdle diseases), seven patients with a complete and twenty-two patients with a partial myoadenylate deaminase (MAD) deficiency in muscle biopsy, five patients with a respiratory chain deficiency, seventy-three patients with exercise intolerance and normal muscle biopsy (non-metabolic myalgia), and twenty-eight healthy controls. The subjects underwent a cardiopulmonary exercise test (CPX Medgraphics) performed on a bicycle ergometer. Pulmonary V’O2 was measured breath-by-breath throughout the incremental test. The ∆V’O2/∆Work-Rate slope for exercise was determined by linear regression analysis. Lower oxygen consumption (peak percent of predicted, mean ± SD; p < 0.04, one-way ANOVA) was seen in patients with glycogenoses (62.8 ± 10.2%) and respiratory chain defects (70.8 ± 23.3%) compared to patients with non-metabolic myalgia (100.0 ± 15.9%) and control subjects (106.4 ± 23.5%). ∆V’O2/∆Work-Rate slope (mLO2.min−1.W−1) was increased in patients with MAD absent (12.6 ± 1.5), MAD decreased (11.3 ± 1.1), glycogenoses (14.0 ± 2.5), respiratory chain defects (13.1 ± 1.2), and patients with non-metabolic myalgia (11.3 ± 1.3) compared with control subjects (10.2 ± 0.7; p < 0.001, one-way ANOVA). In conclusion, patients with metabolic myopathies display an increased oxygen cost during exercise and therefore can perform less work for a given VO2 consumption during daily life-submaximal exercises.
Collapse
|
17
|
Grassi B, Porcelli S, Marzorati M. Metabolic Myopathies: "Human Knockout" Models and Translational Medicine. Front Physiol 2020; 11:350. [PMID: 32425807 PMCID: PMC7203498 DOI: 10.3389/fphys.2020.00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/26/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | - Simone Porcelli
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mauro Marzorati
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| |
Collapse
|
18
|
Iolascon G, Vitacca M, Carraro E, Chisari C, Fiore P, Messina S, Mongini T, Moretti A, Sansone VA, Toscano A, Siciliano G. Adapted physical activity and therapeutic exercise in late-onset Pompe disease (LOPD): a two-step rehabilitative approach. Neurol Sci 2020; 41:859-868. [PMID: 31811531 DOI: 10.1007/s10072-019-04178-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Aerobic exercise, training to sustain motor ability, and respiratory rehabilitation may improve general functioning and quality of life (QoL) in neuromuscular disorders. Patients with late-onset Pompe disease (LOPD) typically show progressive muscle weakness, respiratory dysfunction and minor cardiac involvement. Characteristics and modalities of motor and respiratory rehabilitation in LOPD are not well defined and specific guidelines are lacking. Therefore, we evaluated the role of physical activity, therapeutic exercise, and pulmonary rehabilitation programs in order to promote an appropriate management of motor and respiratory dysfunctions and improve QoL in patients with LOPD. We propose two operational protocols: one for an adapted physical activity (APA) plan and the other for an individual rehabilitation plan, particularly focused on therapeutic exercise (TE) and respiratory rehabilitation.
Collapse
Affiliation(s)
- Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Via De Crecchio 4, 80138, Naples, Italy.
| | - Michele Vitacca
- FERS Respiratory Rehabilitation Unit, ICS S. Maugeri IRCCS, Lumezzane, BS, Italy
| | - Elena Carraro
- NeuroMuscular Omnicentre, Fondazione Serena Onlus, Neurorehabilitation Unit, University of Milan, Milan, Italy
| | - Carmelo Chisari
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Pietro Fiore
- Department of Basic Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Sonia Messina
- Neurology and Neuromuscular Unit, University of Messina, Messina, Italy
| | - Tiziana Mongini
- Neuromuscular Unit, Department of Neurosciences, University of Turin, Turin, Italy
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Via De Crecchio 4, 80138, Naples, Italy
| | - Valeria A Sansone
- NeuroMuscular Omnicentre, Fondazione Serena Onlus, Neurorehabilitation Unit, University of Milan, Milan, Italy
| | - Antonio Toscano
- Neurology and Neuromuscular Unit, University of Messina, Messina, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
19
|
More Impaired Dynamic Ventilatory Muscle Oxygenation in Congestive Heart Failure than in Chronic Obstructive Pulmonary Disease. J Clin Med 2019; 8:jcm8101641. [PMID: 31591369 PMCID: PMC6832638 DOI: 10.3390/jcm8101641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/25/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) and congestive heart failure (CHF) often have dyspnea. Despite differences in primary organ derangement and similarities in secondary skeletal muscle changes, both patient groups have prominent functional impairment. With similar daily exercise performance in patients with CHF and COPD, we hypothesized that patients with CHF would have worse ventilatory muscle oxygenation than patients with COPD. This study aimed to compare differences in tissue oxygenation and blood capacity between ventilatory muscles and leg muscles and between the two patient groups. Demographic data, lung function, and maximal cardiopulmonary exercise tests were performed in 134 subjects without acute illnesses. Muscle oxygenation and blood capacity were measured using frequency-domain near-infrared spectroscopy (fd-NIRS). We enrolled normal subjects and patients with COPD and CHF. The two patient groups were matched by oxygen-cost diagram scores, New York Heart Association functional classification scores, and modified Medical Research Council scores. COPD was defined as forced expired volume in one second and forced expired vital capacity ratio ≤0.7. CHF was defined as stable heart failure with an ejection fraction ≤49%. The healthy subjects were defined as those with no obvious history of chronic disease. Age, body mass index, cigarette consumption, lung function, and exercise capacity were different across the three groups. Muscle oxygenation and blood capacity were adjusted accordingly. Leg muscles had higher deoxygenation (HHb) and oxygenation (HbO2) and lower oxygen saturation (SmO2) than ventilatory muscles in all participants. The SmO2 of leg muscles was lower than that of ventilatory muscles because SmO2 was calculated as HbO2/(HHb+HbO2), and the HHb of leg muscles was relatively higher than the HbO2 of leg muscles. The healthy subjects had higher SmO2, the patients with COPD had higher HHb, and the patients with CHF had lower HbO2 in both muscle groups throughout the tests. The patients with CHF had lower SmO2 of ventilatory muscles than the patients with COPD at peak exercise (p < 0.01). We conclud that fd-NIRS can be used to discriminate tissue oxygenation of different musculatures and disease entities. More studies on interventions on ventilatory muscle oxygenation in patients with CHF and COPD are warranted.
Collapse
|
20
|
Porcelli S, Grassi B, Poole DC, Marzorati M. Exercise intolerance in patients with mitochondrial myopathies: perfusive and diffusive limitations in the O2 pathway. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Evaluating the NIRS-derived microvascular O2 extraction "reserve" in groups varying in sex and training status using leg blood flow occlusions. PLoS One 2019; 14:e0220192. [PMID: 31344091 PMCID: PMC6658081 DOI: 10.1371/journal.pone.0220192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/10/2019] [Indexed: 02/04/2023] Open
Abstract
It has been demonstrated that the plateau in the near-infrared spectroscopy (NIRS) derived deoxygenated hemoglobin and myoglobin (deoxy[Hb+Mb]) signal (i.e., deoxy[Hb+Mb]PLATEAU) towards the end of a ramp-incremental (RI) test does not represent the upper-limit in O2 extraction of the vastus lateralis (VL) muscle, given that an O2 extraction reserve has been recently observed. This study aimed to investigate whether this O2 extraction reserve was present in various populations and whether it exhibited sex- and/or training- related differences.Sixteen men- 8 untrained (27±5 years; 83±11 kg; 179±9 cm), 8 trained (27±4 years; 82±10 kg; 182±8 cm) and 9 trained women (27±2 years; 66±10 kg; 172±6 cm) performed a RI cycling test to exhaustion. The NIRS-derived deoxy[Hb+Mb] signal was measured continuously on the VL as a proxy for O2 extraction. A leg blood flow occlusion (i.e., ischemia) was performed at rest (LBFOCC 1) and immediately post the RI test (LBFOCC 2).No significant difference was found between the deoxy[Hb+Mb] amplitude during LBFOCC 1 and the deoxy[Hb+Mb]PLATEAU (p>0.05) nor between baseline (bsln) deoxy[Hb+Mb] values. deoxy[Hb+Mb] amplitude during LBFOCC 2 was significantly greater than LBFOCC 1 and at deoxy[Hb+Mb]PLATEAU (p<0.05) with group means ~30-45% higher than the deoxy[Hb+Mb]PLATEAU and LBFOCC 1 (p<0.05). No significant differences were found between groups in O2 extraction reserve, regardless of sex- or training-statusThe results of this study demonstrated the existence of an O2 extraction reserve in different populations, and that neither sex- nor training-related differences affect the amplitude of the reserve.
Collapse
|
22
|
Abstract
In this review, we present an overview of the applications and computed parameters of electromyography (EMG) and near-infrared spectroscopy (NIRS) methods on patients in clinical practice. The eligible studies were those where both techniques were combined in order to assess muscle characteristics from the electrical and hemodynamic points of view. With this aim, a comprehensive screening of the literature based on related keywords in the most-used scientific data bases allowed us to identify 17 papers which met the research criteria. We also present a brief overview of the devices designed specifically for muscular applications with EMG and NIRS sensors (a total of eight papers). A critical analysis of the results of the review suggests that the combined use of EMG and NIRS on muscle has been only partially exploited for assessment and evaluation in clinical practice and, thus, this field shows promises for future developments.
Collapse
|
23
|
GRASSI BRUNO, PORCELLI SIMONE, MARZORATI MAURO. Translational Medicine: Exercise Physiology Applied to Metabolic Myopathies. Med Sci Sports Exerc 2019; 51:2183-2192. [DOI: 10.1249/mss.0000000000002056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Niemi AK, Chock VY. Near-Infrared Spectroscopy in the Diagnostic Evaluation of Mitochondrial Disorders: A Neonatal Intensive Care Unit Case Series. J Pediatr 2019; 208:282-286. [PMID: 30853194 DOI: 10.1016/j.jpeds.2019.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/28/2019] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
We assessed the utility of near-infrared spectroscopy to evaluate neonates with mitochondrial disorders. We observed abnormally high cerebral oxygen saturation levels indicating insufficient tissue oxygen utilization. We propose that near-infrared spectroscopy may be an additional tool in the diagnostic evaluation of a suspected mitochondrial disorder.
Collapse
Affiliation(s)
- Anna-Kaisa Niemi
- Division of Neonatology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, CA
| | - Valerie Y Chock
- Department of Pediatrics, Division of Neonatology, Stanford University, Stanford, CA
| |
Collapse
|
25
|
Gargani L, Bruni C, Barskova T, Hartwig V, Marinelli M, Trivella MG, Matucci-Cerinic M, L'Abbate A. Near-infrared spectroscopic imaging of the whole hand: A new tool to assess tissue perfusion and peripheral microcirculation in scleroderma. Semin Arthritis Rheum 2019; 48:867-873. [DOI: 10.1016/j.semarthrit.2018.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/16/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
|
26
|
Barstow TJ. Understanding near infrared spectroscopy and its application to skeletal muscle research. J Appl Physiol (1985) 2019; 126:1360-1376. [PMID: 30844336 DOI: 10.1152/japplphysiol.00166.2018] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Near infrared spectroscopy (NIRS) is a powerful noninvasive tool with which to study the matching of oxygen delivery to oxygen utilization and the number of new publications utilizing this technique has increased exponentially in the last 20 yr. By measuring the state of oxygenation of the primary heme compounds in skeletal muscle (hemoglobin and myoglobin), greater understanding of the underlying control mechanisms that couple perfusive and diffusive oxygen delivery to oxidative metabolism can be gained from the laboratory to the athletic field to the intensive care unit or emergency room. However, the field of NIRS has been complicated by the diversity of instrumentation, the inherent limitations of some of these technologies, the associated diversity of terminology, and a general lack of standardization of protocols. This Cores of Reproducibility in Physiology (CORP) will describe in basic but important detail the most common methodologies of NIRS, their strengths and limitations, and discuss some of the potential confounding factors that can affect the quality and reproducibility of NIRS data. Recommendations are provided to reduce the variability and errors in data collection, analysis, and interpretation. The goal of this CORP is to provide readers with a greater understanding of the methodology, limitations, and best practices so as to improve the reproducibility of NIRS research in skeletal muscle.
Collapse
Affiliation(s)
- Thomas J Barstow
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
27
|
Affiliation(s)
- Bruno Grassi
- Department of Medicine, University of Udine , Udine , Italy
| |
Collapse
|
28
|
Richard P, Billaut F. Combining Chronic Ischemic Preconditioning and Inspiratory Muscle Warm-Up to Enhance On-Ice Time-Trial Performance in Elite Speed Skaters. Front Physiol 2018; 9:1036. [PMID: 30108521 PMCID: PMC6079196 DOI: 10.3389/fphys.2018.01036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/12/2018] [Indexed: 02/02/2023] Open
Abstract
Elite athletes in varied sports typically combine ergogenic strategies in the hope of enhancing physiological responses and competitive performance, but the scientific evidence for such practices is very scarce. The peculiar characteristics of speed skating contribute to impede blood flow and exacerbate deoxygenation in the lower limbs (especially the right leg). We investigated whether combining preconditioning strategies could modify muscular oxygenation and improve performance in that sport. Using a randomized, single-blind, placebo-controlled, crossover design, seven male elite long-track speed skaters performed on-ice 600-m time trials, preceded by either a combination of preconditioning strategies (COMBO) or a placebo condition (SHAM). COMBO involved performing remote ischemic preconditioning (RIPC) of the upper limbs (3 × 5-min compression at 180 mmHg and 5-min reperfusion) over 3 days (including an acute treatment before trials), with the addition of an inspiratory muscle warm-up [IMW: 2 × 30 inspirations at 40% maximal inspiratory pressure (MIP)] on the day of testing. SHAM followed the same protocol with lower intensities (10 mmHg for RIPC and 15% MIP). Changes in tissue saturation index (TSI), oxyhemoglobin–oxymyoglobin ([O2HbMb]), deoxyhemoglobin–deoxymyoglobin ([HHbMb]), and total hemoglobin–myoglobin ([THbMb]) in the right vastus lateralis muscle were monitored by near-infrared spectroscopy (NIRS). Differences between COMBO and SHAM were analyzed using Cohen’s effect size (ES) and magnitude-based inferences. Compared with SHAM, COMBO had no worthwhile effect on performance time while mean Δ[HHbMb] (2.7%, ES 0.48; -0.07, 1.03) and peak Δ[HHbMb] (1.8%, ES 0.23; -0.10, 0.57) were respectively likely and possibly higher in the last section of the race. These results indicate that combining ischemic preconditioning and IMW has no practical ergogenic impact on 600-m speed-skating performance in elite skaters. The low-sitting position in this sport might render difficult enhancing these physiological responses.
Collapse
Affiliation(s)
- Philippe Richard
- Département de kinésiologie, Université Laval, Quebec, QC, Canada
| | - François Billaut
- Département de kinésiologie, Université Laval, Quebec, QC, Canada
| |
Collapse
|
29
|
Raman S, Chentouf L, DeVile C, Peters MJ, Rahman S. Near infrared spectroscopy with a vascular occlusion test as a biomarker in children with mitochondrial and other neuro-genetic disorders. PLoS One 2018; 13:e0199756. [PMID: 29969469 PMCID: PMC6029804 DOI: 10.1371/journal.pone.0199756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 06/13/2018] [Indexed: 01/09/2023] Open
Abstract
Background Mitochondrial and neurogenetic diseases can present diagnostic challenges. We investigated if near infrared spectroscopy with the vascular occlusion test is able to differentiate between children with mitochondrial disease and children with neurogenetic disease or healthy controls. Methods Prospective observational study conducted in a tertiary children’s hospital. Results Forty-three children with mitochondrial disease (including both genetically confirmed primary mitochondrial disease and cases with biochemical evidence of mitochondrial dysfunction), 19 children with non-mitochondrial neurogenetic disease and 13 healthy controls were recruited. The delta tissue oxygen index (ΔTOI) values showed greater variability amongst children with mitochondrial disease and neurogenetic disease than healthy controls despite the median ΔTOI being similar (median 14.1 and 18.8, t-test, p = 0.16). A low ΔTOI identifies cases with a higher probability of mitochondrial disease or neurogenetic disease compared to healthy controls (positive likelihood ratio: 3.67; 95%CI:1.01–13). A high ΔTOI with the near infrared spectroscopy with vascular occlusion test identifies cases with a lower probability of having a disease (negative likelihood ratio: 0.51; 95%CI:0.36–0.74). Conclusion Near infrared spectroscopy with vascular occlusion test might be able to discriminate children with mitochondrial disease and neurogenetic disease from healthy controls.
Collapse
Affiliation(s)
- Sainath Raman
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, United Kingdom
- Anaesthesia, Critical Care and Respiratory Unit, Infection, Immunity, and Inflammation Programme, UCL Institute of Child Health, London, United Kingdom
| | - Latifa Chentouf
- Mitochondrial Research Group, UCL Institute of Child Health, London, United Kingdom
- Metabolic Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Catherine DeVile
- Neurology Department, Great Ormond Street Hospital, London, United Kingdom
| | - Mark J. Peters
- Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, United Kingdom
- Anaesthesia, Critical Care and Respiratory Unit, Infection, Immunity, and Inflammation Programme, UCL Institute of Child Health, London, United Kingdom
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Institute of Child Health, London, United Kingdom
- Metabolic Unit, Great Ormond Street Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
FIUZA-LUCES CARMEN, DÍEZ-BERMEJO JORGE, FERNÁNDEZ-DE LA TORRE MIGUEL, RODRÍGUEZ-ROMO GABRIEL, SANZ-AYÁN PAZ, DELMIRO AITOR, MUNGUÍA-IZQUIERDO DIEGO, RODRÍGUEZ-GÓMEZ IRENE, ARA IGNACIO, DOMÍNGUEZ-GONZÁLEZ CRISTINA, ARENAS JOAQUÍN, MARTÍN MIGUELA, LUCIA ALEJANDRO, MORÁN MARÍA. Health Benefits of an Innovative Exercise Program for Mitochondrial Disorders. Med Sci Sports Exerc 2018; 50:1142-1151. [DOI: 10.1249/mss.0000000000001546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Okushima D, Poole DC, Barstow TJ, Rossiter HB, Kondo N, Bowen TS, Amano T, Koga S. Greater V˙O2peak is correlated with greater skeletal muscle deoxygenation amplitude and hemoglobin concentration within individual muscles during ramp-incremental cycle exercise. Physiol Rep 2018; 4:4/23/e13065. [PMID: 27986837 PMCID: PMC5260088 DOI: 10.14814/phy2.13065] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022] Open
Abstract
It is axiomatic that greater aerobic fitness (V˙O2peak) derives from enhanced perfusive and diffusive O2 conductances across active muscles. However, it remains unknown how these conductances might be reflected by regional differences in fractional O2 extraction (i.e., deoxy [Hb+Mb] and tissue O2 saturation [StO2]) and diffusive O2 potential (i.e., total[Hb+Mb]) among muscles spatially heterogeneous in blood flow, fiber type, and recruitment (vastus lateralis, VL; rectus femoris, RF). Using quantitative time‐resolved near‐infrared spectroscopy during ramp cycling in 24 young participants (V˙O2peak range: ~37.4–66.4 mL kg−1 min−1), we tested the hypotheses that (1) deoxy[Hb+Mb] and total[Hb+Mb] at V˙O2peak would be positively correlated with V˙O2peak in both VL and RF muscles; (2) the pattern of deoxygenation (the deoxy[Hb+Mb] slopes) during submaximal exercise would not differ among subjects differing in V˙O2peak. Peak deoxy [Hb+Mb] and StO2 correlated with V˙O2peak for both VL (r = 0.44 and −0.51) and RF (r = 0.49 and −0.49), whereas for total[Hb+Mb] this was true only for RF (r = 0.45). Baseline deoxy[Hb+Mb] and StO2 correlated with V˙O2peak only for RF (r = −0.50 and 0.54). In addition, the deoxy[Hb+Mb] slopes were not affected by aerobic fitness. In conclusion, while the pattern of deoxygenation (the deoxy[Hb+Mb] slopes) did not differ between fitness groups the capacity to deoxygenate [Hb+Mb] (index of maximal fractional O2 extraction) correlated significantly with V˙O2peak in both RF and VL muscles. However, only in the RF did total[Hb+Mb] (index of diffusive O2 potential) relate to fitness.
Collapse
Affiliation(s)
- Dai Okushima
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Thomas J Barstow
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory & Critical Care Physiology & Medicine Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment Kobe University, Kobe, Japan
| | - T Scott Bowen
- Department of Internal Medicine & Cardiology, Heart Center, Leipzig University, Leipzig, Germany
| | - Tatsuro Amano
- Faculty of Education Niigata University, Niigata, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| |
Collapse
|
32
|
Wakasugi T, Morishita S, Kaida K, Itani Y, Kodama N, Ikegame K, Ogawa H, Domen K. Impaired skeletal muscle oxygenation following allogeneic hematopoietic stem cell transplantation is associated with exercise capacity. Support Care Cancer 2018; 26:2149-2160. [PMID: 29372395 DOI: 10.1007/s00520-017-4036-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Impaired skeletal muscle oxygenation potentially contributes to reduced exercise capacity in allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients during early recovery and may explain altered hemoglobin responses to exercise following allo-HSCT. We investigated whether skeletal muscle oxygenation parameters and hemoglobin parameters in the tibialis anterior decreased following allo-HSCT, and whether these results were associated with declines in exercise capacity. METHODS We used near-infrared spectroscopy during and following a repeated isometric contraction task at 50% of maximal voluntary contraction in 18 patients before and after allo-HSCT. RESULTS The rate of decrease in the muscle oxy-hemoglobin saturation (SmO2; an index of skeletal muscle oxygenation) was significantly lower after allo-HSCT (P < 0.01). In contrast, total hemoglobin (an index of hemoglobin) was not different after allo-HSCT. Furthermore, SmO2 during and following exercise was associated with exercise capacity (r = 0.648; P = 0.004 vs. r = 0.632; P = 0.005). CONCLUSION The results of this study reveal that although the peripheral hemoglobin response was not altered by allo-HSCT, skeletal muscle oxygenation was decreased following allo-HSCT. Furthermore, the decrease in skeletal muscle oxygenation was associated with a reduction in exercise capacity.
Collapse
Affiliation(s)
- Tatsushi Wakasugi
- Department of Rehabilitation, Hyogo College of Medicine Hospital, Nishinomiya, Japan.
| | - Shinichiro Morishita
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Katsuji Kaida
- Division of Haematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yusuke Itani
- Department of Rehabilitation, Hyogo College of Medicine Hospital, Nishinomiya, Japan
| | - Norihiko Kodama
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhiro Ikegame
- Division of Haematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroyasu Ogawa
- Division of Haematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhisa Domen
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Metabolic myopathies are genetic disorders that impair intermediary metabolism in skeletal muscle. Impairments in glycolysis/glycogenolysis (glycogen-storage disease), fatty acid transport and oxidation (fatty acid oxidation defects), and the mitochondrial respiratory chain (mitochondrial myopathies) represent the majority of known defects. The purpose of this review is to develop a diagnostic and treatment algorithm for the metabolic myopathies. RECENT FINDINGS The metabolic myopathies can present in the neonatal and infant period as part of more systemic involvement with hypotonia, hypoglycemia, and encephalopathy; however, most cases present in childhood or in adulthood with exercise intolerance (often with rhabdomyolysis) and weakness. The glycogen-storage diseases present during brief bouts of high-intensity exercise, whereas fatty acid oxidation defects and mitochondrial myopathies present during a long-duration/low-intensity endurance-type activity or during fasting or another metabolically stressful event (eg, surgery, fever). The clinical examination is often normal between acute events, and evaluation involves exercise testing, blood testing (creatine kinase, acylcarnitine profile, lactate, amino acids), urine organic acids (ketones, dicarboxylic acids, 3-methylglutaconic acid), muscle biopsy (histology, ultrastructure, enzyme testing), MRI/spectroscopy, and targeted or untargeted genetic testing. SUMMARY Accurate and early identification of metabolic myopathies can lead to therapeutic interventions with lifestyle and nutritional modification, cofactor treatment, and rapid treatment of rhabdomyolysis.
Collapse
|
34
|
Hupalo M, Smigielski J, Fortuniak J, Jaskolski DJ. Value of oxyneurography, based on near infrared spectroscopy, in the diagnosis of carpal tunnel syndrome in comparison to provocative clinical diagnostic tests and nerve conduction studies. Clin Neurophysiol 2017; 129:327-332. [PMID: 29183658 DOI: 10.1016/j.clinph.2017.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/02/2017] [Accepted: 10/22/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Evaluation of the diagnostic utility of the oxyneurography (ONG) in diagnosing carpal tunnel syndrome (CTS). METHODS ONG examination of the median nerve was performed in 260 patients. The results were compared with nerve conduction studies and clinical provocative tests. RESULTS ONG index greater than or equal to 62% was found in 95.18% of the patients with no or minimal Nerve Conduction Study (NCS) changes (1-2 according to the Padua classification) but only in 1.69% of the patients with advanced NCS changes (Padua 3-6). The sensitivity and specificity of the ONG study i.e. 95.18% and 98.31%, respectively, were compared with standard clinical tests: Tinel sign (61.45% and 14.69%), Phalen test (34.94% and 45.20%), reverse Phalen test (81.93% and 34.46%) and carpal compression test (91.57% and 72.32%). CONCLUSIONS ONG index lower than 62% was indicative of CTS. ONG has higher sensitivity and specificity then other clinical tests and it is an accurate and reliable method for the diagnosis of CTS. SIGNIFICANCE Oxyneurography is a non-invasive, fast and safe study which may play role in the diagnosis of carpal tunnel syndrome.
Collapse
Affiliation(s)
- Marlena Hupalo
- Department of Neurosurgery and Oncology of Central Nervous System, Barlicki University Hospital, Medical University of Lodz, Kopcinskiego 22, Lodz, Poland
| | - Janusz Smigielski
- Department of Geriatrics, Medical University of Lodz, Pieniny 30, Lodz, Poland
| | - Jan Fortuniak
- Department of Neurosurgery and Oncology of Central Nervous System, Barlicki University Hospital, Medical University of Lodz, Kopcinskiego 22, Lodz, Poland.
| | - Dariusz J Jaskolski
- Department of Neurosurgery and Oncology of Central Nervous System, Barlicki University Hospital, Medical University of Lodz, Kopcinskiego 22, Lodz, Poland
| |
Collapse
|
35
|
Lanfranconi F, Pollastri L, Corna G, Bartesaghi M, Novarina M, Ferri A, Miserocchi GA. The Elusive Path of Brain Tissue Oxygenation and Cerebral Perfusion in Harness Hang Syncope in Mountain Climbers. High Alt Med Biol 2017; 18:363-371. [PMID: 28981369 DOI: 10.1089/ham.2017.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lanfranconi, Francesca, Luca Pollastri, Giovanni Corna, Manuela Bartesaghi, Massimiliano Novarina, Alessandra Ferri, and Giuseppe Andrea Miserocchi. The elusive path of brain tissue oxygenation and cerebral perfusion in harness hang syncope in mountain climbers. High Alt Med Biol. 18:363-371, 2017. AIM Harness hang syncope (HHS) is a risk that specifically affects wide ranges of situations requiring safety harnesses in mountains. An irreversible orthostatic stasis could lead to death if a prompt rescue is not performed. We aimed at evaluating the risk of developing HHS and at identifying the characteristics related to the pathogenesis of HHS. RESULTS Forty adults (aged 39.1 [8.2] years) were enrolled in a suspension test lasting about 28.7 (11.4) minutes. We measured cardiovascular parameters, and near infrared spectroscopy (NIRS) was used to assess cerebral hypoxia by changes in the concentration of oxyhemoglobin (Δ[HbO2]) and de-oxyhemoglobin (Δ[HHb]). In the four participants who developed HHS: (1) systolic and diastolic blood pressure showed ample oscillations with a final abrupt drop (∼30 mmHg); (2) Δ[HbO2] increased after 8-12 minutes of suspension and reached a plateau before HHS; and (3) Δ[HHb] decreased with a final abrupt increase before syncope. CONCLUSIONS Participants who developed HHS failed to activate cardiovascular reflexes that usually safeguard O2 availability to match the metabolic needs of the brain tissue. Since cerebral hypoxia was detected as an early phenomenon by Δ[HbO2] and Δ[HHb] changes, NIRS measurement appears to be the most important parameter to monitor the onset of HHS.
Collapse
Affiliation(s)
- Francesca Lanfranconi
- 1 Laboratory of Clinical Physiology and Sport Medicine, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | | | - Giovanni Corna
- 1 Laboratory of Clinical Physiology and Sport Medicine, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | | | | | - Alessandra Ferri
- 1 Laboratory of Clinical Physiology and Sport Medicine, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy .,3 Clinical Exercise Science Research Program, Institute of Sport Exercise and Active Living (ISEAL), Victoria University , Melbourne, Australia
| | - Giuseppe Andrea Miserocchi
- 1 Laboratory of Clinical Physiology and Sport Medicine, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| |
Collapse
|
36
|
Lanfranconi F, Ferri A, Corna G, Bonazzi R, Lunetta C, Silani V, Riva N, Rigamonti A, Maggiani A, Ferrarese C, Tremolizzo L. Inefficient skeletal muscle oxidative function flanks impaired motor neuron recruitment in Amyotrophic Lateral Sclerosis during exercise. Sci Rep 2017; 7:2951. [PMID: 28592858 PMCID: PMC5462750 DOI: 10.1038/s41598-017-02811-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
This study aimed to evaluate muscle oxidative function during exercise in amyotrophic lateral sclerosis patients (pALS) with non-invasive methods in order to assess if determinants of reduced exercise tolerance might match ALS clinical heterogeneity. 17 pALS, who were followed for 4 months, were compared with 13 healthy controls (CTRL). Exercise tolerance was assessed by an incremental exercise test on cycle ergometer measuring peak O2 uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{{\rm{V}}}$$\end{document}V˙O2peak), vastus lateralis oxidative function by near infrared spectroscopy (NIRS) and breathing pattern (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{{\rm{V}}}$$\end{document}V˙E peak). pALS displayed: (1) 44% lower \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{{\rm{V}}}$$\end{document}V˙O2peakvs. CTRL (p < 0.0001), paralleled by a 43% decreased peak skeletal muscle oxidative function (p < 0.01), with a linear regression between these two variables (r2 = 0.64, p < 0.0001); (2) 46% reduced \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{{\rm{V}}}$$\end{document}V˙Epeakvs. CTRL (p < 0.0001), achieved by using an inefficient breathing pattern (increasing respiratory frequency) from the onset until the end of exercise. Inefficient skeletal muscle O2 function, when flanking the impaired motor units recruitment, is a major determinant of pALS clinical heterogeneity and working capacity exercise tolerance. CPET and NIRS are useful tools for detecting early stages of oxidative deficiency in skeletal muscles, disclosing individual impairments in the O2 transport and utilization chain.
Collapse
Affiliation(s)
- F Lanfranconi
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy.
| | - A Ferri
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy.,Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Australia
| | - G Corna
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - R Bonazzi
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - C Lunetta
- NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, Milano, Italy
| | - V Silani
- Department of Neurology and Laboratory Neuroscience - IRCCS Istituto Auxologico Italiano, Pioltello, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Università of Milan, Milano, Italy
| | - N Riva
- San Raffaele Hospital, Milano, Italy
| | | | - A Maggiani
- Italian Academy of Osteopathic Medicine (AIMO), Saronno, Italy
| | - C Ferrarese
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy.,Neurology Unit, "San Gerardo" Hospital, Monza, Italy
| | - L Tremolizzo
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy.,Neurology Unit, "San Gerardo" Hospital, Monza, Italy
| |
Collapse
|
37
|
Sechi A, Salvadego D, Da Ponte A, Bertin N, Dardis A, Cattarossi S, Devigili G, Reccardini F, Bembi B, Grassi B. Investigation on acute effects of enzyme replacement therapy and influence of clinical severity on physiological variables related to exercise tolerance in patients with late onset Pompe disease. Neuromuscul Disord 2017; 27:542-549. [PMID: 28433478 DOI: 10.1016/j.nmd.2017.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/10/2017] [Accepted: 03/05/2017] [Indexed: 11/19/2022]
Abstract
Exercise intolerance is one of the clinical hallmarks of late-onset Pompe disease (LOPD). We studied the acute effects of ERT on the physiological variables associated with exercise tolerance in patients chronically ERT treated. Moreover, we assessed the influence of clinical severity on the investigated variables. The day before (B) and the day after (A) ERT injection, 11 LOPD patients performed on a cycle-ergometer an exercise tolerance test to voluntary exhaustion; VO2, HR, RPE, and GAA activity were determined in B and A. The disease severity was characterized by Walton scale, 6MWT, and pulmonary function tests. No significant differences in the variables related to exercise tolerance were found in A vs B, despite a significant increase in GAA activity in peripheral lymphocytes. No differences in VO2 peak were observed between patients with only skeletal muscle impairment and patients with both skeletal and respiratory muscle impairment. Distance walked at 6MWT was significantly higher than VO2 peak expressed as percentage of normal values. In conclusion, in LOPD patients the exercise tolerance test is not acutely affected by ERT administration; the peripheral muscle component seems more prominent in determining the VO2 peak decrease than the respiratory component; VO2 peak might be more sensitive than 6MWT in estimating exercise tolerance in LOPD.
Collapse
Affiliation(s)
- Annalisa Sechi
- Regional Coordinator Center for Rare Diseases, Academic Hospital of Udine, Udine, Italy.
| | - Desy Salvadego
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Alessandro Da Ponte
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Nicole Bertin
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Center for Rare Diseases, Academic Hospital of Udine, Udine, Italy
| | - Silvia Cattarossi
- Regional Coordinator Center for Rare Diseases, Academic Hospital of Udine, Udine, Italy
| | | | | | - Bruno Bembi
- Regional Coordinator Center for Rare Diseases, Academic Hospital of Udine, Udine, Italy
| | - Bruno Grassi
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| |
Collapse
|
38
|
Boone J, Vandekerckhove K, Coomans I, Prieur F, Bourgois JG. An integrated view on the oxygenation responses to incremental exercise at the brain, the locomotor and respiratory muscles. Eur J Appl Physiol 2016; 116:2085-2102. [PMID: 27613650 DOI: 10.1007/s00421-016-3468-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/31/2016] [Indexed: 12/26/2022]
Abstract
In the past two decades oxygenation responses to incremental ramp exercise, measured non-invasively by means of near-infrared spectroscopy at different locations in the body, have advanced the insights on the underpinning mechanisms of the whole-body pulmonary oxygen uptake ([Formula: see text]) response. In healthy subjects the complex oxygenation responses at the level of locomotor and respiratory muscles, and brain were simplified and quantified by the detection of breakpoints as a deviation in the ongoing response pattern as work rate increases. These breakpoints were located in a narrow intensity range between 75 and 90 % of the maximal [Formula: see text] and were closely related to traditionally determined thresholds in pulmonary gas exchange (respiratory compensation point), blood lactate measurements (maximal lactate steady state), and critical power. Therefore, it has been assumed that these breakpoints in the oxygenation patterns at different sites in the body might be equivalent and could, therefore, be used interchangeably. In the present review the typical oxygenation responses (at locomotor and respiratory muscle level, and cerebral level) are described and a possible framework is provided showing the physiological events that might link the breakpoints at different body sites with the thresholds determined from pulmonary gas exchange and blood lactate measurements. However, despite a possible physiological association, several arguments prevent the current practical application of these breakpoints measured at a single site as markers of exercise intensity making it highly questionable whether measurements of the oxygenation response at one single site can be used as a reflection of whole-body responses to different exercise intensities.
Collapse
Affiliation(s)
- Jan Boone
- Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.
- Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium.
| | | | - Ilse Coomans
- Department of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Fabrice Prieur
- CIAMS, Univ Paris-Sud, Université Paris Saclay, 91405, Orsay Cedex, France
- CIAMS Université d'Orléans, 45067, Orléans, France
| | - Jan G Bourgois
- Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
- Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
39
|
Patients with myogenic temporomandibular disorders have reduced oxygen extraction in the masseter muscle. Clin Oral Investig 2016; 21:1509-1518. [DOI: 10.1007/s00784-016-1912-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/10/2016] [Indexed: 10/21/2022]
|
40
|
Porcelli S, Marzorati M, Morandi L, Grassi B. Home-based aerobic exercise training improves skeletal muscle oxidative metabolism in patients with metabolic myopathies. J Appl Physiol (1985) 2016; 121:699-708. [PMID: 27445303 DOI: 10.1152/japplphysiol.00885.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 07/15/2016] [Indexed: 11/22/2022] Open
Abstract
Aerobic training can be effective in patients with mitochondrial myopathies (MM) and McArdle's disease (McA). The aim of the study was to use noninvasive functional evaluation methods, specifically aimed at skeletal muscle oxidative metabolism, to evaluate the effects of an aerobic exercise training (cycle ergometer, 12 wk, 4 days/wk, ∼65-70% of maximal heart rate) in 6 MM and 7 McA. Oxygen uptake and skeletal muscle vastus lateralis fractional O2 extraction by near-infrared spectroscopy were assessed during incremental and low-intensity constant work rate (CWR) exercises before (BEFORE) and at the end (AFTER) of training. Peak O2 uptake increased significantly with training both in MM [14.7 ± 1.2 vs. 17.6 ± 1.4 ml·kg(-1)·min(-1) (mean ± SD)] and in McA (18.5 ± 1.8 ml·kg(-1)·min(-1) vs. 21.6 ± 1.9). Peak skeletal muscle fractional O2 extraction increased with training both in MM (22.0 ± 6.7 vs. 32.6 ± 5.9%) and in McA (18.5 ± 6.2 vs. 37.2 ± 7.2%). During low-intensity CWR in both MM and McA: V̇o2 kinetics became faster in AFTER, but only in the patients with slow V̇o2 kinetics in BEFORE; the transient overshoot in fractional O2 extraction kinetics disappeared. The level of habitual physical activity was not higher 3 mo after training (FOLLOW-UP vs. PRE). In MM and McA patients a home-based aerobic training program significantly attenuated the impairment of skeletal muscle oxidative metabolism and improved variables associated with exercise tolerance. Our findings indicate that in MM and McA patients near-infrared spectroscopy and V̇o2 kinetics can effectively detect the functional improvements obtained by training.
Collapse
Affiliation(s)
- Simone Porcelli
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy; Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Mauro Marzorati
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| | - Lucia Morandi
- IRCCS Istituto Neurologico "Carlo Besta" Foundation, Milan, Italy; and
| | - Bruno Grassi
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy; Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| |
Collapse
|
41
|
Sakudo A. Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clin Chim Acta 2016; 455:181-8. [PMID: 26877058 DOI: 10.1016/j.cca.2016.02.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/29/2023]
Abstract
The near-infrared radiation (NIR) window, also known as the "optical window" or "therapeutic window", is the range of wavelengths that has the maximum depth of penetration in tissue. Indeed, because NIR is minimally absorbed by water and hemoglobin, spectra readings can be easily collected from the body surface. Recent reports have shown the potential of NIR spectroscopy in various medical applications, including functional analysis of the brain and other tissues, as well as an analytical tool for diagnosing diseases. The broad applicability of NIR spectroscopy facilitates the diagnosis and therapy of diseases as well as elucidating their pathophysiology. This review introduces recent advances and describes new studies in NIR to demonstrate potential clinical applications of NIR spectroscopy.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| |
Collapse
|
42
|
Ederer AK, Didier KD, Reiter LK, Brown M, Hardy R, Caldwell J, Black CD, Larson RD, Ade CJ. Influence of Adjuvant Therapy in Cancer Survivors on Endothelial Function and Skeletal Muscle Deoxygenation. PLoS One 2016; 11:e0147691. [PMID: 26807572 PMCID: PMC4726690 DOI: 10.1371/journal.pone.0147691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022] Open
Abstract
The cardiotoxic effects of adjuvant cancer treatments (i.e., chemotherapy and radiation treatment) have been well documented, but the effects on peripheral cardiovascular function are still unclear. We hypothesized that cancer survivors i) would have decreased resting endothelial function; and ii) altered muscle deoxygenation response during moderate intensity cycling exercise compared to cancer-free controls. A total of 8 cancer survivors (~70 months post-treatment) and 9 healthy controls completed a brachial artery FMD test, an index of endothelial-dependent dilation, followed by an incremental exercise test up to the ventilatory threshold (VT) on a cycle ergometer during which pulmonary V˙O2 and changes in near-infrared spectroscopy (NIRS)-derived microvascular tissue oxygenation (TOI), total hemoglobin concentration ([Hb]total), and muscle deoxygenation ([HHb] ≈ fractional O2 extraction) were measured. There were no significant differences in age, height, weight, and resting blood pressure between cancer survivors and control participants. Brachial artery FMD was similar between groups (P = 0.98). During exercise at the VT, TOI was similar between groups, but [Hb]total and [HHb] were significantly decreased in cancer survivors compared to controls (P < 0.01) The rate of change for TOI (ΔTOIΔ/V˙O2) and [HHb] (Δ[HHb]/ΔV˙O2) relative to ΔV˙O2 were decreased in cancer survivors compared to controls (P = 0.02 and P = 0.03 respectively). In cancer survivors, a decreased skeletal muscle microvascular function was observed during moderate intensity cycling exercise. These data suggest that adjuvant cancer therapies have an effect on the integrated relationship between O2 extraction, V˙O2 and O2 delivery during exercise.
Collapse
Affiliation(s)
- Austin K. Ederer
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Kaylin D. Didier
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Landon K. Reiter
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Michael Brown
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Rachel Hardy
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Jacob Caldwell
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Christopher D. Black
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Rebecca D. Larson
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Carl J. Ade
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
- * E-mail:
| |
Collapse
|
43
|
Olivier N, Boissière J, Allart E, Mucci P, Thevenon A, Daussin F, Tiffreau V. Evaluation of muscle oxygenation by near infrared spectroscopy in patients with facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2015; 26:47-55. [PMID: 26608622 DOI: 10.1016/j.nmd.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/01/2015] [Accepted: 10/14/2015] [Indexed: 11/28/2022]
Abstract
UNLABELLED The purpose of the study was to determine muscle metabolism adaptation to exercise in facioscapulohumeral muscular dystrophy patients (FSHD) and to study the correlation with clinical functional status (6-min walk test). 8 FSHD patients and 15 age-matched healthy controls (Controls) performed two isokinetic constant-load knee extension exercises: (1) at 20% of their maximal extensors' peak torque (i.e., the same relative workload) and (2) at (20N⋅m) (the same absolute workload) for up to 4 min. All exercises consisted of rhythmic, voluntary, isokinetic, concentric contractions of the quadriceps femoris at 90°/s, whereas the flexion was performed passively at the same speed. Muscle oxygenation in the vastus lateralis was evaluated using near-infrared spectroscopy (NIRS). The FSHD patients displayed a lower maximal peak torque than controls (-41%, p < 0.05). During the two-exercise modalities, deoxygenated haemoglobin (HHb) and total haemoglobin volume (tHb) were lower in the FSHD patients (p < 0.05). The initial muscle deoxygenation time delay was shorter in the control group (FSHD: 15.1 ± 4.1 s vs. CONTROLS 10.4 ± 2.1 s, p < 0.05). Mean response time and maximal peak torque were both correlated with functional impairment (walking endurance). The results suggest that FSHD patients present an impairment in their capacity to deliver or to use oxygen.
Collapse
Affiliation(s)
- N Olivier
- EA 7369, URePSSS: team 1 - physical activity, muscle, health, University of Lille, 9, rue de l'Université, 59790 Ronchin, France.
| | - J Boissière
- EA 7369, URePSSS: team 1 - physical activity, muscle, health, University of Lille, 9, rue de l'Université, 59790 Ronchin, France
| | - E Allart
- Neuromuscular Disorders Reference Centre, Hôpital Swynghedauw, CHRU de Lille, 59037 Lille, France
| | - P Mucci
- EA 7369, URePSSS: team 1 - physical activity, muscle, health, University of Lille, 9, rue de l'Université, 59790 Ronchin, France
| | - A Thevenon
- EA 7369, URePSSS: team 1 - physical activity, muscle, health, University of Lille, 9, rue de l'Université, 59790 Ronchin, France; Neuromuscular Disorders Reference Centre, Hôpital Swynghedauw, CHRU de Lille, 59037 Lille, France
| | - F Daussin
- EA 7369, URePSSS: team 1 - physical activity, muscle, health, University of Lille, 9, rue de l'Université, 59790 Ronchin, France
| | - V Tiffreau
- EA 7369, URePSSS: team 1 - physical activity, muscle, health, University of Lille, 9, rue de l'Université, 59790 Ronchin, France; Neuromuscular Disorders Reference Centre, Hôpital Swynghedauw, CHRU de Lille, 59037 Lille, France
| |
Collapse
|
44
|
Miller RR, Reid WD, Mattman A, Yamabayashi C, Steiner T, Parker S, Gardy J, Tang P, Patrick DM. Submaximal exercise testing with near-infrared spectroscopy in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients compared to healthy controls: a case-control study. J Transl Med 2015; 13:159. [PMID: 25990639 PMCID: PMC4438583 DOI: 10.1186/s12967-015-0527-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating illness. Symptoms include profound fatigue and distinctive post-exertional malaise (PEM). We asked whether a submaximal exercise test would prove useful for identifying different patterns of tissue oxygen utilization in individuals with ME/CFS versus healthy subjects. Such a test has potential to aid with ME/CFS diagnosis, or to characterize patients' illness. METHODS A case-control study of 16 patients with ME/CFS compared to 16 healthy controls completing a 3-min handgrip protocol was performed. Response was measured using near-infrared spectroscopy, resulting in measurements of oxygenated (O2Hb) and deoxygenated hemoglobin (HHb) over wrist extensors and flexors. Changes in O2Hb (delta (d)O2Hb) and HHb (dHHb) absorbance between the first and last contraction were calculated, as were the force-time product of all contractions, measured as tension-time index (TTI), and ratings of perceived exertion (RPE). RESULTS Individuals with ME/CFS demonstrated smaller dO2Hb and dHHb than controls. However, after adjusting for TTI and change in total hemoglobin (delta (d)tHb), differences in dO2Hb and dHHb were reduced, with large overlapping variances. RPE was significantly higher for cases than controls, particularly at rest. CONCLUSIONS Relative to controls, participants with ME/CFS demonstrated higher RPE, lower TTI, and reduced dO2Hb and dHHb during repetitive handgrip exercise, although considerable variance was observed. With further study, submaximal exercise testing may prove useful for stratifying patients with a lower propensity for inducing PEM, and have the ability to establish baseline intensities for exercise prescription.
Collapse
Affiliation(s)
- Ruth R Miller
- School of Population and Public Health, British Columbia Centre for Disease Control, University of British Columbia, 655 West 12th Avenue, Vancouver, BC, V5Z 4R4, Canada.
| | - W Darlene Reid
- Department of Physical Therapy, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada.
| | - Andre Mattman
- Adult Metabolic Disease Clinic, Vancouver General Hospital, Level 4, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada.
| | - Cristiane Yamabayashi
- Muscle Biophysics Laboratory, Department of Physical Therapy, University of British Columbia, 828 West 10th Avenue, Vancouver, BC, V5Z 3P1, Canada.
| | - Theodore Steiner
- Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, V5Z 3J5, Canada.
| | - Shoshana Parker
- Centre for Health Evaluation and Outcome Sciences, 588-1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
| | - Jennifer Gardy
- British Columbia Centre for Disease Control, 655 West 12th Avenue, Vancouver, BC, V5Z 4R4, Canada.
| | - Patrick Tang
- British Columbia Centre for Disease Control, 655 West 12th Avenue, Vancouver, BC, V5Z 4R4, Canada.
| | - David M Patrick
- School of Population and Public Health, British Columbia Centre for Disease Control, University of British Columbia, 655 West 12th Avenue, Vancouver, BC, V5Z 4R4, Canada. .,British Columbia Centre for Disease Control, 655 West 12th Avenue, Vancouver, BC, V5Z 4R4, Canada.
| |
Collapse
|
45
|
Celie BM, Boone J, Smet JE, Vanlander AV, De Bleecker JL, Van Coster RN, Bourgois JG. Forearm deoxyhemoglobin and deoxymyoglobin (deoxy[Hb + Mb]) measured by near-infrared spectroscopy (NIRS) using a handgrip test in mitochondrial myopathy. APPLIED SPECTROSCOPY 2015; 69:342-347. [PMID: 25665184 DOI: 10.1366/14-07604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The purpose of this paper is to test whether peripheral oxygenation responses measured with near-infrared spectroscopy (NIRS) would differ between patients suffering from mitochondrial myopathy (MM) and healthy controls during an incremental handgrip exercise test. Two groups of subjects were studied: 11 patients with MM and 11 age- and gender-matched untrained healthy controls. A handgrip exercise until exhaustion protocol was used consisting of 2 min periods of work (½ Hz) at different intensities, separated by a 60 s rest period. The changes in deoxyhemoglobin and deoxymyoglobin (deoxy[Hb + Mb]) during each work step were expressed in percent to the maximum deoxy[Hb + Mb]-value measured during arterial occlusion in forearm muscles. A repeated measures analysis of variance was used to compare the increase in deoxy[Hb + Mb] between MM patients and controls with increasing intensity. Statistical analysis revealed a significant difference between both populations (P < 0.001) indicating that the increase in deoxy[Hb + Mb] showed a significantly different pattern in the two populations. In the post hoc analysis significant lower deoxy[Hb + Mb] -values were found for MM patients at every intensity. The results of this paper show significantly different skeletal muscle oxygenation responses, measured with an optical method as NIRS, between MM patients and age- and gender-matched healthy subjects at submaximal and maximal level during an incremental handgrip exercise. This optical method is thus a valuable tool to assess differences in peripheral oxygenation. Moreover, this method could be used as an evaluation tool for follow up in interventional pharmacological studies and rehabilitation programs.
Collapse
Affiliation(s)
- Bert M Celie
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
46
|
Takagi S, Murase N, Kime R, Niwayama M, Osada T, Katsumura T. Skeletal Muscle Deoxygenation Abnormalities in Early Post-Myocardial Infarction. Med Sci Sports Exerc 2014; 46:2062-9. [DOI: 10.1249/mss.0000000000000334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Spencer MD, Amano T, Kondo N, Kowalchuk JM, Koga S. Muscle O2 extraction reserve during intense cycling is site-specific. J Appl Physiol (1985) 2014; 117:1199-206. [PMID: 25257877 DOI: 10.1152/japplphysiol.00060.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study compared peak muscle deoxygenation ([HHb]peak) responses at three quadriceps sites during occlusion (OCC), ramp incremental (RI), severe- (SVR) and moderate-intensity (MOD) exercise. Seven healthy men (25 ± 4 yr) each completed a stationary cycling RI (20 W/min) test to determine [HHb]peak [at distal and proximal vastus lateralis (VLD and VLP) and rectus femoris (RF)], peak V̇O2 (V̇O(2peak)), gas exchange threshold (GET), and peak work rate (WR(peak)). Subjects also completed MOD (WR = 80% GET) and SVR exercise (WR corresponding to 120% V̇O(2peak)) with absolute [HHb] (quantified by multichannel, time-resolved near-infrared spectroscopy) and pulmonary VO2 (V̇O(2p)) monitored continuously. Additionally, [HHb] and total hemoglobin ([Hb]tot) were monitored at rest and during subsequent OCC (250 mmHg). Site-specific adipose tissue thickness was assessed (B-mode ultrasound), and its relationship with resting [Hb]tot was used to correct absolute [HHb]. For VLD and RF, [HHb]peak was higher (P < 0.05) during OCC (VLD = 111 ± 38, RF = 114 ± 26 μM) than RI (VLD 64 ± 14, RF = 85 ± 20) and SVR (VLD = 63 ± 13, RF = 81 ± 18). [HHb]peak was similar (P > 0.05) across these conditions at the VLP (OCC = 67 ± 17, RI = 69 ± 17, SVR = 63 ± 17 μM). [HHb] peaked and then decreased prior to exercise cessation during SVR at all three muscle sites. [HHb]peak during MOD was consistently lower than other conditions at all sites. A "[HHb] reserve" exists during intense cycling at the VLD and RF, likely implying either sufficient blood flow to meet oxidative demands or insufficient diffusion time for complete equilibration. In VLP this [HHb] reserve was absent, suggesting that a critical PO2 may be challenged during intense cycling.
Collapse
Affiliation(s)
- Matthew D Spencer
- Kobe Design University, Kobe, Hyogo, Japan; The University of Western Ontario, London, Ontario, Canada; and
| | | | | | | | | |
Collapse
|
48
|
Lanfranconi F, Pollastri L, Ferri A, Fraschini D, Masera G, Miserocchi G. Near infrared spectroscopy (NIRS) as a new non-invasive tool to detect oxidative skeletal muscle impairment in children survived to acute lymphoblastic leukaemia. PLoS One 2014; 9:e99282. [PMID: 24956391 PMCID: PMC4067277 DOI: 10.1371/journal.pone.0099282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/13/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Separating out the effects of cancer and treatment between central and peripheral components of the O2 delivery chain should be of interest to clinicians for longitudinal evaluation of potential functional impairment in order to set appropriate individually tailored training/rehabilitation programmes. We propose a non-invasive method (NIRS, near infrared spectroscopy) to be used in routine clinical practice to evaluate a potential impairment of skeletal muscle oxidative capacity during exercise in children previously diagnosed with acute lymphoblastic leukaemia (ALL). The purpose of this study was to evaluate the capacity of skeletal muscle to extract O2 in 10 children diagnosed with ALL, 1 year after the end of malignancy treatment, compared to a control group matched for gender and age (mean±SD = 7.8±1.5 and 7.3±1.4 years, respectively). METHODS AND FINDINGS Participants underwent an incremental exercise test on a treadmill until exhaustion. Oxygen uptake ([Formula: see text]), heart rate (HR), and tissue oxygenation status (Δ[HHb]) of the vastus lateralis muscle evaluated by NIRS, were measured. The results showed that, in children with ALL, a significant linear regression was found by plotting [Formula: see text] vs Δ[HHb] both measured at peak of exercise. In children with ALL, the slope of the HR vs [Formula: see text] linear response (during sub-maximal and peak work rates) was negatively correlated with the peak value of Δ[HHb]. CONCLUSIONS The present study proves that the NIRS technique allows us to identify large inter-individual differences in levels of impairment in muscle O2 extraction in children with ALL. The outcome of these findings is variable and may reflect either muscle atrophy due to lack of use or, in the most severe cases, an undiagnosed myopathy.
Collapse
Affiliation(s)
- Francesca Lanfranconi
- Department of Health Sciences, Laboratory of Clinical Physiology and Sport Medicine, University of Milano-Bicocca, Monza, Italy
- * E-mail:
| | - Luca Pollastri
- Department of Health Sciences, Laboratory of Clinical Physiology and Sport Medicine, University of Milano-Bicocca, Monza, Italy
| | - Alessandra Ferri
- Department of Health Sciences, Laboratory of Clinical Physiology and Sport Medicine, University of Milano-Bicocca, Monza, Italy
| | - Donatella Fraschini
- Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Giuseppe Masera
- Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Giuseppe Miserocchi
- Department of Health Sciences, Laboratory of Clinical Physiology and Sport Medicine, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
49
|
Porcelli S, Marzorati M, Belletti M, Bellistri G, Morandi L, Grassi B. The "second wind" in McArdle's disease patients during a second bout of constant work rate submaximal exercise. J Appl Physiol (1985) 2014; 116:1230-7. [PMID: 24651984 DOI: 10.1152/japplphysiol.01063.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Patients with McArdle's disease (McA) typically show the "second-wind" phenomenon, a sudden decrease in heart rate (HR) and an improved exercise tolerance occurring after a few minutes of exercise. In the present study, we investigated whether in McA a first bout of exercise determines a second wind during a second bout, separated by the first by a few minutes of recovery. Eight McA (44 ± 4 yr) and a control group of six mitochondrial myopathy patients (51 ± 6 yr) performed two repetitions (CWR1 and CWR2) of 6-min constant work rate exercise (∼50% of peak work rate) separated by 6-min (SHORT) or 18-min (LONG) recovery. Pulmonary O2 uptake (Vo2), HR, cardiac output, rates of perceived exertion, vastus lateralis oxygenation {changes in deoxygenated Hb and myoglobin Mb concentrations, Δ[deoxy(Hb+Mb)], by near-infrared spectroscopy} were determined. In McA, Vo2 (0.86 ± 0.2 vs. 0.95 ± 0.1 l/min), HR (113 ± 10 vs. 150 ± 13 beats/min), cardiac output (11.6 ± 0.6 vs. 15.0 ± 0.8 l/min), and rates of perceived exertion (11 ± 2 vs. 14 ± 3) were lower, whereas Δ[deoxy(Hb+Mb)] was higher (14.7 ± 2.3 vs. -0.1 ± 4.6%) in CWR2-SHORT vs. CWR1; the "overshoot" of Δ[deoxy(Hb+Mb)] and the "slow component" of Vo2 kinetics disappeared in CWR2-SHORT. No differences (vs. CWR1) were observed in McA during CWR2-LONG, or in mitochondrial myopathy patients during both CWR2-SHORT and -LONG. A second-wind phenomenon was observed in McA during the second of two consecutive 6-min constant-work rate submaximal exercises. The second wind was associated with changes of physiological variables, suggesting an enhanced skeletal muscle oxidative metabolism. The second wind was not described after a longer (18-min) recovery period.
Collapse
Affiliation(s)
- Simone Porcelli
- Institute of Bioimaging and Molecular Physiology, National Research Council, Segrate, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Muscular exercise requires transitions to and from metabolic rates often exceeding an order of magnitude above resting and places prodigious demands on the oxidative machinery and O2-transport pathway. The science of kinetics seeks to characterize the dynamic profiles of the respiratory, cardiovascular, and muscular systems and their integration to resolve the essential control mechanisms of muscle energetics and oxidative function: a goal not feasible using the steady-state response. Essential features of the O2 uptake (VO2) kinetics response are highly conserved across the animal kingdom. For a given metabolic demand, fast VO2 kinetics mandates a smaller O2 deficit, less substrate-level phosphorylation and high exercise tolerance. By the same token, slow VO2 kinetics incurs a high O2 deficit, presents a greater challenge to homeostasis and presages poor exercise tolerance. Compelling evidence supports that, in healthy individuals walking, running, or cycling upright, VO2 kinetics control resides within the exercising muscle(s) and is therefore not dependent upon, or limited by, upstream O2-transport systems. However, disease, aging, and other imposed constraints may redistribute VO2 kinetics control more proximally within the O2-transport system. Greater understanding of VO2 kinetics control and, in particular, its relation to the plasticity of the O2-transport/utilization system is considered important for improving the human condition, not just in athletic populations, but crucially for patients suffering from pathologically slowed VO2 kinetics as well as the burgeoning elderly population.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, Kansas, USA.
| | | |
Collapse
|