1
|
Arieta LR, Smith ZH, Paluch AE, Kent JA. Effects of older age on contraction-induced intramyocellular acidosis and inorganic phosphate accumulation in vivo: A systematic review and meta-analysis. PLoS One 2024; 19:e0308336. [PMID: 39321147 PMCID: PMC11424002 DOI: 10.1371/journal.pone.0308336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 09/27/2024] Open
Abstract
Although it is clear that the bioenergetic basis of skeletal muscle fatigue (transient decrease in peak torque or power in response to contraction) involves intramyocellular acidosis (decreased pH) and accumulation of inorganic phosphate (Pi) in response to the increased energy demand of contractions, the effects of old age on the build-up of these metabolites has not been evaluated systematically. The purpose of this study was to compare pH and [Pi] in young (18-45 yr) and older (55+ yr) human skeletal muscle in vivo at the end of standardized contraction protocols. Full study details were prospectively registered on PROSPERO (CRD42022348972). PubMed, Web of Science, and SPORTDiscus databases were systematically searched and returned 12 articles that fit the inclusion criteria for the meta-analysis. Participant characteristics, contraction mode (isometric, dynamic), and final pH and [Pi] were extracted. A random-effects model was used to calculate the mean difference (MD) and 95% confidence interval (CI) for pH and [Pi] across age groups. A subgroup analysis for contraction mode was also performed. Young muscle acidified more than older muscle (MD = -0.12 pH; 95%CI = -0.18,-0.06; p<0.01). There was no overall difference by age in final [Pi] (MD = 2.14 mM; 95%CI = -0.29,4.57; p = 0.08), although sensitivity analysis revealed that removing one study resulted in greater [Pi] in young than older muscle (MD = 3.24 mM; 95%CI = 1.72,4.76; p<0.01). Contraction mode moderated these effects (p = 0.02) such that young muscle acidified (MD = -0.19 pH; 95%CI = -0.27,-0.11; p<0.01) and accumulated Pi (MD = 4.69 mM; 95%CI = 2.79,6.59; p<0.01) more than older muscle during isometric, but not dynamic, contractions. The smaller energetic perturbation in older muscle indicated by these analyses is consistent with its relatively greater use of oxidative energy production. During dynamic contractions, elimination of this greater reliance on oxidative energy production and consequently lower metabolite accumulations in older muscle may be important for understanding task-specific, age-related differences in fatigue.
Collapse
Affiliation(s)
- Luke R. Arieta
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
| | - Zoe H. Smith
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
| | - Amanda E. Paluch
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Jane A. Kent
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
2
|
Aminirakan D, Losekamm B, Wollesen B. Effects of combined cognitive and resistance training on physical and cognitive performance and psychosocial well-being of older adults ≥65: study protocol for a randomised controlled trial. BMJ Open 2024; 14:e082192. [PMID: 38643006 PMCID: PMC11033638 DOI: 10.1136/bmjopen-2023-082192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/28/2024] [Indexed: 04/22/2024] Open
Abstract
INTRODUCTION With increasing life expectancy of older adult population, maintaining independence and well-being in later years is of paramount importance. This study aims to investigate the impact of three distinct interventions: cognitive training, resistance training and a combination of both, compared with an inactive control group, on cognitive performance, mobility and quality of life in adults aged ≥65 years. METHODS AND ANALYSIS This trial will investigate healthy older adults aged ≥65 years living independently without cognitive impairments. Participants will be randomly assigned to one of four groups: (1) cognitive training, (2) resistance training, (3) combined cognitive and resistance training, and (4) control group (n=136 participants with 34 participants per group). The interventions will be conducted over 12 weeks. The cognitive training group will receive group-based activities for 45-60 min two times a week. The resistance training group exercises will target six muscle groups and the combined group will integrate cognitive tasks into the resistance training sessions. Primary outcomes are: Short Physical Performance Battery, Sit-to-Stand Test, Montreal Cognitive Assessment, Trail Making Test and Stroop Test combined with gait on a treadmill (dual task). Life satisfaction will be measured by the Satisfaction With Life Scale. Secondary outcomes encompass hand grip strength and the Functional Independence Measure. ETHICS AND DISSEMINATION Ethical approval was provided by the local Ethics Committee at the University of Hamburg (no. 2023_009). Informed consent will be obtained from all study participants. The results of the study will be distributed for review and discussion in academic journals and conferences. TRIAL REGISTRATION NUMBER DRKS00032587.
Collapse
Affiliation(s)
- Deniz Aminirakan
- Department of Human Movement Science, Universität Hamburg, Hamburg, Germany
| | - Björn Losekamm
- Department of Human Movement Science, Universität Hamburg, Hamburg, Germany
| | - Bettina Wollesen
- Department of Human Movement Science, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
3
|
Shi F, Rymer WZ, Son J. Ankle Joint Angle Influences Relative Torque Fluctuation during Isometric Plantar Flexion. Bioengineering (Basel) 2023; 10:bioengineering10030373. [PMID: 36978764 PMCID: PMC10045061 DOI: 10.3390/bioengineering10030373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The purpose of this study was to investigate the influence of changes in muscle length on the torque fluctuations and on related oscillations in muscle activity during voluntary isometric contractions of ankle plantar flexor muscles. Eleven healthy individuals were asked to perform voluntary isometric contractions of ankle muscles at five different contraction intensities from 10% to 70% of maximum voluntary isometric contraction (MVIC) and at three different muscle lengths, implemented by changing the ankle joint angle (plantar flexion of 26°-shorter muscle length; plantar flexion of 10°-neutral muscle length; dorsiflexion of 3°-longer muscle length). Surface electromyogram (EMG) signals were recorded from the skin surface over the triceps surae muscles, and rectified-and-smoothed EMG (rsEMG) were estimated to assess the oscillations in muscle activity. The absolute torque fluctuations (quantified by the standard deviation) were significantly higher during moderate-to-high contractions at the longer muscle length. Absolute torque fluctuations were found to be a linear function of torque output regardless of muscle length. In contrast, the relative torque fluctuations (quantified by the coefficient of variation) were higher at the shorter muscle length. However, both absolute and relative oscillations in muscle activities remained relatively consistent at different ankle joint angles for all plantar flexors. These findings suggest that the torque steadiness may be affected by not only muscle activities, but also by muscle length-dependent mechanical properties. This study provides more insights that muscle mechanics should be considered when explaining the steadiness in force output.
Collapse
Affiliation(s)
- Fandi Shi
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Shirley Ryan AbilityLab (Formerly the Rehabilitation Institute of Chicago), Chicago, IL 60611, USA
| | - William Zev Rymer
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Shirley Ryan AbilityLab (Formerly the Rehabilitation Institute of Chicago), Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jongsang Son
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
4
|
Paris MT, McNeil CJ, Power GA, Rice CL, Dalton BH. Age-related performance fatigability: a comprehensive review of dynamic tasks. J Appl Physiol (1985) 2022; 133:850-866. [PMID: 35952347 DOI: 10.1152/japplphysiol.00319.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult ageing is associated with a myriad of changes within the neuromuscular system, leading to reductions in contractile function of old adults. One of the consequences of these age-related neuromuscular adaptations is altered performance fatigability, which can limit the ability of old adults to perform activities of daily living. Whereas age-related fatigability of isometric tasks has been well characterized, considerably less is known about fatigability of old adults during dynamic tasks involving movement about a joint, which provides a more functionally relevant task compared to static contractions. This review provides a comprehensive summary of age-related fatigability in dynamic contractions, where the importance of task specificity is highlighted with a brief discussion of the potential mechanisms responsible for differences in fatigability between young and old adults. The angular velocity of the task is critical for evaluating age-related fatigability, as tasks which constrain angular velocity (i.e., isokinetic) produce equivocal age-related differences in fatigability, whereas tasks involving unconstrained velocity (i.e., isotonic-like) consistently induce greater fatigability of old compared to young adults. These unconstrained velocity tasks, that are more closely associated with natural movements, offer an excellent model to uncover the underlying age-related mechanisms of increased fatigability. Future work evaluating the mechanisms of increased age-related fatigability of dynamic tasks should be evaluated using task-specific contractions (i.e., dynamic), particularly for assessment of spinal and supra-spinal components. Advancing our understanding of age-related fatigability is likely to yield novel insights and approaches for improving mobility limitations in old adults.
Collapse
Affiliation(s)
- Michael T Paris
- School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Chris J McNeil
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Charles L Rice
- School of Kinesiology, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
5
|
The Validity and Reliability of Two Commercially Available Load Sensors for Clinical Strength Assessment. SENSORS 2021; 21:s21248399. [PMID: 34960492 PMCID: PMC8703969 DOI: 10.3390/s21248399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022]
Abstract
Objective: Handheld dynamometers are common tools for assessing/monitoring muscular strength and endurance. Health/fitness Bluetooth load sensors may provide a cost-effective alternative; however, research is needed to evaluate the validity and reliability of such devices. This study assessed the validity and reliability of two commercially available Bluetooth load sensors (Activ5 by Activbody and Progressor by Tindeq). Methods: Four tests were conducted on each device: stepped loading, stress relaxation, simulated exercise, and hysteresis. Each test type was repeated three times using the Instron ElectroPuls mechanical testing device (a gold-standard system). Test–retest reliability was assessed through intraclass correlations. Agreement with the gold standard was assessed with Pearson’s correlation, interclass correlation, and Lin’s concordance correlation. Results: The Activ5 and Progressor had excellent test–retest reliability across all four tests (ICC(3,1) ≥ 0.999, all p ≤ 0.001). Agreement with the gold standard was excellent for both the Activ5 (ρ ≥ 0.998, ICC(3,1) ≥ 0.971, ρc ≥ 0.971, all p’s ≤ 0.001) and Progressor (ρ ≥ 0.999, ICC(3,1) ≥ 0.999, ρc ≥ 0.999, all p’s ≤ 0.001). Measurement error increased for both devices as applied load increased. Conclusion: Excellent test–retest reliability was found, suggesting that both devices can be used in a clinical setting to measure patient progress over time; however, the Activ5 consistently had poorer agreement with the gold standard (particularly at higher loads).
Collapse
|
6
|
Schroeder A, Wang N, Felson DT, Lewis CE, Nevitt MC, Segal NA. Knee Extensor and Flexor Torque Variability During Maximal Strength Testing and Change in Knee Pain and Physical Function at 60-Mo Follow-Up: The Multicenter Osteoarthritis Study (MOST). Am J Phys Med Rehabil 2021; 100:196-201. [PMID: 32932359 PMCID: PMC8024112 DOI: 10.1097/phm.0000000000001587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT As the population ages, there is a growing burden owing to musculoskeletal diseases, such as knee osteoarthritis, and subsequent functional decline. In the absence of a cure, there is a need to identify factors amenable to intervention to prevent or slow this process. The Multicenter Osteoarthritis Study cohort was developed for this purpose. In this study, associations between variability in peak knee flexor and extensor torque at baseline and worsening of pain and physical function over the subsequent 60 mos were assessed in a cohort of 2680 participants. The highest quartile of baseline knee flexor torque variability was found to be associated longitudinally with worsening pain (fourth quartile ß estimate, mean ± SE, 0.49 ± 0.19; P = 0.0115; with R2 = 0.28 and P for trend across quartiles = 0.0370) and physical function scores (fourth quartile ß estimate, mean ± SE, 1.39 ± 0.64; P = 0.0296; with R2 = 0.25 and P for trend across quartiles = 0.0371), after adjusting for baseline knee osteoarthritis and maximum knee flexor torque. There were no associations between baseline knee extensor torque and worsening pain or physical function by 60 mos. The presence of greater variability in maximum knee flexor strength may identify patients who may benefit from therapies aimed at preventing worsening knee pain and physical function.
Collapse
Affiliation(s)
- Allison Schroeder
- From the Department of PM&R, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (AS); Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, Massachusetts (NW); Boston University, Boston, Massachusetts (DTF); University of Alabama at Birmingham, Birmingham, Alabama (CEL); University of California, San Francisco, San Francisco, California (MCN); University of Kansas Medical Center, Kansas City, Kansas (NAS); and The University of Iowa, Iowa City, Iowa (NAS)
| | | | | | | | | | | |
Collapse
|
7
|
Fitzgerald LF, Ryan MM, Bartlett MF, Miehm JD, Kent JA. Muscle architecture, voluntary activation, and low-frequency fatigue do not explain the greater fatigue of older compared with young women during high-velocity contractions. PLoS One 2020; 15:e0234217. [PMID: 33141870 PMCID: PMC7608879 DOI: 10.1371/journal.pone.0234217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/18/2020] [Indexed: 11/18/2022] Open
Abstract
Although high-velocity contractions elicit greater muscle fatigue in older than young adults, the cause of this difference is unclear. We examined the potential roles of resting muscle architecture and baseline contractile properties, as well as changes in voluntary activation and low-frequency fatigue in response to high-velocity knee extensor work. Vastus lateralis muscle architecture was determined in quiescent muscle by ultrasonography in 8 young (23.4±1.8 yrs) and 8 older women (69.6±1.1). Maximal voluntary dynamic (MVDC) and isometric (MVIC), and stimulated (80Hz and 10Hz, 500ms) isometric contractions were performed before and immediately after 120 MVDCs (240°.s-1, one every 2s). Architecture variables did not differ between groups (p≥0.209), but the half-time of torque relaxation (T1/2) was longer in older than young women at baseline (151.9±6.0 vs. 118.8±4.4 ms, respectively, p = 0.001). Older women fatigued more than young (to 33.6±4.7% vs. 55.2±4.2% initial torque, respectively; p = 0.004), with no evidence of voluntary activation failure (ΔMVIC:80Hz torque) in either group (p≥0.317). Low-frequency fatigue (Δ10:80Hz torque) occurred in both groups (p<0.001), as did slowing of T1/2 (p = 0.001), with no differences between groups. Baseline T1/2 was inversely associated with fatigue in older (r2 = 0.584, p = 0.045), but not young women (r2 = 0.147, p = 0.348). These results indicate that differences in muscle architecture, voluntary activation, and low-frequency fatigue do not explain the greater fatigue of older compared with young women during high-velocity contractions. The inverse association between baseline T1/2 and fatigue in older women suggests that factors related to slower muscle contractile properties may be protective against fatigue during fast, repetitive contractions in aging.
Collapse
Affiliation(s)
- Liam F. Fitzgerald
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Margaret M. Ryan
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Miles F. Bartlett
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Jules D. Miehm
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Jane A. Kent
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
8
|
Wu R, Ditroilo M, Delahunt E, De Vito G. Age Related Changes in Motor Function (II). Decline in Motor Performance Outcomes. Int J Sports Med 2020; 42:215-226. [PMID: 33137831 DOI: 10.1055/a-1265-7073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Age-related impairments in motor performance are caused by a deterioration in mechanical and neuromuscular functions, which have been investigated from the macro-level of muscle-tendon unit to the micro-level of the single muscle fiber. When compared to the healthy young skeletal muscle, aged skeletal muscle is: (1) weaker, slower and less powerful during the performance of voluntary contractions; (2) less steady during the performance of isometric contractions, particularly at low levels of force; and (3) less susceptible to fatigue during the performance of sustained isometric contractions, but more susceptible to fatigue during the performance of high-velocity dynamic contractions. These impairments have been discussed to be mainly the result of: a) loss of muscle mass and selective atrophy of type II muscle fibers; b) altered tendon mechanical properties (decreased tendon stiffness); c) reduced number and altered function of motor units; d) slower muscle fiber shortening velocity; e) increased oscillation in common synaptic input to motor neurons; and f) altered properties and activity of sarcoplasmic reticulum. In this second part of a two-part review we have detailed the age-related impairments in motor performance with a reference to the most important mechanical and neuromuscular contributing factors.
Collapse
Affiliation(s)
- Rui Wu
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | - Massimiliano Ditroilo
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | - Eamonn Delahunt
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | | |
Collapse
|
9
|
Upper Lip Horizontal Line: Characteristics of a Dynamic Facial Line. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186672. [PMID: 32933221 PMCID: PMC7559705 DOI: 10.3390/ijerph17186672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022]
Abstract
Background: Upper lip appearance received major attention with the introduction of diverse treatment modalities, including lip augmentation, rhinoplasty surgery, and dental treatment designed to support the upper lip. Our objectives were to define the prevalence and characteristics of the upper lip horizontal line (ULHL), which is a dynamic line appearing during a smile, in relation to gender, malocclusions, aging, and facial morphology. Methods: First, the prevalence and gender distribution of ULHL was examined from standardized en-face imaging at full smile of 643 randomly selected patients. Second, cephalometric and dental cast model analyses were made for 97 consecutive patients divided into three age groups. Results: ULHL appears in 13.8% of the population examined, and prevailed significantly more in females (78%). The prevalence of ULHL was not related to age nor to malocclusion. Patients presenting ULHL showed shorter upper lip and deeper lip sulcus. The skeletal pattern showed longer mid-face, shorter lower facial height and greater prevalence of a gummy smile. Conclusions: Female patients with short upper lip, concavity of the upper lip, and gummy smile are more likely to exhibit ULHL. The ULHL is not age-related and can be identified in children and young adults. Therefore, it should be considered when selecting diverse treatment modalities involving the upper lip.
Collapse
|
10
|
Giuliani HK, Shea NW, Gerstner GR, Mota JA, Blackburn JT, Ryan ED. The Influence of Age and Obesity-Altered Muscle Tissue Composition on Muscular Dimensional Changes: Impact on Strength and Function. J Gerontol A Biol Sci Med Sci 2020; 75:2286-2294. [DOI: 10.1093/gerona/glaa206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Abstract
The purpose of this study was to determine if muscular dimensional changes with increases in torque production are influenced by age- and obesity-related increases in intramuscular fat, and its relationship to percent body fat (%BF), echo intensity (EI), strength, and maximum walking speed. Sixty-six healthy men were categorized into 3 groups based on age and body mass index status (young normal weight [YNW], older normal weight [ONW], and older obese [OB]). Participants underwent %BF assessments, resting ultrasonography to determine muscle size (cross-sectional area [CSA]) and EI of the superficial quadriceps, and a 10-m maximum walking speed assessment. Maximal and submaximal (rest–100% MVC in 10% increments) isometric leg extension strength was assessed while changes in rectus femoris (RF) CSA, width, and depth were obtained with ultrasonography. Echo intensity and %BF were different among all groups (p ≤ .007), with the YNW and OB groups exhibiting the lowest and highest %BF and EI values, respectively. The RF increased in depth and decreased in width with increases in torque intensity for all groups. The ONW group demonstrated no change (−0.08%) in RF CSA across torque intensities, whereas the YNW group (−11.5%) showed the greatest decrease in CSA, and the OB group showed a more subtle decrease (−4.6%). Among older men, a greater change in RF CSA was related to poorer EI (r = −0.355) and higher %BF (r = −0.346), while a greater decrease in RF width was associated with faster walking speeds (r = −0.431). Examining muscular dimensional changes during contraction is a unique model to investigate the influence of muscle composition on functional performance.
Collapse
Affiliation(s)
- Hayden K Giuliani
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill
| | - Nic W Shea
- School of Biological Sciences, Georgia Institute of Technology, Atlanta
| | - Gena R Gerstner
- Department of Human Movement Sciences, Old Dominion University, Norfolk, Virginia
| | - Jacob A Mota
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill
| | - J Troy Blackburn
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill
| | - Eric D Ryan
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill
| |
Collapse
|
11
|
Akagi R, Imaizumi N, Sato S, Hirata N, Tanimoto H, Hirata K. Active recovery has a positive and acute effect on recovery from fatigue induced by repeated maximal voluntary contractions of the plantar flexors. J Electromyogr Kinesiol 2020; 50:102384. [PMID: 31918365 DOI: 10.1016/j.jelekin.2019.102384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 01/07/2023] Open
Abstract
This study investigated the acute effect of active recovery (AR) following fatigue induced by 80 three-second maximal voluntary isometric plantar flexion contractions (MVICs) in 12 young men. AR consisted of a total of 180 voluntary isometric ramp contractions of the plantar flexors (0.75-s contraction/relaxation) targeting 10% of MVIC torque. MVIC torque, voluntary activation and root mean square values of electromyographic signals for the triceps surae normalized by each peak-to-peak amplitude of compound motor action potential were determined before, and immediately, 10, 20 and 30 min after the fatiguing task. Evoked torques were similarly assessed except for immediately after it. The AR and passive recovery were randomly performed on two days by each participant between 5 min and 10 min after the fatiguing task. For all the parameters other than MVIC torque, there was no significant difference between the conditions at any time point. MVIC torque decreased significantly immediately after the fatiguing task regardless of condition (P < 0.05), and the corresponding decrease in MVIC torque recovered 30 min after the fatiguing task only in AR (P < 0.05). These results suggest an acute positive effect of AR on recovery of neuromuscular function and/or contractile properties after fatigue.
Collapse
Affiliation(s)
- Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan; Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.
| | - Naoto Imaizumi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Shinya Sato
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Naoya Hirata
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Hiroki Tanimoto
- Graduate School of Health Management, Keio University, Kanagawa, Japan
| | - Kosuke Hirata
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
12
|
Mugnosso M, Zenzeri J, Hughes CML, Marini F. Coupling Robot-Aided Assessment and Surface Electromyography (sEMG) to Evaluate the Effect of Muscle Fatigue on Wrist Position Sense in the Flexion-Extension Plane. Front Hum Neurosci 2019; 13:396. [PMID: 31736733 PMCID: PMC6838006 DOI: 10.3389/fnhum.2019.00396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/22/2019] [Indexed: 11/13/2022] Open
Abstract
Proprioception is a crucial sensory modality involved in the control and regulation of coordinated movements and in motor learning. However, the extent to which proprioceptive acuity is influenced by local muscle fatigue is obscured by methodological differences in proprioceptive and fatiguing protocols. In this study, we used high resolution kinematic measurements provided by a robotic device, as well as both frequency and time domain analysis of signals captured via surface electromyography (sEMG) to examine the effects of local muscle fatigue on wrist proprioceptive acuity in 16 physically and neurologically healthy young adults. To this end, participants performed a flexion/extension ipsilateral joint position matching test (JPM), after which a high-resistive robotic task was used to induce muscle fatigue of the flexor carpi radialis (FCR) muscle. The JPM test was then repeated in order to analyze potential changes in proprioceptive acuity. Results indicated that the fatigue protocol had a significant effect on movements performed in flexion direction, with participants exhibiting a tendency to undershoot the target before the fatigue protocol (−1.218°), but overshooting after the fatigue protocol (0.587°). In contrast, in the extension direction error bias values were similar before and after the fatigue protocol as expected (pre = −1.852°, post = −1.237°) and reflected a tendency to undershoot the target. Moreover, statistical analysis indicated that movement variability was not influenced by the fatigue protocol or movement direction. In sum, results of the present study demonstrate that an individual’s estimation of wrist joint displacement (i.e., error bias), but not precision (i.e., variability), is affected by muscular fatigue in a sample of neurologically and physically healthy adults.
Collapse
Affiliation(s)
- Maddalena Mugnosso
- Motor Learning, Assistive and Rehabilitation Robotics Laboratory, Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
| | - Jacopo Zenzeri
- Motor Learning, Assistive and Rehabilitation Robotics Laboratory, Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Charmayne M L Hughes
- NeuroTech Laboratory, Health Equity Institute, San Francisco State University, San Francisco, CA, United States
| | - Francesca Marini
- Motor Learning, Assistive and Rehabilitation Robotics Laboratory, Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
13
|
Gilmore KJ, Fanous J, Doherty TJ, Kimpinski K, Rice CL. Nerve dysfunction leads to muscle morphological abnormalities in chronic inflammatory demyelinating polyneuropathy assessed by MRI. Clin Anat 2019; 33:77-84. [DOI: 10.1002/ca.23473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/05/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Kevin J. Gilmore
- School of Kinesiology, Faculty of Health Science London Ontario Canada
| | - Jacob Fanous
- School of Kinesiology, Faculty of Health Science London Ontario Canada
| | - Timothy J. Doherty
- Department of Clinical Neurological Sciences Schulich School of Medicine and Dentistry, The University of Western Ontario London Ontario Canada
- Department of Physical Medicine and Rehabilitation Schulich School of Medicine and Dentistry, The University of Western Ontario London Ontario Canada
| | - Kurt Kimpinski
- School of Kinesiology, Faculty of Health Science London Ontario Canada
- Department of Clinical Neurological Sciences Schulich School of Medicine and Dentistry, The University of Western Ontario London Ontario Canada
| | - Charles L. Rice
- School of Kinesiology, Faculty of Health Science London Ontario Canada
- Department of Anatomy and Cell Biology Schulich School of Medicine and Dentistry, The University of Western Ontario London Ontario Canada
| |
Collapse
|
14
|
Abstract
Older females experience higher rates of disability than males, potentially due to sex-specific differences in gait and muscle function. The authors evaluated the effects of age and physical activity (PA) on gait mechanics and knee extensor muscle function in males and females. Three groups of 20 individuals (each 10 females) participated: young (21-35 y) and highly and less active older (55-70 y) adults. Knee extensor strength and joint mechanics during preferred speed gait were collected before and after 30 minutes of walking. Age by sex and PA by sex interactions indicated older and less active older females had lower concentric knee extensor muscle power and larger hip extension moments than males. After 30 minutes of walking, older less active adults had larger decreases in knee extensor power than their highly active older counterparts, and older adults of both sexes had decreases in ankle dorsiflexion moments while young adults did not. These results suggest that older, particularly less active, adults are susceptible to knee extensor muscle fatigue from moderate activity. For older adults, high levels of PA may be necessary to preserve gait mechanics in response to a bout of exercise. This new information may be important for targeting interventions in at-risk older adults.
Collapse
|
15
|
Le Berre M, Morin M, Corriveau H, Hamel M, Nadeau S, Filiatrault J, Dumoulin C. Characteristics of Lower Limb Muscle Strength, Balance, Mobility, and Function in Older Women with Urge and Mixed Urinary Incontinence: An Observational Pilot Study. Physiother Can 2019; 71:250-260. [PMID: 31719721 DOI: 10.3138/ptc.2018-30] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purpose: After the age of 65, urinary incontinence (UI) occurs in one of every two women. A positive correlation between falls and urgency UI (UUI) or mixed UI (MUI) has also been identified. However, lower extremity impairments in older women with UUI or MUI have not been thoroughly investigated. The primary goal of this study was to compare lower limb strength, balance, mobility, and function in older women with and without UUI or MUI. The secondary goal was to evaluate the association between these measurements and UI severity. Method: A total of 40 older women with and without UUI or MUI completed standardized tests for lower limb strength (knee flexor or extensor dynamometry, 30-second sit-to-stand test), balance (single-leg stance test, Four Square Step Test, Activities-specific Balance Confidence questionnaire), mobility (10-metre walk test, 6-minute walk test), and function (Human Activity Profile questionnaire, 12-Item Short Form Health Survey). Results: Significant differences in balance and mobility were observed between the two groups. Women with UI had shorter single-leg stance times, lower balance confidence scores, and slower gait speeds. Conclusions: The results from this pilot study suggest that high-functioning older women with UUI or MUI have balance and mobility impairments. More studies are needed to confirm these results. By reporting power calculations for sample size, this pilot study provides a useful basis on which to design and conduct larger studies.
Collapse
Affiliation(s)
- Mélanie Le Berre
- Institut Universitaire de Gériatrie de Montréal.,School of Rehabilitation, Université de Montréal
| | - Mélanie Morin
- School of Rehabilitation, Université de Sherbrooke, Sherbrooke, Que
| | - Hélène Corriveau
- School of Rehabilitation, Université de Sherbrooke, Sherbrooke, Que
| | - Mathieu Hamel
- School of Rehabilitation, Université de Sherbrooke, Sherbrooke, Que
| | - Sylvie Nadeau
- School of Rehabilitation, Université de Montréal.,Pathokinesiology Laboratory, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Montreal
| | - Johanne Filiatrault
- Institut Universitaire de Gériatrie de Montréal.,School of Rehabilitation, Université de Montréal
| | - Chantale Dumoulin
- Institut Universitaire de Gériatrie de Montréal.,School of Rehabilitation, Université de Montréal
| |
Collapse
|
16
|
Englund DA, Price LL, Grosicki GJ, Iwai M, Kashiwa M, Liu C, Reid KF, Fielding RA. Progressive Resistance Training Improves Torque Capacity and Strength in Mobility-Limited Older Adults. J Gerontol A Biol Sci Med Sci 2019; 74:1316-1321. [PMID: 30165595 PMCID: PMC6625591 DOI: 10.1093/gerona/gly199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Progressive resistance training (PRT) is consistently shown to improve muscle strength in older adults. The efficacy of PRT to improve muscle fatigue in older adults with demonstrated mobility limitations remains unclear. METHODS Mobility-limited (Short Physical Performance Battery [SPPB] ≤ 9) older adults (age 70-92 years) were recruited for this study and randomized to either PRT or home-based flexibility (FLEX) 3 d/wk for 12 weeks. Muscle fatigue and strength outcomes were assessed at baseline and 12 weeks. The primary outcome was torque capacity, a composite measure of strength and fatigue, defined as the sum of peak torques from an isokinetic fatigue test. RESULTS Seventy participants were randomized (mean [SD] age 78.9 [5.4] years; 60% female; mean [SD] SPPB 7.5 [1.6]). At follow-up, the PRT group improved significantly in torque capacity, mean between-group difference (95% confidence interval) 466.19 (138.4, 793.97) Nm (p = .006), and maximal strength 127.3 (60.96, 193.61) Nm (p = .0003), when compared with FLEX group. Neither group demonstrated significant changes in muscle fatigue or torque variability. CONCLUSION Twelve weeks of PRT improved torque capacity, as well as strength in mobility-limited older adults. These results demonstrate PRT improves multiple age-related muscular impairments.
Collapse
Affiliation(s)
- Davis A Englund
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Lori Lyn Price
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts
- Tufts Clinical and Translational Science Institute, Tufts University, Boston, Massachusetts
| | - Gregory J Grosicki
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | | | | | - Christine Liu
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
- Geriatrics Section, Department of Medicine, Boston Medical Center, Massachusetts
| | - Kieran F Reid
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| |
Collapse
|
17
|
Aging Does Not Affect Beta Modulation during Reaching Movements. Neural Plast 2019; 2019:1619290. [PMID: 31223306 PMCID: PMC6541950 DOI: 10.1155/2019/1619290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 12/24/2022] Open
Abstract
During movement, modulation of beta power occurs over the sensorimotor areas, with a decrease just before its start (event-related desynchronization, ERD) and a rebound after its end (event-related synchronization, ERS). We have recently found that the depth of ERD-to-ERS modulation increases during practice in a reaching task and the following day decreases to baseline levels. Importantly, the magnitude of the beta modulation increase during practice is highly correlated with the retention of motor skill tested the following day. Together with other evidence, this suggests that the increase of practice-related modulation depth may be the expression of sensorimotor cortex's plasticity. Here, we determine whether the practice-related increase of beta modulation depth is equally present in a group of younger and a group of older subjects during the performance of a 30-minute block of reaching movements. We focused our analyses on two regions of interest (ROIs): the left sensorimotor and the frontal region. Performance indices were significantly different in the two groups, with the movements of older subjects being slower and less accurate. Importantly, both groups presented a similar increase of the practice-related beta modulation depth in both ROIs in the course of the task. Peak latency analysis revealed a progressive delay of the ERS peak that correlated with the total movement time. Altogether, these findings support the notion that the depth of beta modulation in a reaching movement task does not depend on age and confirm previous findings that only ERS peak latency but not ERS magnitude is related to performance indices.
Collapse
|
18
|
Mechanomyography-based muscle fatigue detection during electrically elicited cycling in patients with spinal cord injury. Med Biol Eng Comput 2019; 57:1199-1211. [PMID: 30687901 DOI: 10.1007/s11517-019-01949-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
Patients with spinal cord injury (SCI) benefit from muscle training with functional electrical stimulation (FES). For safety reasons and to optimize training outcome, the fatigue state of the target muscle must be monitored. Detection of muscle fatigue from mel frequency cepstral coefficient (MFCC) feature of mechanomyographic (MMG) signal using support vector machine (SVM) classifier is a promising new approach. Five individuals with SCI performed FES cycling exercises for 30 min. MMG signals were recorded on the quadriceps muscle group (rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM)) and categorized into non-fatigued and fatigued muscle contractions for the first and last 10 min of the cycling session. For each subject, a total of 1800 contraction-related MMG signals were used to train the SVM classifier and another 300 signals were used for testing. The average classification accuracy (4-fold) of non-fatigued and fatigued state was 90.7% using MFCC feature, 74.5% using root mean square (RMS), and 88.8% with combined MFCC and RMS features. Inter-subject prediction accuracy suggested training and testing data to be based on a particular subject or large collection of subjects to improve fatigue prediction capacity. Graphical abstract ᅟ.
Collapse
|
19
|
Grosicki GJ, Englund DA, Price L, Iwai M, Kashiwa M, Reid KF, Fielding RA. Lower-Extremity Torque Capacity and Physical Function in Mobility-Limited Older Adults. J Nutr Health Aging 2019; 23:703-709. [PMID: 31560027 PMCID: PMC7386562 DOI: 10.1007/s12603-019-1232-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Skeletal muscle weakness and an increase in fatigability independently contribute to age-related functional decline. The objective of this study was to examine the combined contribution of these deficiencies (i.e., torque capacity) to physical function, and then to assess the functional implications of progressive resistance training (PRT) mediated-torque capacity improvements in mobility-limited older adults. DESIGN Randomized controlled trial. SETTING Exercise laboratory on the Health Sciences campus of an urban university. PARTICIPANTS Seventy mobility-limited (Short Physical Performance Battery (SPPB) ≤9) older adults (~79 yrs). INTERVENTION Progressive resistance training or home-based flexibility 3 days/week for 12 weeks. MEASUREMENTS Torque capacity was defined as the sum of peak torques from an isokinetic knee extension fatigue test. Relationships between torque capacity and performance-based and patient-reported functional measures before and after PRT were examined using partial correlations adjusted for age, sex, and body mass index. RESULTS Torque capacity explained (P<0.05) 10 and 28% of the variance in six-minute walk distance and stair climb time, respectively. PRT-mediated torque capacity improvements were paralleled by increases (P<0.05) in self-reported activity participation (+20%) and advanced lower extremity function (+7%), and associated (P<0.05) with a reduction in activity limitations (r=0.44) and an improved SPPB score (r=0.32). CONCLUSION Skeletal muscle torque capacity, a composite of strength and fatigue, may be a proximal determinant of physical function in mobility-limited older individuals. To more closely replicate the musculoskeletal demands of real-life tasks, future studies are encouraged to consider the combined interaction of distinct skeletal muscle faculties to overall functional ability in older adults.
Collapse
Affiliation(s)
- G J Grosicki
- Gregory J. Grosicki, Ph.D., Department of Health Sciences and Kinesiology, Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), 11935 Abercorn Street, Savannah, GA, 31419. Phone: (912) 344-3317. Fax: (912) 344-3490.
| | | | | | | | | | | | | |
Collapse
|
20
|
Gilmore KJ, Doherty TJ, Kimpinski K, Rice CL. Reductions in muscle quality and quantity in chronic inflammatory demyelinating polyneuropathy patients assessed by magnetic resonance imaging. Muscle Nerve 2018; 58:396-401. [DOI: 10.1002/mus.26159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/01/2018] [Accepted: 05/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin J. Gilmore
- School of Kinesiology; The University of Western Ontario; London Ontario Canada
| | - Timothy J. Doherty
- Department of Clinical Neurological Sciences; Schulich School of Medicine and Dentistry, The University of Western Ontario; London Ontario Canada
- Department of Physical Medicine and Rehabilitation; Schulich School of Medicine and Dentistry, The University of Western Ontario; London Ontario Canada
| | - Kurt Kimpinski
- School of Kinesiology; The University of Western Ontario; London Ontario Canada
| | - Charles L. Rice
- School of Kinesiology; The University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine and Dentistry, The University of Western Ontario; London Ontario Canada
| |
Collapse
|
21
|
Abstract
Performance fatigability is characterized as an acute decline in motor performance caused by an exercise-induced reduction in force or power of the involved muscles. Multiple mechanisms contribute to performance fatigability and originate from neural and muscular processes, with the task demands dictating the mechanisms. This review highlights that (1) inadequate activation of the motoneuron pool can contribute to performance fatigability, and (2) the demands of the task and the physiological characteristics of the population assessed, dictate fatigability and the involved mechanisms. Examples of task and population differences in fatigability highlighted in this review include contraction intensity and velocity, stability and support provided to the fatiguing limb, sex differences, and aging. A future challenge is to define specific mechanisms of fatigability and to translate these findings to real-world performance and exercise training in healthy and clinical populations across the life span.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
22
|
Handgrip fatiguing exercise can provide objective assessment of cancer-related fatigue: a pilot study. Support Care Cancer 2018; 27:229-238. [PMID: 29936623 DOI: 10.1007/s00520-018-4320-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/13/2018] [Indexed: 01/20/2023]
Abstract
PURPOSE As a subjective symptom, cancer-related fatigue is assessed via patient-reported outcomes. Due to the inherent bias of such evaluation, screening and treatment for cancer-related fatigue remains suboptimal. The purpose is to evaluate whether objective cancer patients' hand muscle mechanical parameters (maximal force, critical force, force variability) extracted from a fatiguing handgrip exercise may be correlated to the different dimensions (physical, emotional, and cognitive) of cancer-related fatigue. METHODS Fourteen women with advanced breast cancer, still under or having previously received chemotherapy within the preceding 3 months, and 11 healthy women participated to the present study. Cancer-related fatigue was first assessed through the EORTC QLQ-30 and its fatigue module. Fatigability was then measured during 60 maximal repeated handgrip contractions. The maximum force, critical force (asymptote of the force-time evolution), and force variability (root mean square of the successive differences) were extracted. Multiple regression models were performed to investigate the influence of the force parameters on cancer-related fatigue's dimensions. RESULTS The multiple linear regression analysis evidenced that physical fatigue was best explained by maximum force and critical force (r = 0.81; p = 0.029). The emotional fatigue was best explained by maximum force, critical force, and force variability (r = 0.83; p = 0.008). The cognitive fatigue was best explained by critical force and force variability (r = 0.62; p = 0.035). CONCLUSION The handgrip maximal force, critical force, and force variability may offer objective measures of the different dimensions of cancer-related fatigue and could provide a complementary approach to the patient reported outcomes.
Collapse
|
23
|
Kyguoliene L, Skurvydas A, Eimantas N, Baranauskiene N, Steponaviciute R, Daniuseviciute L, Paulauskas H, Cernych M, Brazaitis M. Three different motor task strategies to assess neuromuscular adjustments during fatiguing muscle contractions in young and older men. Exp Brain Res 2018; 236:2085-2096. [PMID: 29754195 DOI: 10.1007/s00221-018-5285-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/07/2018] [Indexed: 10/16/2022]
Abstract
Healthy aging is associated with a marked decline in motor performance. The functional consequences of applying varying novel or unexpected motor stimuli during intermittent isometric prolonged (fatiguing) motor tasks for lower limb neuromuscular fatigability and steadiness, perception of effort, and blood markers of stress in healthy aged men compared with young men have not been investigated. The participants in this study were 15 young men (aged 22 ± 4 years) and 10 older men (aged 67 ± 6 years). They performed 100 intermittent isometric knee extensions under three experimental conditions involving intermittent isometric contraction tasks according to constant, predictable, and unpredictable torque target sequences. The variability in maximal voluntary contraction averaged 50%, and was 25, 50, and 75% for the three strategies. All included a 5-s contraction and 20-s rest. The main variables were measured before exercise, after 100 repetitions, and 1 h after exercise. In all experimental trials, the decreases in the maximal voluntary contraction and central activation ratio, and the increases in effort sensation and muscle temperature, were smaller in older men than in younger men. The coefficient of variation during the motor performance did not differ between age groups. However, in all three strategies, the dopamine concentration was significantly higher in older than in younger men. The prolactin concentration did not differ significantly between age groups or conditions, although its decrease during loading correlated negatively with the central activation ratio.
Collapse
Affiliation(s)
- Laura Kyguoliene
- Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Albertas Skurvydas
- Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania.,Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Neringa Baranauskiene
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Rasa Steponaviciute
- Department of Laboratory Medicines, Medical Academy, Lithuanian University of Health Science, Kaunas, Lithuania
| | - Laura Daniuseviciute
- Department of Physical Education, Kaunas University of Technology, Kaunas, Lithuania
| | - Henrikas Paulauskas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Margarita Cernych
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Marius Brazaitis
- Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania. .,Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania.
| |
Collapse
|
24
|
Foulis SA, Jones SL, van Emmerik RE, Kent JA. Post-fatigue recovery of power, postural control and physical function in older women. PLoS One 2017; 12:e0183483. [PMID: 28880935 PMCID: PMC5589131 DOI: 10.1371/journal.pone.0183483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/05/2017] [Indexed: 11/29/2022] Open
Abstract
Low muscle power, particularly at high velocities, has been linked to poor physical function in older adults. Any loss in muscle power following fatiguing exercise or daily activities could impact physical function and postural control until power has fully recovered. To test the overall hypothesis that a common task such as walking can result in prolonged power loss and decreased physical function and balance, 17 healthy older (66–81 years) women completed a 32-min walking test (32MWT) designed to induce neuromuscular fatigue, followed by 60min of recovery (60R). Fatigue and recovery of knee extensor muscle power (3 velocities) were quantified by dynamometry. Function was quantified by chair rise time and postural control by measures of center of pressure (COP) range (mm) and velocity (mm·s-1) during quiet stance. Power declined at all velocities by 8–13% 2min following the 32MWT (p≤0.02) and remained depressed by 8–26% at 60R (p≤0.04). Postural control decreased following the 32MWT, indicated by increased COP range in the anterior-posterior (AP, p<0.01) direction and a trend in the medial-lateral (ML) direction (p = 0.09), and returned to baseline by 60R (p≥0.10). COP velocity was unchanged immediately following the 32MWT, but at 60R was lower in ML (p = 0.03) and tended to be reduced in AP (p = 0.07). Changes in high-velocity power (270°·s-1) were associated with altered postural control (p = 0.02) and chair rise performance (p≤0.03). These results provide evidence of long-duration neuromuscular changes following fatigue in healthy older women that may place them at increased risk for functional deficits during everyday mobility tasks.
Collapse
Affiliation(s)
- Stephen A. Foulis
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Stephanie L. Jones
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Richard E. van Emmerik
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Jane A. Kent
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
25
|
Age differences in dynamic fatigability and variability of arm and leg muscles: Associations with physical function. Exp Gerontol 2016; 87:74-83. [PMID: 27989926 DOI: 10.1016/j.exger.2016.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022]
Abstract
INTRODUCTION It is not known whether the age-related increase in fatigability of fast dynamic contractions in lower limb muscles also occurs in upper limb muscles. We compared age-related fatigability and variability of maximal-effort repeated dynamic contractions in the knee extensor and elbow flexor muscles; and determined associations between fatigability, variability of velocity between contractions and functional performance. METHODS 35 young (16 males; 21.0±2.6years) and 32 old (18 males; 71.3±6.2years) adults performed a dynamic fatiguing task involving 90 maximal-effort, fast, concentric, isotonic contractions (1 contraction/3s) with a load equivalent to 20% maximal voluntary isometric contraction (MVIC) torque with the elbow flexor and knee extensor muscles on separate days. Old adults also performed tests of balance and walking endurance. RESULTS Old adults had greater fatigue-related reductions in peak velocity compared with young adults for both the elbow flexor and knee extensor muscles (P<0.05) with no sex differences (P>0.05). Old adults had greater variability of peak velocity during the knee extensor, but not during the elbow flexor fatiguing task. The age difference in fatigability was greater for the knee extensor muscles (35.9%) compared with elbow flexor muscles (9.7%, P<0.05). Less fatigability of the knee extensor muscles was associated with greater walking endurance (r=-0.34, P=0.048) and balance (r=-0.41, P=0.014) among old adults. CONCLUSIONS An age-related increase in fatigability of a dynamic fatiguing task was greater for the knee extensor compared with the elbow flexor muscles in males and females, and greater fatigability was associated with lesser walking endurance and balance.
Collapse
|
26
|
Hunter SK, Pereira HM, Keenan KG. The aging neuromuscular system and motor performance. J Appl Physiol (1985) 2016; 121:982-995. [PMID: 27516536 PMCID: PMC5142309 DOI: 10.1152/japplphysiol.00475.2016] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin; and
| | - Hugo M Pereira
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin; and
| | - Kevin G Keenan
- Department of Kinesiology, College of Health Sciences, University of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
27
|
Recommendations for the conduct of clinical trials for drugs to treat or prevent sarcopenia. Aging Clin Exp Res 2015; 28:47-58. [PMID: 26717937 PMCID: PMC4768478 DOI: 10.1007/s40520-015-0517-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/06/2015] [Indexed: 12/24/2022]
Abstract
Purpose Sarcopenia is an age-related muscle condition which is frequently a precursor of frailty, mobility disability and premature death. It has a high prevalence in older populations and presents a considerable social and economic burden. Potential treatments are under development but, as yet, no guidelines support regulatory studies for new drugs to manage sarcopenia. The objective of this position paper is therefore to suggest a set of potential endpoints and target population definitions to stimulate debate and progress within the medico-scientific and regulatory communities. Methods A multidisciplinary expert working group was hosted by the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis, which reviewed and discussed the recent literature from a perspective of clinical experience and guideline development. Relevant parallels were drawn from the development of definition of osteoporosis as a disease and clinical assessment of pharmaceutical treatments for that indication. Results A case-finding decision tree is briefly reviewed with a discussion of recent prevalence estimations of different relevant threshold values. The selection criteria for patients in regulatory studies are discussed according to the aims of the investigation (sarcopenia prevention or treatment) and the stage of project development. The possible endpoints of such studies are reviewed and a plea is made for the establishment of a core outcome set to be used in all clinical trials of sarcopenia. Conclusions The current lack of guidelines for the assessment of new therapeutic treatments for sarcopenia could potentially hinder the delivery of effective medicines to patients at risk. Electronic supplementary material The online version of this article (doi:10.1007/s40520-015-0517-y) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Power GA, Dalton BH, Rice CL. Human neuromuscular structure and function in old age: A brief review. JOURNAL OF SPORT AND HEALTH SCIENCE 2013; 2:215-226. [PMID: 27011872 PMCID: PMC4801513 DOI: 10.1016/j.jshs.2013.07.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Natural adult aging is associated with many functional impairments of the human neuromuscular system. One of the more observable alterations is the loss of contractile muscle mass, termed sarcopenia. The loss of muscle mass occurs primarily due to a progressive loss of viable motor units, and accompanying atrophy of remaining muscle fibers. Not only does the loss of muscle mass contribute to impaired function in old age, but alterations in fiber type and myosin heavy chain isoform expression also contribute to weaker, slower, and less powerful contracting muscles. This review will focus on motor unit loss associated with natural adult aging, age-related fatigability, and the age-related differences in strength across contractile muscle actions.
Collapse
Affiliation(s)
- Geoffrey A. Power
- Human Performance Laboratory, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Brian H. Dalton
- School of Kinesiology, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Charles L. Rice
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario N6A 5B1, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|