1
|
Xu JJ, Zimmerman LL, Soriano VH, Mentzelopoulos G, Kennedy E, Bottorff EC, Stephan C, Kozloff K, Devlin MJ, Bruns TM. Tibial nerve stimulation increases vaginal blood perfusion and bone mineral density and yield load in ovariectomized rat menopause model. Int Urogynecol J 2022; 33:3543-3553. [PMID: 35254469 DOI: 10.1007/s00192-022-05125-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Human menopause transition and post-menopausal syndrome, driven by reduced ovarian activity and estrogen levels, are associated with an increased risk for symptoms including but not limited to sexual dysfunction, metabolic disease, and osteoporosis. Current treatments are limited in efficacy and may have adverse consequences, so investigation for additional treatment options is necessary. Previous studies have demonstrated that percutaneous tibial nerve stimulation (PTNS) and electro-acupuncture near the tibial nerve are minimally invasive treatments that increase vaginal blood perfusion or serum estrogen in the rat model. We hypothesized that PTNS would protect against harmful reproductive and systemic changes associated with menopause. METHODS We examined the effects of twice-weekly PTNS (0.2 ms pulse width, 20 Hz, 2× motor threshold) under ketamine-xylazine anesthesia in ovariectomized (OVX) female Sprague-Dawley rats on menopause-associated physiological parameters including serum estradiol, body weight, blood glucose, bone health, and vaginal blood perfusion. Rats were split into three groups (n = 10 per group): (1) intact control (no stimulation), (2) OVX control (no stimulation), and (3) OVX stimulation (treatment group). RESULTS PTNS did not affect serum estradiol levels, body weight, or blood glucose. PTNS transiently increased vaginal blood perfusion during stimulation for up to 5 weeks after OVX and increased areal bone mineral density and yield load of the right femur (side of stimulation) compared to the unstimulated OVX control. CONCLUSIONS PTNS may ameliorate some symptoms associated with menopause. Additional studies to elucidate the full potential of PTNS on menopause-associated symptoms under different experimental conditions are warranted.
Collapse
Affiliation(s)
- Jiajie Jessica Xu
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, MI, Ann Arbor, USA.
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Lauren L Zimmerman
- Biointerfaces Institute, University of Michigan, MI, Ann Arbor, USA
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA
| | - Vanessa H Soriano
- Biointerfaces Institute, University of Michigan, MI, Ann Arbor, USA
- Neuroscience Department, University of Michigan, Ann Arbor, MI, USA
| | - Georgios Mentzelopoulos
- Biointerfaces Institute, University of Michigan, MI, Ann Arbor, USA
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA
- Electrical Engineering Department, University of Michigan, Ann Arbor, MI, USA
| | - Eric Kennedy
- Biointerfaces Institute, University of Michigan, MI, Ann Arbor, USA
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth C Bottorff
- Biointerfaces Institute, University of Michigan, MI, Ann Arbor, USA
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA
| | - Chris Stephan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth Kozloff
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Maureen J Devlin
- Anthropology Department, University of Michigan, Ann Arbor, MI, USA
| | - Tim M Bruns
- Biointerfaces Institute, University of Michigan, MI, Ann Arbor, USA.
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Frederick RA, Troyk PR, Cogan SF. Wireless microelectrode arrays for selective and chronically stable peripheral nerve stimulation for hindlimb movement. J Neural Eng 2021; 18:10.1088/1741-2552/ac2bb8. [PMID: 34592725 PMCID: PMC10685740 DOI: 10.1088/1741-2552/ac2bb8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Objective. Maximizing the stability of implanted neural interfaces will be critical to developing effective treatments for neurological and neuromuscular disorders. Our research aims to develop a stable neural interface using wireless communication and intrafascicular microelectrodes to provide highly selective stimulation of neural tissue.Approach. We implanted a wireless floating microelectrode array into the left sciatic nerve of six rats. Over a 38 week implantation period, we recorded stimulation thresholds and movements evoked at each implanted electrode. We also tracked each animal's response to sensory stimuli and performance on two different walking tasks.Main results. Presence of the microelectrode array inside the sciatic nerve did not cause any obvious motor or sensory deficits in the hindlimb. Visible movement in the hindlimb was evoked by stimulating the sciatic nerve with currents as low as 4.1µA. Thresholds for most of the 96 electrodes we implanted were below 20µA, and predictable recruitment of plantar flexion and dorsiflexion was achieved by stimulating rat sciatic nerve with the intrafascicular microelectrode array. Further, motor recruitment patterns for each electrode did not change significantly throughout the study.Significance. Incorporating wireless communication and a low-profile neural interface facilitated highly stable motor recruitment thresholds and fine motor control in the hindlimb throughout an extensive 9.5 month assessment in rodent peripheral nerve. Results of this study indicate that use of the wireless device tested here could be extended to other applications requiring selective neural stimulation and chronic implantation.
Collapse
Affiliation(s)
- Rebecca A Frederick
- Bioengineering Department, The University of Texas at Dallas, Richardson, TX, United States of America
| | - Philip R Troyk
- Biomedical Engineering Department, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Stuart F Cogan
- Bioengineering Department, The University of Texas at Dallas, Richardson, TX, United States of America
| |
Collapse
|
3
|
Gurjar AA, Manto KM, Estrada JA, Kaufman M, Sun D, Talukder MAH, Elfar JC. 4-Aminopyridine: A Single-Dose Diagnostic Agent to Differentiate Axonal Continuity in Nerve Injuries. Mil Med 2021; 186:479-485. [PMID: 33499448 DOI: 10.1093/milmed/usaa310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/23/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Traumatic peripheral nerve injuries (TPNIs) are increasingly prevalent in battlefield trauma, and the functional recovery with TPNIs depends on axonal continuity. Although the physical examination is the main tool for clinical diagnosis with diagnostic work up, there is no diagnostic tool available to differentiate nerve injuries based on axonal continuity. Therefore, treatment often relies on "watchful waiting," and this leads to muscle weakness and further reduces the chances of functional recovery. 4-aminopyridine (4-AP) is clinically used in multiple sclerosis patients for walking performance improvement. Preliminary results in conscious mice suggested a diagnostic role of 4-AP in distinguishing axonal continuity. In this study, we thought to evaluate the diagnostic potential of 4-AP on the axonal continuity in unawake/sedated animals. MATERIALS AND METHODS Rat sciatic nerve crush and transection injuries were used in this study. Briefly, rats were anesthetized with isoflurane and mechanically ventilated with oxygen-balanced vaporized isoflurane. Sciatic nerve and triceps surae muscles were exposed by blunt dissection, and a stimulating electrode was placed under a sciatic nerve proximal to the crush injury. A force transducer measured muscle tension response to electrical stimulation of sciatic nerve. Muscle response was measured before crush, after crush, and 30 minutes after systemic 4-AP (150 µg/kg) or local (4-AP)-poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG) treatment. RESULTS We found that both crush and transection injuries in sciatic nerve completely abolished muscle response to electrical stimulation. Single dose of systemic 4-AP and local (4-AP)-PLGA-PEG treatment with crush injury significantly restored muscle responses to electrical stimulation after 30 minutes of administration. However, systemic 4-AP treatment had no effect on muscle response after nerve transection. These results clearly demonstrate that 4-AP can restore nerve conduction and produce muscle response within minutes of administration only when there is a nerve continuity, even in the sedated animal. CONCLUSIONS We conclude that 4-AP could be a promising diagnostic agent in differentiating TPNI based on axonal continuity.
Collapse
Affiliation(s)
- Anagha A Gurjar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Kristen M Manto
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Juan A Estrada
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Marc Kaufman
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Dongxiao Sun
- Mass Spectrometry Core Facility, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Kohle F, Sprenger A, Klein I, Fink GR, Lehmann HC. Nerve conductions studies in experimental models of autoimmune neuritis: A meta-analysis and guideline. J Neuroimmunol 2021; 352:577470. [PMID: 33508768 DOI: 10.1016/j.jneuroim.2020.577470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022]
Abstract
Nerve conduction studies (NCS) are essential to assess peripheral nerve fiber function in research models of immune-mediated neuritis. However, the current lack of standard protocols and reference values impedes data comparability across models and studies. We performed a systematic review and subsequent meta-analysis of the last 30 years of NCS of immune-mediated neuritis in Lewis-rats. Twenty-six papers met the inclusion criteria for meta-analysis. Extracted data showed considerable heterogeneity of recorded nerve conduction velocity (NCV) and compound muscle action potential (CMAP). Studies also significantly differed in terms of technical, methodical, and data reporting issues. The heterogeneity of the underlying studies emphasizes the need for standardization when conducting and reporting NCS in rats. We provide normative values for NCS of the sciatic nerve of Lewis rats and propose seven items that should be addressed when NCS are performed when studying immune paradigms in Lewis rats.
Collapse
Affiliation(s)
- Felix Kohle
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany.
| | - Alina Sprenger
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Ines Klein
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Research Center Juelich, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany
| | - Helmar C Lehmann
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Baum P, Koj S, Klöting N, Blüher M, Classen J, Paeschke S, Gericke M, Toyka KV, Nowicki M, Kosacka J. Treatment-Induced Neuropathy in Diabetes (TIND)-Developing a Disease Model in Type 1 Diabetic Rats. Int J Mol Sci 2021; 22:ijms22041571. [PMID: 33557206 PMCID: PMC7913916 DOI: 10.3390/ijms22041571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Treatment-induced neuropathy in diabetes (TIND) is defined by the occurrence of an acute neuropathy within 8 weeks of an abrupt decrease in glycated hemoglobin-A1c (HbA1c). The underlying pathogenic mechanisms are still incompletely understood with only one mouse model being explored to date. The aim of this study was to further explore the hypothesis that an abrupt insulin-induced fall in HbA1c may be the prime causal factor of developing TIND. BB/OKL (bio breeding/OKL, Ottawa Karlsburg Leipzig) diabetic rats were randomized in three groups, receiving insulin treatment by implanted subcutaneous osmotic insulin pumps for 3 months, as follows: Group one received 2 units per day; group two 1 unit per day: and group three 1 unit per day in the first month, followed by 2 units per day in the last two months. We serially examined blood glucose and HbA1c levels, motor- and sensory/mixed afferent conduction velocities (mNCV and csNCV) and peripheral nerve morphology, including intraepidermal nerve fiber density and numbers of Iba-1 (ionized calcium binding adaptor molecule 1) positive macrophages in the sciatic nerve. Only in BB/OKL rats of group three, with a rapid decrease in HbA1c of more than 2%, did we find a significant decrease in mNCV in sciatic nerves (81% of initial values) after three months of treatment as compared to those group three rats with a less marked decrease in HbA1c <2% (mNCV 106% of initial values, p ≤ 0.01). A similar trend was observed for sensory/mixed afferent nerve conduction velocities: csNCV were reduced in BB/OKL rats with a rapid decrease in HbA1c >2% (csNCV 90% of initial values), compared to those rats with a mild decrease <2% (csNCV 112% of initial values, p ≤ 0.01). Moreover, BB/OKL rats of group three with a decrease in HbA1c >2% showed significantly greater infiltration of macrophages by about 50% (p ≤ 0.01) and a decreased amount of calcitonin gene related peptide (CGRP) positive nerve fibers as compared to the animals with a milder decrease in HbA1c. We conclude that a mild acute neuropathy with inflammatory components was induced in BB/OKL rats as a consequence of an abrupt decrease in HbA1c caused by high-dose insulin treatment. This experimentally induced neuropathy shares some features with TIND in humans and may be further explored in studies into the pathogenesis and treatment of TIND.
Collapse
Affiliation(s)
- Petra Baum
- Department of Neurology, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany; (P.B.); (S.K.); (J.C.)
| | - Severin Koj
- Department of Neurology, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany; (P.B.); (S.K.); (J.C.)
| | - Nora Klöting
- Department of Medicine, University of Leipzig, Liebigstraße 21, D-04103 Leipzig, Germany; (N.K.); (M.B.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig, Philipp-Rosenthal-Straße 27, D-04103 Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Liebigstraße 21, D-04103 Leipzig, Germany; (N.K.); (M.B.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig, Philipp-Rosenthal-Straße 27, D-04103 Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany; (P.B.); (S.K.); (J.C.)
| | - Sabine Paeschke
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, D-04103 Leipzig, Germany; (S.P.); (M.N.)
| | - Martin Gericke
- Institute of Anatomy and Cell Biology, University of Halle, Große Steinstraße 52, D-06108 Halle, Germany;
| | - Klaus V. Toyka
- Department of Neurology, University of Würzburg, Josef-Schneider-Straße 11, D-97080 Würzburg, Germany;
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, D-04103 Leipzig, Germany; (S.P.); (M.N.)
| | - Joanna Kosacka
- Department of Medicine, University of Leipzig, Liebigstraße 21, D-04103 Leipzig, Germany; (N.K.); (M.B.)
- Institute of Anatomy and Cell Biology, University of Halle, Große Steinstraße 52, D-06108 Halle, Germany;
- Correspondence: ; Tel.: +49-341-9713405
| |
Collapse
|
6
|
Taminato M, Tomita K, Yano K, Otani N, Kuroda K, Kubo T. Targeted sensory reinnervation by direct neurotization of skin: An experimental study in rats. J Plast Reconstr Aesthet Surg 2021; 74:2379-2386. [PMID: 33583760 DOI: 10.1016/j.bjps.2020.12.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND No effective methods currently exist for breast neurotization in implant-based breast reconstruction. Here, we focused on direct neurotization (DN), in which axons regenerating from nerve stumps are directed to the mastectomy flap and aimed to assess whether DN can generate a new mechano-nociceptive field using a rat model of back skin sensory denervation. METHODS Dorsal cutaneous nerves (DCNs) of rats were exposed and transected, leaving only the left medial branch of the DCN of thoracic segment 13 (mDCN-T13) intact. This procedure resulted in an isolated innervated field surrounded by a denervated field. The mDCN-T13 was transected, and the proximal nerve stump was sutured to the subdermis (DN subdermal group, n = 6) or dermis (DN dermal group, n = 5) of a different region of the denervated field. In the Crush group (n = 5), the intact mDCN-T13 was only crushed. We evaluated the generation of a new mechano-nociceptive field over time using the cutaneous trunci muscle (CTM) reflex test and histomorphometrically evaluated regenerating nerves in the reinnervated region. RESULTS In the DN groups, the CTM reflex appeared in the DN area after postoperative week 4. The new mechano-nociceptive field gradually expanded afterwards, and by postoperative week 12, the area was substantially larger than the original region innervated by the mDCN-T13 in the DN dermal group, although not as large as that in the Crush group. In histomorphometric evaluations, many S100-positive myelinated fibers were observed in the dermis of the reinnervated area for all groups. CONCLUSION In targeted sensory reinnervation, DN of the skin is revolutionary in that it allows a new innervated area to be generated at a desired location regardless of whether a distal nerve stump is available. DN may present an effective approach for breast neurotization in breast reconstruction after mastectomy, particularly for procedures that cannot use sensate flaps such as implant-based breast reconstruction.
Collapse
Affiliation(s)
- Mifue Taminato
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Tomita
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | | | - Naoya Otani
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuya Kuroda
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tateki Kubo
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Pereira JA, Gerber J, Ghidinelli M, Gerber D, Tortola L, Ommer A, Bachofner S, Santarella F, Tinelli E, Lin S, Rüegg MA, Kopf M, Toyka KV, Suter U. Mice carrying an analogous heterozygous dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy. Hum Mol Genet 2020; 29:1253-1273. [PMID: 32129442 PMCID: PMC7254847 DOI: 10.1093/hmg/ddaa034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Some mutations affecting dynamin 2 (DNM2) can cause dominantly inherited Charcot-Marie-Tooth (CMT) neuropathy. Here, we describe the analysis of mice carrying the DNM2 K562E mutation which has been associated with dominant-intermediate CMT type B (CMTDIB). Contrary to our expectations, heterozygous DNM2 K562E mutant mice did not develop definitive signs of an axonal or demyelinating neuropathy. Rather, we found a primary myopathy-like phenotype in these mice. A likely interpretation of these results is that the lack of a neuropathy in this mouse model has allowed the unmasking of a primary myopathy due to the DNM2 K562E mutation which might be overshadowed by the neuropathy in humans. Consequently, we hypothesize that a primary myopathy may also contribute to the disease mechanism in some CMTDIB patients. We propose that these findings should be considered in the evaluation of patients, the determination of the underlying disease processes and the development of tailored potential treatment strategies.
Collapse
Affiliation(s)
- Jorge A Pereira
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Joanne Gerber
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Monica Ghidinelli
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel Gerber
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Luigi Tortola
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Andrea Ommer
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Sven Bachofner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Francesco Santarella
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Elisa Tinelli
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Shuo Lin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Klaus V Toyka
- Department of Neurology, University Hospital of Würzburg, University of Würzburg, 97080 Würzburg, Germany
| | - Ueli Suter
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
8
|
Paeschke S, Baum P, Toyka KV, Blüher M, Koj S, Klöting N, Bechmann I, Thiery J, Kosacka J, Nowicki M. The Role of Iron and Nerve Inflammation in Diabetes Mellitus Type 2-Induced Peripheral Neuropathy. Neuroscience 2019; 406:496-509. [DOI: 10.1016/j.neuroscience.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
|
9
|
Doppler K, Schuster Y, Appeltshauser L, Biko L, Villmann C, Weishaupt A, Werner C, Sommer C. Anti-CNTN1 IgG3 induces acute conduction block and motor deficits in a passive transfer rat model. J Neuroinflammation 2019; 16:73. [PMID: 30953561 PMCID: PMC6450014 DOI: 10.1186/s12974-019-1462-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/25/2019] [Indexed: 01/06/2023] Open
Abstract
Background Autoantibodies against the paranodal protein contactin-1 have recently been described in patients with severe acute-onset autoimmune neuropathies and mainly belong to the IgG4 subclass that does not activate complement. IgG3 anti-contactin-1 autoantibodies are rare, but have been detected during the acute onset of disease in some cases. There is evidence that anti-contactin-1 prevents adhesive interaction, and chronic exposure to anti-contactin-1 IgG4 leads to structural changes at the nodes accompanied by neuropathic symptoms. However, the pathomechanism of acute onset of disease and the pathogenic role of IgG3 anti-contactin-1 is largely unknown. Methods In the present study, we aimed to model acute autoantibody exposure by intraneural injection of IgG of patients with anti-contacin-1 autoantibodies to Lewis rats. Patient IgG obtained during acute onset of disease (IgG3 predominant) and IgG from the chronic phase of disease (IgG4 predominant) were studied in comparison. Results Conduction blocks were measured in rats injected with the “acute” IgG more often than after injection of “chronic” IgG (83.3% versus 35%) and proved to be reversible within a week after injection. Impaired nerve conduction was accompanied by motor deficits in rats after injection of the “acute” IgG but only minor structural changes of the nodes. Paranodal complement deposition was detected after injection of the “acute IgG”. We did not detect any inflammatory infiltrates, arguing against an inflammatory cascade as cause of damage to the nerve. We also did not observe dispersion of paranodal proteins or sodium channels to the juxtaparanodes as seen in patients after chronic exposure to anti-contactin-1. Conclusions Our data suggest that anti-contactin-1 IgG3 induces an acute conduction block that is most probably mediated by autoantibody binding and subsequent complement deposition and may account for acute onset of disease in these patients. This supports the notion of anti-contactin-1-associated neuropathy as a paranodopathy with the nodes of Ranvier as the site of pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12974-019-1462-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
| | - Yasmin Schuster
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Luise Appeltshauser
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Lydia Biko
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Carmen Villmann
- University Hospital Würzburg, Institute for Clinical Neurobiology, Versbacher Str. 5, 97078, Würzburg, Germany
| | - Andreas Weishaupt
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| |
Collapse
|
10
|
Kosacka J, Woidt K, Toyka KV, Paeschke S, Klöting N, Bechmann I, Blüher M, Thiery J, Ossmann S, Baum P, Nowicki M. The role of dietary non-heme iron load and peripheral nerve inflammation in the development of peripheral neuropathy (PN) in obese non-diabetic leptin-deficient ob/ob mice. Neurol Res 2019; 41:341-353. [DOI: 10.1080/01616412.2018.1564191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joanna Kosacka
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Katrin Woidt
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Klaus V. Toyka
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Sabine Paeschke
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Nora Klöting
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB) Adiposity Disease, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University of Leipzig, Leipzig, German
| | | | - Petra Baum
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Byun D, Cho SJ, Lee BH, Min J, Lee JH, Kim S. Recording nerve signals in canine sciatic nerves with a flexible penetrating microelectrode array. J Neural Eng 2018; 14:046023. [PMID: 28612758 DOI: 10.1088/1741-2552/aa7493] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Previously, we presented the fabrication and characterization of a flexible penetrating microelectrode array (FPMA) as a neural interface device. In the present study, we aim to prove the feasibility of the developed FPMA as a chronic intrafascicular recording tool for peripheral applications. APPROACH For recording from the peripheral nerves of medium-sized animals, the FPMA was integrated with an interconnection cable and other parts that were designed to fit canine sciatic nerves. The uniformity of tip exposure and in vitro electrochemical properties of the electrodes were characterized. The capability of the device to acquire in vivo electrophysiological signals was evaluated by implanting the FPMA assembly in canine sciatic nerves acutely as well as chronically for 4 weeks. We also examined the histology of implanted tissues to evaluate the damage caused by the device. MAIN RESULTS Throughout recording sessions, we observed successful multi-channel recordings (up to 73% of viable electrode channels) of evoked afferent and spontaneous nerve unit spikes with high signal quality (SNR > 4.9). Also, minor influences of the device implantation on the morphology of nerve tissues were found. SIGNIFICANCE The presented results demonstrate the viability of the developed FPMA device in the peripheral nerves of medium-sized animals, thereby bringing us a step closer to human applications. Furthermore, the obtained data provide a driving force toward a further study for device improvements to be used as a bidirectional neural interface in humans.
Collapse
Affiliation(s)
- Donghak Byun
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
12
|
Baum P, Kosacka J, Estrela-Lopis I, Woidt K, Serke H, Paeschke S, Stockinger M, Klöting N, Blüher M, Dorn M, Classen J, Thiery J, Bechmann I, Toyka KV, Nowicki M. The role of nerve inflammation and exogenous iron load in experimental peripheral diabetic neuropathy (PDN). Metabolism 2016; 65:391-405. [PMID: 26975531 DOI: 10.1016/j.metabol.2015.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Iron is an essential but potentially toxic metal in mammals. Here we investigated a pathogenic role of exogenous iron in peripheral diabetic neuropathy (PDN) in an animal model for type 1 diabetes. METHODS Diabetes was induced by a single injection of streptozotocin (STZ) in 4-month-old Sprague-Dawley rats. STZ-diabetic rats and non-diabetic rats were fed with high, standard, or low iron diet. After three months of feeding, animals were tested. RESULTS STZ-rats on standard iron diet showed overt diabetes, slowed motor nerve conduction, marked degeneration of distal intraepidermal nerve fibers, mild intraneural infiltration with macrophages and T-cells in the sciatic nerve, and increased iron levels in serum and dorsal root ganglion (DRG) neurons. While motor fibers were afflicted in all STZ-groups, only a low iron-diet led also to reduced sensory conduction velocities in the sciatic nerve. In addition, only STZ-rats on a low iron diet showed damaged mitochondria in numerous DRG neurons, a more profound intraepidermal nerve fiber degeneration indicating small fiber neuropathy, and even more inflammatory cells in sciatic nerves than seen in any other experimental group. CONCLUSIONS These results indicate that dietary iron-deficiency rather than iron overload, and mild inflammation may both promote neuropathy in STZ-induced experimental PDN.
Collapse
Affiliation(s)
- Petra Baum
- Department of Neurology, University Hospital Leipzig, Liebigstr. 20, D-04103 Leipzig, Germany
| | - Joanna Kosacka
- Department of Medicine, University of Leipzig, Liebigstr. 21, D-04103 Leipzig, Germany
| | - Irina Estrela-Lopis
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Katrin Woidt
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, D-04103 Leipzig, Germany
| | - Heike Serke
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, D-04103 Leipzig, Germany
| | - Sabine Paeschke
- Department of Medicine, University of Leipzig, Liebigstr. 21, D-04103 Leipzig, Germany
| | - Maximilian Stockinger
- Department of Neurology, University Hospital Leipzig, Liebigstr. 20, D-04103 Leipzig, Germany
| | - Nora Klöting
- Department of Medicine, University of Leipzig, Liebigstr. 21, D-04103 Leipzig, Germany; Integrated Research and Treatment Center (IFB) Adiposity Disease, Liebigstr. 21, D-04103 Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Liebigstr. 21, D-04103 Leipzig, Germany
| | - Marco Dorn
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Liebigstr. 20, D-04103 Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University of Leipzig, Liebigstr. 27, D-04103 Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, D-04103 Leipzig, Germany
| | - Klaus V Toyka
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, D-04103 Leipzig, Germany.
| |
Collapse
|
13
|
Osaki Y, Nodera H, Banzrai C, Endo S, Takayasu H, Mori A, Shimatani Y, Kaji R. Effects of anesthetic agents on in vivo axonal HCN current in normal mice. Clin Neurophysiol 2015; 126:2033-9. [DOI: 10.1016/j.clinph.2014.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/01/2014] [Accepted: 12/29/2014] [Indexed: 12/17/2022]
|
14
|
Bojak I, Stoyanov ZV, Liley DTJ. Emergence of spatially heterogeneous burst suppression in a neural field model of electrocortical activity. Front Syst Neurosci 2015; 9:18. [PMID: 25767438 PMCID: PMC4341547 DOI: 10.3389/fnsys.2015.00018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/02/2015] [Indexed: 11/17/2022] Open
Abstract
Burst suppression in the electroencephalogram (EEG) is a well-described phenomenon that occurs during deep anesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterization as a “global brain state” has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that burst suppression activity is highly asynchronous across cortex, but also that it may occur in isolated regions of circumscribed spatial extent. Here we outline a realistic neural field model for burst suppression by adding a slow process of synaptic resource depletion and recovery, which is able to reproduce qualitatively the empirically observed features during general anesthesia at the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex and complex spatiotemporal dynamics during simulated anesthetic action, and provide forward predictions of neuroimaging signals for subsequent empirical comparisons and more detailed characterization. Because burst suppression corresponds to a dynamical end-point of brain activity, theoretically accounting for its spatiotemporal emergence will vitally contribute to efforts aimed at clarifying whether a common physiological trajectory is induced by the actions of general anesthetic agents. We have taken a first step in this direction by showing that a neural field model can qualitatively match recent experimental data that indicate spatial differentiation of burst suppression activity across cortex.
Collapse
Affiliation(s)
- Ingo Bojak
- Systems Neuroscience Research Group, School of Systems Engineering, University of Reading Reading, UK
| | - Zhivko V Stoyanov
- Systems Neuroscience Research Group, School of Systems Engineering, University of Reading Reading, UK
| | - David T J Liley
- Brain and Psychological Sciences Research Centre, School of Health Sciences, Swinburne University of Technology Hawthorn, VIC, Australia
| |
Collapse
|