1
|
Uzun Akkaya K, Akkaya HE, Bezgin S, Atalan Efkere P, Firat T, Yildiz C, Elbasan B. Long-Term Effects of Different Number of Botulinum Toxin Injections Into the Gastrocnemius Muscle on Function and Muscle Morphology in Children With Cerebral Palsy. Pediatr Neurol 2025; 162:97-104. [PMID: 39579461 DOI: 10.1016/j.pediatrneurol.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Botulinum toxin (BoNT) injections are used to reduce spasticity, and sometimes repeated injections are required. The aim of this study is to investigate the effects of the number of BoNT injections into the gastrocnemius muscle on function, muscle morphology, muscle stiffness, and muscle vascularization in children with cerebral palsy (CP). METHODS The study included 22 children with spastic-type CP aged five to 13 years who had previously received one, two, or three BoNT injections into the gastrocnemius muscle. A total of 29 gastrocnemius muscles were evaluated. Gastrocnemius muscle morphology was examined by ultrasonography, muscle stiffness by shear wave ultrasound elastography, and muscle vascularization by superb microvascular imaging. The functional status of the children was evaluated by the Gross Motor Function Measurement, the Timed-Up-and-Go Test, the Squat Test, the Vertical Jumping Test, and the Sit-and-Reach Test. RESULTS In the motor functions and muscle morphology values were similar in all three groups (P > 0.05). Muscle stiffness values were higher (P = 0.035) and vascularization values were lower (P = 0.03) in the group that received three injections compared with the groups that received one injection. There was a moderate positive correlation of the number of BoNTs with muscle stiffness (P < 0.05, r = 0.454) and a moderate negative correlation with muscle vascularization (P < 0.05, r = -0.497). CONCLUSIONS Repeated BoNT applications have no effect on motor functions and muscle morphology in children with CP, whereas BoNT injections administered three times increase muscle stiffness and decrease vascularization.
Collapse
Affiliation(s)
- Kamile Uzun Akkaya
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gazi University, Ankara, Turkey.
| | - Habip Eser Akkaya
- Department of Radiology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Sabiha Bezgin
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Pelin Atalan Efkere
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Tuzun Firat
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Cemil Yildiz
- Department of Orthopaedics and Traumatology, Gulhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| | - Bulent Elbasan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Tran MP, Ochoa Reyes D, Weitzel AJ, Saxena A, Hiller M, Cooper KL. Gene expression differences associated with intrinsic hindfoot muscle loss in the jerboa, Jaculus jaculus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:453-464. [PMID: 38946691 DOI: 10.1002/jez.b.23268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Vertebrate animals that run or jump across sparsely vegetated habitats, such as horses and jerboas, have reduced the number of distal limb bones, and many have lost most or all distal limb muscle. We previously showed that nascent muscles are present in the jerboa hindfoot at birth and that these myofibers are rapidly and completely lost soon after by a process that shares features with pathological skeletal muscle atrophy. Here, we apply an intra- and interspecies differential RNA-Seq approach, comparing jerboa and mouse muscles, to identify gene expression differences associated with the initiation and progression of jerboa hindfoot muscle loss. We show evidence for reduced hepatocyte growth factor and fibroblast growth factor signaling and an imbalance in nitric oxide signaling; all are pathways that are necessary for skeletal muscle development and regeneration. We also find evidence for phagosome formation, which hints at how myofibers may be removed by autophagy or by nonprofessional phagocytes without evidence for cell death or immune cell activation. Last, we show significant overlap between genes associated with jerboa hindfoot muscle loss and genes that are differentially expressed in a variety of human muscle pathologies and rodent models of muscle loss disorders. All together, these data provide molecular insight into the process of evolutionary and developmental muscle loss in jerboa hindfeet.
Collapse
Affiliation(s)
- Mai P Tran
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Daniel Ochoa Reyes
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Alexander J Weitzel
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Aditya Saxena
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Kimberly L Cooper
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Deschrevel J, Andries A, Maes K, De Beukelaer N, Corvelyn M, Staut L, De Houwer H, Costamagna D, Desloovere K, Van Campenhout A, Gayan-Ramirez G. Short-Term Effects of Botulinum Toxin-A Injection on the Medial Gastrocnemius Histological Features in Ambulant Children with Cerebral Palsy: A Longitudinal Pilot Study. Toxins (Basel) 2024; 16:69. [PMID: 38393147 PMCID: PMC10891867 DOI: 10.3390/toxins16020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Botulinum toxin-A (BoNT-A) injection is known to exert beneficial effects on muscle tone, joint mobility and gait in children with cerebral palsy (CP). However, recent animal and human studies have raised the concern that BoNT-A might be harmful to muscle integrity. In CP-children, the impact of BoNT-A on muscle structure has been poorly studied, and inconsistent results have been reported. This study was aimed at determining the time course effect of a single BoNT-A administration on medial gastrocnemius (MG) morphology in CP-children. MG microbiopsies from 12 ambulant and BoNT-A-naïve CP-children (age, 3.4 (2.3) years, ranging from 2.5 to 7.8 years; seven boys and five girls; GMFCS I = 5, II = 4 and III = 3) were collected before and 3 and 6 months after BoNT-A treatment to analyze the fiber cross-sectional area (fCSA) and proportion; capillarization; and satellite cell (SC) content. Compared with the baseline, the fCSA decreased at 3 months (-14%, NS) and increased at 6 months (+13%, NS). Fiber size variability was significantly higher at 3 months (type I: +56%, p = 0.032; type IIa: +37%, p = 0.032) and 6 months (type I: +69%, p = 0.04; type IIa: +121%, p = 0.032) compared with the baseline. The higher type I proportion seen at 3 months was still present and more pronounced at 6 months (type I: +17%, p = 0.04; type IIx: -65%, p = 0.032). The capillary fiber density was reduced at 3 months (type I: -43%, NS; type II: -44%, p = 0.0320) but normalized at 6 months. There was a non-significant increase in SC/100 fibers at 3 months (+75%, NS) and 6 months (+40%, NS) compared with the baseline. These preliminary data suggest that BoNT-A induced alterations in the MG of children with CP, which were still present 6 months after BoNT-A injection but with signs of muscle recovery.
Collapse
Affiliation(s)
- Jorieke Deschrevel
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, O&N 1bis Box 706, Herestraat 49, 3000 Leuven, Belgium; (J.D.); (A.A.); (K.M.)
| | - Anke Andries
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, O&N 1bis Box 706, Herestraat 49, 3000 Leuven, Belgium; (J.D.); (A.A.); (K.M.)
| | - Karen Maes
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, O&N 1bis Box 706, Herestraat 49, 3000 Leuven, Belgium; (J.D.); (A.A.); (K.M.)
| | - Nathalie De Beukelaer
- Neurorehabilitation Group, Department of Rehabilitation Sciences, Tervuursevest 101 Box 1501, 3000 Leuven, Belgium; (N.D.B.); (L.S.); (D.C.); (K.D.)
| | - Marlies Corvelyn
- Stem Cell and Developmental Biology, Department of Development and Regeneration, O&N4 Box 804, 3000 Leuven, Belgium;
| | - Lauraine Staut
- Neurorehabilitation Group, Department of Rehabilitation Sciences, Tervuursevest 101 Box 1501, 3000 Leuven, Belgium; (N.D.B.); (L.S.); (D.C.); (K.D.)
| | - Hannah De Houwer
- Pediatric Orthopedics, Department of Development and Regeneration, Herestraat 49 Box 7003, 3000 Leuven, Belgium; (H.D.H.); (A.V.C.)
| | - Domiziana Costamagna
- Neurorehabilitation Group, Department of Rehabilitation Sciences, Tervuursevest 101 Box 1501, 3000 Leuven, Belgium; (N.D.B.); (L.S.); (D.C.); (K.D.)
- Stem Cell and Developmental Biology, Department of Development and Regeneration, O&N4 Box 804, 3000 Leuven, Belgium;
- Exercise Physiology Research Group, Department of Movement Sciences, Tervuursevest 101 Box 1500, 3000 Leuven, Belgium
| | - Kaat Desloovere
- Neurorehabilitation Group, Department of Rehabilitation Sciences, Tervuursevest 101 Box 1501, 3000 Leuven, Belgium; (N.D.B.); (L.S.); (D.C.); (K.D.)
| | - Anja Van Campenhout
- Pediatric Orthopedics, Department of Development and Regeneration, Herestraat 49 Box 7003, 3000 Leuven, Belgium; (H.D.H.); (A.V.C.)
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, O&N 1bis Box 706, Herestraat 49, 3000 Leuven, Belgium; (J.D.); (A.A.); (K.M.)
| |
Collapse
|
4
|
Ramos TAR, Urquiza-Zurich S, Kim SY, Gillette TG, Hill JA, Lavandero S, do Rêgo TG, Maracaja-Coutinho V. Single-cell transcriptional landscape of long non-coding RNAs orchestrating mouse heart development. Cell Death Dis 2023; 14:841. [PMID: 38110334 PMCID: PMC10728149 DOI: 10.1038/s41419-023-06296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023]
Abstract
Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and statistical techniques to define co-expression modules linked to heart development and cardiovascular diseases. We also uncovered differentially expressed transcripts in subpopulations of cardiomyocytes. Finally, from this work, we were able to identify eight cardiac cell-types; several new coding, lncRNA, and pcRNA markers; two cardiomyocyte subpopulations at four different time points (ventricle E9.5, left ventricle E11.5, right ventricle E14.5 and left atrium P0) that harbored co-expressed gene modules enriched in mitochondrial, heart development and cardiovascular diseases. Our results evidence the role of particular lncRNAs in heart development and highlight the usage of co-expression modular approaches in the cell-type functional definition.
Collapse
Grants
- R01 HL155765 NHLBI NIH HHS
- R01 HL126012 NHLBI NIH HHS
- R01 HL147933 NHLBI NIH HHS
- R01 HL128215 NHLBI NIH HHS
- R01 HL120732 NHLBI NIH HHS
- Agencia Nacional de Investigacion y Desarrollo (ANID, Chile), FONDAP 15130011 (SL), FONDECYT 1200490 (SL)
- the NIH: HL-120732 (JAH), HL-128215 (JAH), HL-126012 (JAH), HL-147933, (JAH), HL-155765 (JAH), 14SFRN20510023 (JAH), 14SFRN20670003 (JAH), Leducq grant number 11CVD04 (JAH), Cancer Prevention and Research Institute of Texas grant RP110486P3 (JAH)
- Agencia Nacional de Investigacion y Desarrollo (ANID, Chile), FONDAP 15130011 (VMC) and FONDECYT 1211731 (VMC).
Collapse
Affiliation(s)
- Thaís A R Ramos
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, João Pessoa, Brazil
- Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Sebastián Urquiza-Zurich
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Soo Young Kim
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, Dallas, TX, USA
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, Dallas, TX, USA
| | - Joseph A Hill
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile.
| | - Thaís G do Rêgo
- Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, João Pessoa, Brazil.
- Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, João Pessoa, Brazil.
| |
Collapse
|
5
|
Machamer JB, Vazquez-Cintron EJ, Stenslik MJ, Pagarigan KT, Bradford AB, Ondeck CA, McNutt PM. Neuromuscular recovery from botulism involves multiple forms of compensatory plasticity. Front Cell Neurosci 2023; 17:1226194. [PMID: 37650071 PMCID: PMC10463753 DOI: 10.3389/fncel.2023.1226194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Botulinum neurotoxin (BoNT) causes neuroparalytic disease and death by blocking neuromuscular transmission. There are no specific therapies for clinical botulism and the only treatment option is supportive care until neuromuscular function spontaneously recovers, which can take weeks or months after exposure. The highly specialized neuromuscular junction (NMJ) between phrenic motor neurons and diaphragm muscle fibers is the main clinical target of BoNT. Due to the difficulty in eliciting respiratory paralysis without a high mortality rate, few studies have characterized the neurophysiological mechanisms involved in diaphragm recovery from intoxication. Here, we develop a mouse model of botulism that involves partial paralysis of respiratory muscles with low mortality rates, allowing for longitudinal analysis of recovery. Methods and results Mice challenged by systemic administration of 0.7 LD50 BoNT/A developed physiological signs of botulism, such as respiratory depression and reduced voluntary running activity, that persisted for an average of 8-12 d. Studies in isolated hemidiaphragm preparations from intoxicated mice revealed profound reductions in nerve-elicited, tetanic and twitch muscle contraction strengths that recovered to baseline 21 d after intoxication. Despite apparent functional recovery, neurophysiological parameters remained depressed for 28 d, including end plate potential (EPP) amplitude, EPP success rate, quantal content (QC), and miniature EPP (mEPP) frequency. However, QC recovered more quickly than mEPP frequency, which could explain the discrepancy between muscle function studies and neurophysiological recordings. Hypothesizing that differential modulation of voltage-gated calcium channels (VGCC) contributed to the uncoupling of QC from mEPP frequency, pharmacological inhibition studies were used to study the contributions of different VGCCs to neurophysiological function. We found that N-type VGCC and P/Q-type VGCC partially restored QC but not mEPP frequency during recovery from paralysis, potentially explaining the accelerated recovery of evoked release versus spontaneous release. We identified additional changes that presumably compensate for reduced acetylcholine release during recovery, including increased depolarization of muscle fiber resting membrane potential and increased quantal size. Discussion In addition to identifying multiple forms of compensatory plasticity that occur in response to reduced NMJ function, it is expected that insights into the molecular mechanisms involved in recovery from neuromuscular paralysis will support new host-targeted treatments for multiple neuromuscular diseases.
Collapse
Affiliation(s)
- James B. Machamer
- BASF, Research Triangle Park, NC, United States
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | | | - Mallory J. Stenslik
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Kathleen T. Pagarigan
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Aaron B. Bradford
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Celinia A. Ondeck
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Patrick M. McNutt
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
6
|
Wong SH, Petzold A. Remodeling of the neuromuscular junction in myasthenia gravis increases serum neurofilament heavy chain levels. Muscle Nerve 2023. [PMID: 37144900 DOI: 10.1002/mus.27838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION/AIMS In myasthenia gravis, prolonged muscle denervation causes muscle atrophy. We re-visited this observation using a biomarker hypothesis. We tested if serum neurofilament heavy chain levels, a biomarker for axonal degeneration, were elevated in myasthenia gravis. METHODS We enrolled 70 patients with isolated ocular myasthenia gravis and 74 controls recruited from patients in the emergency department. Demographic data were collected alongside serum samples. Serum samples were analyzed by enzyme-linked immunosorbent assay (ELISA) for the neurofilament heavy chain (NfH-SMI35). The statistical analyses included group comparisons, receiver operator characteristic (ROC) curves, area under the curve (AUC), sensitivity, specificity, and positive and negative predictive values. RESULTS Serum neurofilament heavy chain levels were significantly (p < 0.0001) higher in individuals with myasthenia gravis (0.19 ng/mL) than in healthy control subjects (0.07 ng/mL). A ROC AUC optimized cutoff level of 0.06 ng/mL gave a diagnostic sensitivity of 82%, specificity of 76%, positive predictive value of 0.77 and a negative predictive value of 0.81. DISCUSSION The increase of serum neurofilament heavy chain levels in myasthenia gravis is consistent with observations of muscle denervation. We suggest that there is ongoing remodeling of the neuromuscular junction in myasthenia gravis. Longitudinal quantification of neurofilament isoform levels will be needed to investigate the prognostic value and potentially guide treatment decisions.
Collapse
Affiliation(s)
- Sui H Wong
- UCL Institute of Neurology, Department of Neuroimmunology & The National Hospital for Neurology and Neurosurgery, Queen Square, Moorfields Eye Hospital, London, UK
| | - Axel Petzold
- UCL Institute of Neurology, Department of Neuroimmunology & The National Hospital for Neurology and Neurosurgery, Queen Square, Moorfields Eye Hospital, London, UK
| |
Collapse
|
7
|
Botulinum Toxin Intervention in Cerebral Palsy-Induced Spasticity Management: Projected and Contradictory Effects on Skeletal Muscles. Toxins (Basel) 2022; 14:toxins14110772. [PMID: 36356022 PMCID: PMC9692445 DOI: 10.3390/toxins14110772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Spasticity, following the neurological disorder of cerebral palsy (CP), describes a pathological condition, the central feature of which is involuntary and prolonged muscle contraction. The persistent resistance of spastic muscles to stretching is often followed by structural and mechanical changes in musculature. This leads to functional limitations at the respective joint. Focal injection of botulinum toxin type-A (BTX-A) is effectively used to manage spasticity and improve the quality of life of the patients. By blocking acetylcholine release at the neuromuscular junction and causing temporary muscle paralysis, BTX-A aims to reduce spasticity and hereby improve joint function. However, recent studies have indicated some contradictory effects such as increased muscle stiffness or a narrower range of active force production. The potential of these toxin- and atrophy-related alterations in worsening the condition of spastic muscles that are already subjected to changes should be further investigated and quantified. By focusing on the effects of BTX-A on muscle biomechanics and overall function in children with CP, this review deals with which of these goals have been achieved and to what extent, and what can await us in the future.
Collapse
|
8
|
Nassif AD, Boggio RF, Espicalsky S, Faria GEL. High Precision Use of Botulinum Toxin Type A (BONT-A) in Aesthetics Based on Muscle Atrophy, Is Muscular Architecture Reprogramming a Possibility? A Systematic Review of Literature on Muscle Atrophy after BoNT-A Injections. Toxins (Basel) 2022; 14:toxins14020081. [PMID: 35202109 PMCID: PMC8878196 DOI: 10.3390/toxins14020081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
Improvements in Botulinum toxin type-A (BoNT-A) aesthetic treatments have been jeopardized by the simplistic statement: “BoNT-A treats wrinkles”. BoNT-A monotherapy relating to wrinkles is, at least, questionable. The BoNT-A mechanism of action is presynaptic cholinergic nerve terminals blockage, causing paralysis and subsequent muscle atrophy. Understanding the real BoNT-A mechanism of action clarifies misconceptions that impact the way scientific productions on the subject are designed, the way aesthetics treatments are proposed, and how limited the results are when the focus is only on wrinkle softening. We designed a systematic review on BoNT-A and muscle atrophy that could enlighten new approaches for aesthetics purposes. A systematic review, targeting articles investigating BoNT-A injection and its correlation to muscle atrophy in animals or humans, filtered 30 publications released before 15 May 2020 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Histologic analysis and histochemistry showed muscle atrophy with fibrosis, necrosis, and an increase in the number of perimysial fat cells in animal and human models; this was also confirmed by imaging studies. A significant muscle balance reduction of 18% to 60% after single or seriated BoNT-A injections were observed in 9 out of 10 animal studies. Genetic alterations related to muscle atrophy were analyzed by five studies and showed how much impact a single BoNT-A injection can cause on a molecular basis. Seriated or single BoNT-A muscle injections can cause real muscle atrophy on a short or long-term basis, in animal models and in humans. Theoretically, muscular architecture reprogramming is a possible new approach in aesthetics.
Collapse
Affiliation(s)
- Alexander D. Nassif
- Departamento de Pesquisa, Núcleo Nassif—Ensino Médico e Pesquisa, Belo Horizonte 30411-148, Brazil
- Correspondence:
| | - Ricardo F. Boggio
- Departamento de Pesquisa, Instituto Boggio—Medicina Ensino e Pesquisa, Sao Paulo 04004-030, Brazil; (R.F.B.); (G.E.L.F.)
| | - Sheila Espicalsky
- Departamento de Pesquisa, Clínica Sheila Espicalsky, Vila Velha 29101-104, Brazil;
| | - Gladstone E. L. Faria
- Departamento de Pesquisa, Instituto Boggio—Medicina Ensino e Pesquisa, Sao Paulo 04004-030, Brazil; (R.F.B.); (G.E.L.F.)
| |
Collapse
|
9
|
Li X, Ye Y, Zhou W, Shi Q, Wang L, Li T. Anti-Inflammatory Effects of BoNT/A Against Complete Freund's Adjuvant-Induced Arthritis Pain in Rats: Transcriptome Analysis. Front Pharmacol 2021; 12:735075. [PMID: 34803684 PMCID: PMC8602683 DOI: 10.3389/fphar.2021.735075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Arthritis is the most common cause to lead to chronic pain. Botulinum toxin type A (BoNT/A) has been widely used to treat chronic pain. In our previous study, we confirmed the anti-inflammatory and antinociceptive effects of BoNT/A in the Complete Freund’s Adjuvant (CFA)-induced arthritis model, but the underlying anti-inflammatory mechanism was not fully elucidated. The purpose of this study was to investigate the anti-inflammatory effects and mechanisms of BoNT/A on arthritis using transcriptomic analysis. The BoNT/A was injected into the rat ankle joint on day 21 after CFA injection. The von Frey and hot plate tests were applied to assess the pain-related behaviors at different time points. Five days after BoNT/A treatment, gene expression profiling in dorsal root ganglion (DRG) was performed using RNA sequencing (RNA-seq). The differentially expressed genes (DEGs) were analyzed by various tools. The mechanical allodynia and thermal hyperalgesia were significantly reversed after BoNT/A injection. RNA-seq revealed 97 DEGs between the CFA group and Sham group; these DEGs were enriched inflammatory response, IL-17 signaling pathway, etc. There are 71 DEGs between the CFA+BoNT/A group and the CFA group; these DEGs related to response to peptide, PI3K-Akt signaling pathway, ECM–receptor interactions, etc. Three key genes were significantly decreased after CFA-induced arthritis pain, while BoNT/A increased the expression of these genes. The identification of S100A9, S100A8, and MMP8 genes can provide new therapeutic targets for arthritis pain and affect the signaling pathway to play an anti-inflammatory role after the treatment of BoNT/A.
Collapse
Affiliation(s)
- Xinhe Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yinshuang Ye
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenwen Zhou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qilin Shi
- Department of Rehabilitation Medicine, Qingdao West Coast New District People's Hospital, Qingdao, China
| | - Lin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tieshan Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Wang L, Ringelberg CS, Singh BR. Dramatic neurological and biological effects by botulinum neurotoxin type A on SH-SY5Y neuroblastoma cells, beyond the blockade of neurotransmitter release. BMC Pharmacol Toxicol 2020; 21:66. [PMID: 32891179 PMCID: PMC7487822 DOI: 10.1186/s40360-020-00443-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene expression profile analysis on mammalian cell lines and animal models after exposure to botulinum neurotoxin (BoNT) has been investigated in several studies in recent years. Microarray analysis provides a powerful tool for identifying critical signaling pathways involved in the biological and inflammatory responses to BoNT and helps determine the mechanism of the function of botulinum toxins. One of the pivotal clinical characteristics of BoNT is its prolonged on-site effects. The role of BoNT on the blockage of neurotransmitter acetylcholine release in the neuromuscular junction has been well established. However, the effects of the treatment time of BoNT on the human cellular model and its potential mechanism remain to be defined. METHODS This study aimed to use gene microarray technology to compare the two physiological critical time points of BoNT type A (BoNT/A) treatment of human neuroblastoma cells and to advance our understanding of the profound biological influences that toxin molecules play in the neuronal cellular system. SH-SY5Y neuroblastoma cells were treated with BoNT/A for 4 and 48 h, which represent the time needed for the entrance of toxin into the cells and the time necessary for the initial appearance of the on-site effects after BoNT application, respectively. RESULTS A comparison of the two time points identified 122 functional groups that are significantly changed. The top five groups are alternative splicing, phosphoprotein, nucleus, cytoplasm, and acetylation. Furthermore, after 48 h, there were 744 genes significantly up-regulated, and 624 genes significantly down-regulated (p‹ 0.01). These genes fell into the following neurological and biological annotation groups: Nervous system development, proteinaceous extracellular matrix, signaling pathways regulating pluripotency of stem cells, cellular function and signal transduction, and apoptosis. We have also noticed that the up-regulated groups contained neuronal cell development, nervous system development, and metabolic processes. In contrast, the down-regulated groups contained many chromosomes and cell cycle categories. CONCLUSIONS The effects of BoNT/A on neuronal cells extend beyond blocking the neurotransmitter release, and that BoNT/A is a multifunctional molecule that can evoke profound cellular responses which warrant a more in-depth understanding of the mechanism of the toxin's effects after administration.
Collapse
Affiliation(s)
- Lei Wang
- Prime Bio, Inc., North Dartmouth, MA, 02747, USA
| | - Carol S Ringelberg
- Genomics and Molecular Biology Shared Resource, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Bal R Singh
- Prime Bio, Inc., North Dartmouth, MA, 02747, USA. .,Institute of Advanced Sciences, Botulinum Research Center, North Dartmouth, MA, 02747, USA.
| |
Collapse
|
11
|
Sätilä H. Over 25 Years of Pediatric Botulinum Toxin Treatments: What Have We Learned from Injection Techniques, Doses, Dilutions, and Recovery of Repeated Injections? Toxins (Basel) 2020; 12:toxins12070440. [PMID: 32640636 PMCID: PMC7404978 DOI: 10.3390/toxins12070440] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Botulinum toxin type A (BTXA) has been used for over 25 years in the management of pediatric lower and upper limb hypertonia, with the first reports in 1993. The most common indication is the injection of the triceps surae muscle for the correction of spastic equinus gait in children with cerebral palsy. The upper limb injection goals include improvements in function, better positioning of the arm, and facilitating the ease of care. Neurotoxin type A is the most widely used serotype in the pediatric population. After being injected into muscle, the release of acetylcholine at cholinergic nerve endings is blocked, and a temporary denervation and atrophy ensues. Targeting the correct muscle close to the neuromuscular junctions is considered essential and localization techniques have developed over time. However, each technique has its own limitations. The role of BTXA is flexible, but limited by the temporary mode of action as a focal spasticity treatment and the restrictions on the total dose deliverable per visit. As a mode of treatment, repeated BTXA injections are needed. This literature reviewed BTXA injection techniques, doses and dilutions, the recovery of muscles and the impact of repeated injections, with a focus on the pediatric population. Suggestions for future studies are also discussed.
Collapse
Affiliation(s)
- Heli Sätilä
- Department of Neuropediatrics, Päijät-Häme Central Hospital, Lahti, Finland, Keskussairaalankatu 7, 15850 Lahti, Finland
| |
Collapse
|
12
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
13
|
Pei YF, Hu WZ, Yang XL, Wei XT, Feng GJ, Zhang H, Shen H, Tian Q, Deng HW, Zhang L. Two functional variants at 6p21.1 were associated with lean mass. Skelet Muscle 2019; 9:28. [PMID: 31757224 PMCID: PMC6874818 DOI: 10.1186/s13395-019-0212-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022] Open
Abstract
Background Low lean body mass is the most important predictor of sarcopenia with strong genetic background. The aim of this study was to uncover genetic factors underlying lean mass development. Materials and methods We performed a genome-wide association study (GWAS) of fat-adjusted leg lean mass in the Framingham Heart Study (FHS, N = 6587), and replicated in the Women’s Health Initiative–African American sub-sample (WHI-AA, N = 847) and the Kansas City Osteoporosis Study (KCOS, N = 2219). We also cross-validated significant variants in the publicly available body mass index (BMI) summary results (N ~ 700,000). We then performed a series of functional investigations on the identified variants. Results Four correlated SNPs at 6p21.1 were identified at the genome-wide significance (GWS, α = 5.0 × 10−8) level in the discovery FHS sample (rs551145, rs524533, rs571770, and rs545970, p = 3.40–9.77 × 10−9), and were successfully replicated in both the WHI-AA and the KCOS samples (one-sided p = 1.61 × 10−3–0.04). They were further cross-validated by the large-scale BMI summary results (p = 7.0–9.8 × 10−3). Cis-eQTL analyses associated these SNPs with the NFKBIE gene expression. Electrophoresis mobility shift assay (EMSA) in mouse C2C12 myoblast cells implied that rs524533 and rs571770 were bound to an unknown transcription factor in an allelic specific manner, while rs551145 and rs545970 did not. Dual-luciferase reporter assay revealed that both rs524533 and rs571770 downregulated luciferase expression by repressing promoter activity. Moreover, the regulation pattern was allelic specific, strengthening the evidence towards their differential regulatory effects. Conclusions Through a large-scale GWAS followed by a series of functional investigations, we identified 2 correlated functional variants at 6p21.1 associated with leg lean mass. Our findings not only enhanced our understanding of molecular basis of lean mass development but also provided useful candidate genes for further functional studies.
Collapse
Affiliation(s)
- Yu-Fang Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, SuZhou City, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, SuZhou City, People's Republic of China
| | - Wen-Zhu Hu
- School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xiao-Lin Yang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, SuZhou City, People's Republic of China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China
| | - Xin-Tong Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, SuZhou City, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, SuZhou City, People's Republic of China
| | - Gui-Juan Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, SuZhou City, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, SuZhou City, People's Republic of China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, SuZhou City, People's Republic of China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China
| | - Hui Shen
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Qing Tian
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Lei Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, SuZhou City, People's Republic of China. .,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, 199 Ren-ai Rd., SuZhou City, 215123, Jiangsu Province, People's Republic of China.
| |
Collapse
|
14
|
Plasma Levels of Oxidative Stress Markers, before and after BoNT/A Treatment, in Chronic Migraine. Toxins (Basel) 2019; 11:toxins11100608. [PMID: 31635021 PMCID: PMC6832499 DOI: 10.3390/toxins11100608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
The pathophysiological mechanisms of migraine transformation are debated. Modifications of plasma oxidative stress biomarkers have been described in chronic migraine. OnabotulintoxinA (BoNT/A) treatment, approved for chronic migraine prophylaxis, possibly reduces pain neurotransmitters release and oxidative stress products. Aims of our study were to investigate differences in the levels of selected plasmatic oxidative stress biomarkers (Advanced Oxidation Protein Products (AOPP), Ferric Reducing Antioxidant Power (FRAP), Thiolic Groups (SH)) comparing chronic migraineurs (CM) and healthy controls (HC). We also explored possible clinical and biochemical modifications in the CM group after six months of treatment with BoNT/A. At the baseline, we found higher values of AOPP (p < 0.001), and lower values of SH (p < 0.001) and FRAP (p = 0.005) in the CM group. At the six-month follow-up we found a reduction of AOPP (p < 0.001) and an increase of FRAP (p < 0.001) and SH (p = 0.023) within the CM group. BoNT/A treatment improved migraine symptoms in the CM group. We confirmed previous reports of imbalanced antioxidant mechanisms in chronic migraine showing lower antioxidant capacities in patients than controls. BoNT/A improved the levels of plasma oxidative stress biomarkers and confirmed its role as an effective prophylactic treatment for CM. Other studies should investigate the potential antioxidant properties of BoNT/A treatment.
Collapse
|
15
|
Blocking neuromuscular junctions with botulinum toxin A injection enhances neurological heterotopic ossification development after spinal cord injury in mice. Ann Phys Rehabil Med 2019; 62:189-192. [DOI: 10.1016/j.rehab.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/06/2019] [Accepted: 01/06/2019] [Indexed: 11/17/2022]
|
16
|
Chemical denervation using botulinum toxin increases Akt expression and reduces submaximal insulin-stimulated glucose transport in mouse muscle. Cell Signal 2019; 53:224-233. [DOI: 10.1016/j.cellsig.2018.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
|
17
|
Worton LE, Gardiner EM, Kwon RY, Downey LM, Ausk BJ, Bain SD, Gross TS. Botulinum toxin A-induced muscle paralysis stimulates Hdac4 and differential miRNA expression. PLoS One 2018; 13:e0207354. [PMID: 30427927 PMCID: PMC6235354 DOI: 10.1371/journal.pone.0207354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
At sufficient dose, intramuscular injection of Botulinum toxin A causes muscle wasting that is physiologically consistent with surgical denervation and other types of neuromuscular dysfunction. The aim of this study was to clarify early molecular and micro-RNA alterations in skeletal muscle following Botulinum toxin A-induced muscle paralysis. Quadriceps were analyzed for changes in expression of micro- and messenger RNA and protein levels after a single injection of 0.4, 2 or 4U Botulinum toxin A (/100g body weight). After injection with 2.0U Botulinum toxin A, quadriceps exhibited significant reduction in muscle weight and increased levels of ubiquitin ligase proteins at 7, 14 and 28 days. Muscle miR-1 and miR-133a/b levels were decreased at these time points, whereas a dose-responsive increase in miR-206 expression at day 14 was observed. Expression of the miR-133a/b target genes RhoA, Tgfb1 and Ctfg, and the miR-1/206 target genes Igf-1 and Hdac4, were upregulated at 28 days after Botulinum toxin A injection. Increased levels of Hdac4 protein were observed after injection, consistent with anticipated expression changes in direct and indirect Hdac4 target genes, such as Myog. Our results suggest Botulinum toxin A-induced denervation of muscle shares molecular characteristics with surgical denervation and other types of neuromuscular dysfunction, and implicates miR-133/Tgf-β1/Ctfg and miR-1/Hdac4/Myog signaling during the resultant muscle atrophy.
Collapse
Affiliation(s)
- Leah E. Worton
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
- * E-mail:
| | - Edith M. Gardiner
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
| | - Ronald Y. Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
| | - Leah M. Downey
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
| | - Brandon J. Ausk
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
| | - Steven D. Bain
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
| | - Ted S. Gross
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
| |
Collapse
|
18
|
Mukund K, Ward SR, Lieber RL, Subramaniam S. Co-Expression Network Approach to Studying the Effects of Botulinum Neurotoxin-A. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:2009-2016. [PMID: 29053464 DOI: 10.1109/tcbb.2017.2763949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Botulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications. The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into five groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes-Dclk1 and Ostalpha-within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous work.
Collapse
|
19
|
Botulinum Toxin Induced Atrophy: An Uncharted Territory. Toxins (Basel) 2018; 10:toxins10080313. [PMID: 30072597 PMCID: PMC6115806 DOI: 10.3390/toxins10080313] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 11/29/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) produce local chemo-denervation by cleaving soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins. Botulinum neurotoxins are therapeutically indicated in several neurological disorders and have been in use for three decades. The long-term efficacy, safety, and side effects of BoNTs have been well documented in the literature. However, the development of muscle atrophy following chronic exposure to BoNTs has not received sufficient attention. Muscle atrophy is not only cosmetically distressing, but also has an impact on future injections. An extensive literature search was conducted on atrophy and mechanisms of atrophy. Five hundred and four relevant articles in the English language were reviewed. This review revealed the surprising lack of documentation of atrophy within the literature. In addition, as demonstrated in this review, the mechanisms and the clinical factors that may lead to atrophy have also been poorly studied. However, even with this limited information it is possible to indicate factors that could modify the clinical approach to botulinum toxin injections. This review highlights the need for further study of atrophy following BoNT injections.
Collapse
|
20
|
Condylar Degradation from Decreased Occlusal Loading following Masticatory Muscle Atrophy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6947612. [PMID: 29992158 PMCID: PMC5994330 DOI: 10.1155/2018/6947612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Objective The masticatory muscles are the most important contributor to bite force, and the temporomandibular joint (TMJ) receives direct occlusal loading. The present study aimed to investigate condylar remodeling after masseter muscle atrophy in rats. Methods Sixty 5-week-old female Sprague-Dawley rats were divided into the following 3 groups: the control group, soft diet (SD) group, and botulinum toxin (BTX) group. The cross-sectional area (CSA) of the masseter muscles was investigated as well as atrogin-1/MuRF-1 expression. Changes in the condylar head were evaluated by H-E, toluidine blue staining, and contour measurements. The biomechanical sensitive factors PTHrP Ihh, Col2a1, and ColX of condylar cartilage were detected by immunohistochemical staining and western blotting. Furthermore, micro-CT and tartrate-resistant acid phosphatase (TRAP) staining were performed to determine the osteopenia in subchondral bone. Results The histological and protein analysis demonstrated muscle hypofunction in the SD and BTX groups. Condylar cartilage contour was diminished due to different treatments; the immunohistochemistry and protein examination showed that the expressions of PTHrP, Ihh, Col2a1, and ColX were suppressed in condylar cartilage. A steady osteoporosis in subchondral bone was found only in the BTX group. Conclusion The current results suggested that a steady relationship between muscular dysfunction and condylar remodeling exists.
Collapse
|
21
|
Zanotti S, Kapetis D, Gibertini S, Salerno F, Ciusani E, Colombo C, Gronchi A, Morandi L, Mantegazza R, Molteni F, Mora M. Botulinum toxin type A affects the transcriptome of cell cultures derived from muscle biopsies of controls and spastic patients. Toxicol In Vitro 2018. [PMID: 29522793 DOI: 10.1016/j.tiv.2018.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Botulin toxin (BTX) is widely used for treating skeletal muscle spasticity. Experimental reports on BTX treatment were mainly focused on the neuromuscular junction, while relatively little is known about toxin effects on the muscle cell itself. We investigated possible impact of BTX type A on skeletal muscle cell transcriptome by microarray analysis in muscle-derived cell cultures (fibroblasts, myoblasts and myotubes) from controls and spastic patients, and results were then validated at transcript and protein level. BTX-A treatment of control cells induced major changes in the myogenic component of the transcriptome, whereas the same treatment had a negligible effect in the fibrogenic component. BTX-A treatment of cell cultures from spastic patients induced an increased number of genes differentially expressed both in the fibrogenic and myogenic components. Specifically, BTX-A had a major effect on cell cycle-related genes in myoblasts, on muscle contraction-related genes in myotubes, and on extracellular matrix-related genes in fibroblasts from spastic patients. Our findings show that in vitro BTX-A treatment differentially affects transcript expression in muscle cells from spastic patients compared to those from controls suggesting a direct effect of BTX-A on muscle-specific functional pathways.
Collapse
Affiliation(s)
- Simona Zanotti
- Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico "C. Besta", Milano, Italy.
| | - Dimos Kapetis
- Bioinformatics Unit, Fondazione IRCCS Istituto Neurologico "C. Besta", Milano, Italy
| | - Sara Gibertini
- Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico "C. Besta", Milano, Italy
| | - Franco Salerno
- Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico "C. Besta", Milano, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico "C. Besta", Milano, Italy
| | - Chiara Colombo
- Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Alessandro Gronchi
- Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Lucia Morandi
- Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico "C. Besta", Milano, Italy
| | - Renato Mantegazza
- Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico "C. Besta", Milano, Italy
| | - Franco Molteni
- Department of Rehabilitation Medicine, Villa Beretta Rehabilitation Center, Valduce Hospital, Como, Italy
| | - Marina Mora
- Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico "C. Besta", Milano, Italy
| |
Collapse
|
22
|
Mukund K, Subramaniam S. Co-expression Network Approach Reveals Functional Similarities among Diseases Affecting Human Skeletal Muscle. Front Physiol 2017; 8:980. [PMID: 29249983 PMCID: PMC5717538 DOI: 10.3389/fphys.2017.00980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022] Open
Abstract
Diseases affecting skeletal muscle exhibit considerable heterogeneity in intensity, etiology, phenotypic manifestation and gene expression. Systems biology approaches using network theory, allows for a holistic understanding of functional similarities amongst diseases. Here we propose a co-expression based, network theoretic approach to extract functional similarities from 20 heterogeneous diseases comprising of dystrophinopathies, inflammatory myopathies, neuromuscular, and muscle metabolic diseases. Utilizing this framework we identified seven closely associated disease clusters with 20 disease pairs exhibiting significant correlation (p < 0.05). Mapping the diseases onto a human protein-protein interaction network enabled the inference of a common program of regulation underlying more than half the muscle diseases considered here and referred to as the “protein signature.” Enrichment analysis of 17 protein modules identified as part of this signature revealed a statistically non-random dysregulation of muscle bioenergetic pathways and calcium homeostasis. Further, analysis of mechanistic similarities of less explored significant disease associations [such as between amyotrophic lateral sclerosis (ALS) and cerebral palsy (CP)] using a proposed “functional module” framework revealed adaptation of the calcium signaling machinery. Integrating drug-gene information into the quantitative framework highlighted the presence of therapeutic opportunities through drug repurposing for diseases affecting the skeletal muscle.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Shankar Subramaniam
- Departments Cellular and Molecular Medicine, Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
23
|
Pingel J, Nielsen MS, Lauridsen T, Rix K, Bech M, Alkjaer T, Andersen IT, Nielsen JB, Feidenhansl R. Injection of high dose botulinum-toxin A leads to impaired skeletal muscle function and damage of the fibrilar and non-fibrilar structures. Sci Rep 2017; 7:14746. [PMID: 29116170 PMCID: PMC5677119 DOI: 10.1038/s41598-017-14997-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/20/2017] [Indexed: 12/30/2022] Open
Abstract
Botulinum-toxin A (BoNT/A) is used for a wide range of conditions. Intramuscular administration of BoNT/A inhibits the release of acetylcholine at the neuromuscular junction from presynaptic motor neurons causing muscle-paralysis. The aim of the present study was to investigate the effect of high dose intramuscular BoNT/A injections (6 UI = 60 pg) on muscle tissue. The gait pattern of the rats was significantly affected 3 weeks after BoNT/A injection. The ankle joint rotated externally, the rats became flat footed, and the stride length decreased after BoNT/A injection. Additionally, there was clear evidence of microstructural changes on the tissue level by as evidenced by 3D imaging of the muscles by Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM). Both the fibrillar and the non-fibrillar tissues were affected. The volume fraction of fibrillary tissue was reduced significantly and the non-fibrillar tissue increased. This was accompanied by a loss of the linear structure of the muscle tissue. Furthermore, gene expression analysis showed a significant upregulation of COL1A1, MMP-2, TGF-b1, IL-6, MHCIIA and MHCIIx in the BoNT/A injected leg, while MHVIIB was significantly downregulated. IN CONCLUSION The present study reveals that high dose intramuscular BoNT/A injections cause microstructural damage of the muscle tissue, which contributes to impaired gait.
Collapse
Affiliation(s)
- Jessica Pingel
- Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| | | | | | - Kristian Rix
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Martin Bech
- Medical Radiation Physics, Clinical Sciences, Lund University, Lund, Sweden
| | - Tine Alkjaer
- Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ida Torp Andersen
- Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bo Nielsen
- Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - R Feidenhansl
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- European XFEL, Hamburg, Germany
| |
Collapse
|
24
|
Ward SR, Minamoto VB, Suzuki KP, Hulst JB, Bremner SN, Lieber RL. Recovery of rat muscle size but not function more than 1 year after a single botulinum toxin injection. Muscle Nerve 2017; 57:435-441. [PMID: 28556093 DOI: 10.1002/mus.25707] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Neurotoxin injection is used to treat a wide variety of neuromuscular disorders. The purpose of this study was to measure the functional and structural properties of botulinum toxin-injected adult rat skeletal muscle over nearly the entire lifespan. METHODS Ten groups of animals were subjected to either neurotoxin injection [Botox, Type A (BT-A); Allergan, Irvine, California] or saline solution injection. Neurotoxin-injected animals (n = 90) were analyzed at different time-points: 1 week; 1 month; 3 months; 6 months; 12 months; or 18 months. RESULTS In spite of the recovery of structural features, such as muscle mass and fiber area, dorsiflexion torque production remained significantly depressed by 25%, even at 12 months after neurotoxin injection. DISCUSSION The data demonstrate that, after a single BT-A injection, although gross muscle morphology recovered over a 12-month time period, loss of contractile function did not recover. Muscle Nerve 57: 435-441, 2018.
Collapse
Affiliation(s)
- Samuel R Ward
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.,Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Viviane B Minamoto
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Kentaro P Suzuki
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Jonah B Hulst
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Shannon N Bremner
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Richard L Lieber
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.,Rehabilitation Institute of Chicago, 345 East Superior Street, Chicago, Illinois, 60611, USA
| |
Collapse
|
25
|
Kocaelli H, Yaltirik M, Ayhan M, Aktar F, Atalay B, Yalcin S. Ultrastructural evaluation of intramuscular applied botulinum toxin type A in striated muscles of rats. Hippokratia 2016; 20:292-298. [PMID: 29416302 PMCID: PMC5788228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Botulinum toxin type A (BTX-A) is clinically utilized for therapeutic and cosmetic purposes in maxillofacial surgery as well as many other medical specialties. There is no sufficient ultrastructural research about BTX and it is controversial whether BTX-A causes muscle degeneration to some extent, in the course of therapy. The aim of this study was to evaluate the histological effects of BTX-A when injected into masseter and gluteal muscles. MATERIALS AND METHODS A total of 30 male Sprague-Dawley rats were used and randomly divided into experimental (n =15) and control groups (n =15). Masseter and gluteal muscles were injected with a single dose of BTX-A in normal saline (0.5 U/0.1 ml), or 0.1 ml of normal saline, in the experimental and control groups, respectively. After 12 weeks all the rats were sacrificed. Gluteal, masseter muscles, and the sciatic nerves of the rats were prepared and electron microscopic, and light microscopic evaluation was performed on semi-thin sections cut from Epon embedded tissues and stained with toluidine blue. Quantitative parameters such as muscle fiber thickness and qualitative assessments including sarcosomal (striated muscle mitochondria) deformation, glycogen content, features of the triad structures and the intensity of connective tissue around the muscle fibers, and endoneurial and perineural tissue around nerve fibers were evaluated microscopically. We paired BTX- A (+) and BTX-A (-) samples statistically. Independent Samples t-test was used for the statistical analysis. RESULTS Muscle fiber's diameter was significantly decreased in BTX-A (+) group (p <0,001). Atrophic changes in the myofibrils were characterized by a decrease in the myofibrillar diameter and changes in the sarcomere structure, and were prominent in the BTX-A (+) group. Also, some other changes like dilatation in the sarcoplasmic reticulum cisternae, mitochondrial swelling, and clearing of mitochondrial cristae associated with degeneration, were detected. No morphologic difference in the sciatic nerve fibers was detected, and myelin sheaths of axon structures were intact in both groups. CONCLUSION BTX-A-induced muscular changes that are predominantly related to atrophy instead of degeneration. Although predominantly related to atrophy, our degeneration related findings suggest that further studies are needed focusing on detecting BTX-A effects on a cellular level. Hippokratia 2016, 20(4): 292-298.
Collapse
Affiliation(s)
- H Kocaelli
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - M Yaltirik
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - M Ayhan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - F Aktar
- Department of Histology and Embryology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - B Atalay
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - S Yalcin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
26
|
Pingel J, Wienecke J, Lorentzen J, Nielsen JB. Botulinum toxin injection causes hyper-reflexia and increased muscle stiffness of the triceps surae muscle in the rat. J Neurophysiol 2016; 116:2615-2623. [PMID: 27628204 DOI: 10.1152/jn.00452.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 12/17/2022] Open
Abstract
Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P < 0.01). These data demonstrate that botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures.
Collapse
Affiliation(s)
- Jessica Pingel
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Wienecke
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark; and
| | - Jakob Lorentzen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Jens Bo Nielsen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark; .,Elsass Institute, Charlottenlund, Denmark
| |
Collapse
|
27
|
Moon YM, Kim MK, Kim SG, Kim TW. Apoptotic action of botulinum toxin on masseter muscle in rats: early and late changes in the expression of molecular markers. SPRINGERPLUS 2016; 5:991. [PMID: 27398270 PMCID: PMC4936988 DOI: 10.1186/s40064-016-2680-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/26/2016] [Indexed: 12/24/2022]
Abstract
The purpose of this study was to compare the early or late expression levels of p65, Bcl-2, and type II myosin and the frequency of TUNEL-positive nuclei in the rat masseter muscle after injection of different concentrations of botulinum toxin-A (BTX-A). We injected either 5 U or 10 U of BTX-A into both masseter muscles of the rat. As a control group, the same volume of saline was injected. After 2 or 12 weeks, the animals were sacrificed. Subsequently, a biopsy and immunohistochemical staining of the samples were performed using a p65, Bcl-2, or type II myosin antibody. Additionally, a TUNEL assay and transmission electron microscopic analysis were performed. The expression of p65, Bcl-2, and type II myosin increased significantly with increasing concentrations of BTX-A at 2 weeks after BTX-A injection (P < 0.05). The number of TUNEL-positive nuclei was also significantly increased in the BTX-A-treated groups in comparison to the saline-treated control at 2 weeks after BTX-A injection (P < 0.05). Elevated expression of Bcl-2 was also observed in 10-unit BTX-A-treated group at 12 weeks after injection (P < 0.05). At 12 weeks after injection, the number of enlarged mitochondria was increased, and many mitochondria displayed aberrations in cristae morphology after BTX-A injection. In conclusion, BTX-A injection into the masseter muscle increased the expression level of p65, Bcl-2, and type II myosin at an early stage. The morphological changes of mitochondria were more evident at 12 weeks after injection.
Collapse
Affiliation(s)
- Young-Min Moon
- Department of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| | - Min-Keun Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, 7 Jukhyun-gil, Gangneung, 210-702 Korea
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, 7 Jukhyun-gil, Gangneung, 210-702 Korea
| | - Tae-Woo Kim
- Department of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Drewes E, Driscoll M, Blyum L, Vincentz D. The Effects of a Home-Based Connective Tissue Targeting Therapy on Hip Development in Children With Cerebral Palsy: Six Case Reports. Explore (NY) 2016; 12:268-76. [PMID: 27198038 DOI: 10.1016/j.explore.2016.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Indexed: 10/21/2022]
Abstract
Hip subluxation in children with Cerebral Palsy (CP) has an incidence of 10-30 %, and children with severe CP having the highest incidence. The condition deteriorates if left untreated. Surgery is the most common method used in managing hip subluxation because standard conservative therapies do not improve it. Surgery may have to be repeated and comes at a biological cost to the child. A new home-based CAM, Advanced Biomechanical Rehabilitation (ABR), has shown encouraging results leading to improved spinal stability and stability in sitting in children with severe CP. This case report examines hip development over time in six children with severe CP in the ABR Program. Changes in their clinical picture and pelvic X-Rays are reported. ABR appeared to help stabilize and improve hip subluxation, resulting in these children not requiring further surgical intervention. These findings warrant further investigation of ABR as a noninvasive therapy for hip subluxation.
Collapse
Affiliation(s)
- Erika Drewes
- Integrative Family Physician (Private Practice), 15 Budock Road, Claremont, Cape Town 7708.
| | - Mark Driscoll
- Advanced Biomechanical Rehabilitation, Montreal, Pierre-Baillargeons, Canada 11991; Biomedical Research Group, 5135 Bessborough St, Montreal, Canada H4V2S5
| | - Leonid Blyum
- Biomedical Research Group, 5135 Bessborough St, Montreal, Canada H4V2S5
| | - Diane Vincentz
- Advanced Biomechanical Rehabilitation, Horndrupvej 36, Skanderborg 8660, Denmark
| |
Collapse
|
29
|
Killian ML, Cavinatto LM, Ward SR, Havlioglu N, Thomopoulos S, Galatz LM. Chronic Degeneration Leads to Poor Healing of Repaired Massive Rotator Cuff Tears in Rats. Am J Sports Med 2015; 43:2401-10. [PMID: 26297522 PMCID: PMC4750378 DOI: 10.1177/0363546515596408] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chronic rotator cuff tears present a clinical challenge, often with poor outcomes after surgical repair. Degenerative changes to the muscle, tendon, and bone are thought to hinder healing after surgical repair; additionally, the ability to overcome degenerative changes after surgical repair remains unclear. PURPOSE/HYPOTHESIS The purpose of this study was to evaluate healing outcomes of muscle, tendon, and bone after tendon repair in a model of chronic rotator cuff disease and to compare these outcomes to those of acute rotator cuff injuries and repair. The hypothesis was that degenerative rotator cuff changes associated with chronic multitendon tears and muscle unloading would lead to poor structural and mechanical outcomes after repair compared with acute injuries and repair. STUDY DESIGN Controlled laboratory study. METHODS Chronic rotator cuff injuries, induced via detachment of the supraspinatus (SS) and infraspinatus (IS) tendons and injection of botulinum toxin A into the SS and IS muscle bellies, were created in the shoulders of rats. After 8 weeks of injury, tendons were surgically reattached to the humeral head, and an acute, dual-tendon injury and repair was performed on the contralateral side. After 8 weeks of healing, muscles were examined histologically, and tendon-to-bone samples were examined microscopically, histologically, and biomechanically and via micro-computed tomography. RESULTS All repairs were intact at the time of dissection, with no evidence of gapping or ruptures. Tendon-to-bone healing after repair in our chronic injury model led to reduced bone quality and morphological disorganization at the repair site compared with acute injuries and repair. SS and IS muscles were atrophic at 8 weeks after repair of chronic injuries, indicating incomplete recovery after repair, whereas SS and IS muscles exhibited less atrophy and degeneration in the acute injury group at 8 weeks after repair. After chronic injuries and repair, humeral heads had decreased total mineral density and an altered trabecular structure, and the repair had decreased strength, stiffness, and toughness, compared with the acute injury and repair group. CONCLUSION Chronic degenerative changes in rotator cuff muscles, tendons, and bone led to inferior healing characteristics after repair compared with acute injuries and repair. The changes were not reversible after repair in the time course studied, consistent with clinical impressions. CLINICAL RELEVANCE High retear rates after rotator cuff repair are associated with tear size and chronicity. Understanding the mechanisms behind this association may allow for targeted tissue therapy for tissue degeneration that occurs in the setting of chronic tears.
Collapse
Affiliation(s)
- Megan L. Killian
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA
| | - Leonardo M. Cavinatto
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA,Orthopaedics and Traumatology, University of São Paulo, São Paulo, Brazil
| | - Samuel R. Ward
- Department of Radiology, University of California, San Diego, La Jolla, California, USA,Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California, USA,Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Necat Havlioglu
- John Cochran Division, St Louis Veterans Affairs Medical Center, St Louis, Missouri, USA
| | - Stavros Thomopoulos
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA,Address correspondence to Stavros Thomopoulos, PhD, and Leesa M. Galatz, MD, Department of Orthopaedic Surgery, Washington University, 660 South Euclid, Campus Box 8233, St Louis, MO 63110, USA (; )
| | - Leesa M. Galatz
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA,Address correspondence to Stavros Thomopoulos, PhD, and Leesa M. Galatz, MD, Department of Orthopaedic Surgery, Washington University, 660 South Euclid, Campus Box 8233, St Louis, MO 63110, USA (; )
| |
Collapse
|
30
|
Houston FE, Hain BA, Adams TJ, Houston KL, O'Keeffe R, Dodd SL. Heat shock protein 70 overexpression does not attenuate atrophy in botulinum neurotoxin type A-treated skeletal muscle. J Appl Physiol (1985) 2015; 119:83-92. [PMID: 25953835 DOI: 10.1152/japplphysiol.00233.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/29/2015] [Indexed: 11/22/2022] Open
Abstract
Botulinum neurotoxin type A (BoNT/A) is used clinically to induce therapeutic chemical denervation of spastically contracted skeletal muscles. However, BoNT/A administration can also cause atrophy. We sought to determine whether a major proteolytic pathway contributing to atrophy in multiple models of muscle wasting, the ubiquitin proteasome system (UPS), is involved in BoNT/A-induced atrophy. Three and ten days following BoNT/A injection of rat hindlimb, soleus muscle fiber cross-sectional area was reduced 25 and 65%, respectively. The transcriptional activity of NF-κB and Foxo was significantly elevated at 3 days (2- to 4-fold) and 10 days (5- to 6-fold). Muscle RING-finger protein-1 (MuRF1) activity was elevated (2-fold) after 3 days but not 10 days, while atrogin-1 activity was not elevated at any time point. BoNT/A-induced polyubiquitination occurred after 3 days (3-fold increase) but was totally absent after 10 days. Proteasome activity was elevated (1.5- to 2-fold) after 3 and 10 days. We employed the use of heat shock protein 70 (Hsp70) to inhibit NF-κB and Foxo transcriptional activity. Electrotransfer of Hsp70 into rat soleus, before BoNT/A administration, was insufficient to attenuate atrophy. It was also insufficient to decrease BoNT/A-induced Foxo activity at 3 days, although NF-κB activity was abolished. By 10 days both NF-κB and Foxo activation were abolished by Hsp70. Hsp70-overexpression was unable to alter the levels of BoNT/A-induced effects on MuRF1/atrogin-1, polyubiquitination, or proteasome activity. In conclusion, Hsp70 overexpression is insufficient to attenuate BoNT/A-induced atrophy. It remains unclear what proteolytic mechanism/s are contributing to BoNT/A-induced atrophy, although a Foxo-MuRF1-ubiquitin-proteasome contribution may exist, at least in early BoNT/A-induced atrophy. Further clarification of UPS involvement in BoNT/A-induced atrophy is warranted.
Collapse
Affiliation(s)
- Fraser E Houston
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Brian A Hain
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Thomas J Adams
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Kati L Houston
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | | | - Stephen L Dodd
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| |
Collapse
|
31
|
Hyldahl RD, Nelson B, Xin L, Welling T, Groscost L, Hubal MJ, Chipkin S, Clarkson PM, Parcell AC. Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle. FASEB J 2015; 29:2894-904. [PMID: 25808538 DOI: 10.1096/fj.14-266668] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/09/2015] [Indexed: 11/11/2022]
Abstract
This study determined the contribution of extracellular matrix (ECM) remodeling to the protective adaptation of human skeletal muscle known as the repeated-bout effect (RBE). Muscle biopsies were obtained 3 hours, 2 days, and 27 days following an initial bout (B1) of lengthening contractions (LCs) and 2 days following a repeated bout (B2) in 2 separate studies. Biopsies from the nonexercised legs served as controls. In the first study, global transcriptomic analysis indicated widespread changes in ECM structural, deadhesive, and signaling transcripts, 3 hours following LC. To determine if ECM remodeling is involved in the RBE, we conducted a second study by use of a repeated-bout paradigm. TNC immunoreactivity increased 10.8-fold following B1, was attenuated following B2, and positively correlated with LC-induced strength loss (r(2) = 0.45; P = 0.009). Expression of collagen I, III, and IV (COL1A1, COL3A1, COL4A1) transcripts was unchanged early but increased 5.7 ± 2.5-, 3.2 ± 0.9-, and 2.1 ± 0.4-fold (P < 0.05), respectively, 27 days post-B1 and were unaffected by B2. Likewise, TGF-β signaling demonstrated a delayed response following LC. Satellite cell content increased 80% (P < 0.05) 2 days post-B1 (P < 0.05), remained elevated 27 days post-B1, and was unaffected by B2. Collectively, the data suggest sequential ECM remodeling characterized by early deadhesion and delayed reconstructive activity that appear to contribute to the RBE.
Collapse
Affiliation(s)
- Robert D Hyldahl
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Brad Nelson
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Ling Xin
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Tyson Welling
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Logan Groscost
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Monica J Hubal
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Stuart Chipkin
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Priscilla M Clarkson
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Allen C Parcell
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| |
Collapse
|
32
|
Scherf JM, Hu XS, Tepp WH, Ichtchenko K, Johnson EA, Pellett S. Analysis of gene expression in induced pluripotent stem cell-derived human neurons exposed to botulinum neurotoxin A subtype 1 and a type A atoxic derivative. PLoS One 2014; 9:e111238. [PMID: 25337697 PMCID: PMC4206481 DOI: 10.1371/journal.pone.0111238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022] Open
Abstract
Botulinum neurotoxin type A1 (BoNT/A1) is a potent protein toxin responsible for the potentially fatal human illness botulism. Notwithstanding, the long-lasting flaccid muscle paralysis caused by BoNT/A has led to its utility as a powerful and versatile bio-pharmaceutical. The flaccid paralysis is due to specific cleavage of neuronal SNAREs by BoNTs. However, actions of BoNTs on intoxicated neurons besides the cleavage of SNAREs have not been studied in detail. In this study we investigated by microarray analysis the effects of BoNT/A and a catalytically inactive derivative (BoNT/A ad) on the transcriptome of human induced pluripotent stem cell (hiPSC)-derived neurons at 2 days and 2 weeks after exposure. While there were only minor changes in expression levels at 2 days post exposure, at 2 weeks post exposure 492 genes were differentially expressed more than 2-fold in BoNT/A1-exposed cells when compared to non-exposed populations, and 682 genes were differentially expressed in BoNT/A ad-exposed cells. The vast majority of genes were similarly regulated in BoNT/A1 and BoNT/A ad-exposed neurons, and the few genes differentially regulated between BoNT/A1 and BoNT/A ad-exposed neurons were differentially expressed less than 3.5 fold. These data indicate a similar response of neurons to BoNT/A1 and BoNT/A ad exposure. The most highly regulated genes in cells exposed to either BoNT/A1 or BoNT/A ad are involved in neurite outgrowth and calcium channel sensitization.
Collapse
Affiliation(s)
- Jacob M. Scherf
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaoyang Serene Hu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Konstantin Ichtchenko
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|