1
|
De Wel B, Huysmans L, Peeters R, Ghysels S, Byloos K, Putzeys G, Maes F, Dupont P, Claeys KG. Test-retest reliability and follow-up of muscle magnetic resonance elastography in adults with and without muscle diseases. J Cachexia Sarcopenia Muscle 2024; 15:1761-1771. [PMID: 38923326 PMCID: PMC11446706 DOI: 10.1002/jcsm.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/19/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND We investigated the potential of magnetic resonance elastography (MRE) stiffness measurements in skeletal muscles as an outcome measure, by determining its test-retest reliability, as well as its sensitivity to change in a longitudinal follow-up study. METHODS We assessed test-retest reliability of muscle MRE in 20 subjects with (n = 5) and without (n = 15) muscle diseases and compared this to Dixon proton density fat fraction (PDFF) and volume measurements. Next, we measured MRE muscle stiffness in 21 adults with Becker muscular dystrophy (BMD) and 21 age-matched healthy controls at baseline, and after 9 and 18 months. We compared two different methods of analysing MRE data in this study: 'Method A' used the stiffness maps generated by the Philips MRE software, and 'Method B' applied a custom-made procedure based on wavelength measurements on the MRE images. RESULTS Intraclass correlation coefficients (ICC) of muscle stiffness ranged from good (0.83 for left vastus medialis, P < 0.001) to poor (0.19 for right rectus femoris, P = 0.212) for the examined thigh muscles with Method A, but we did not find a significant test-retest reliability with Method B (P > 0.050 for all). The ICC of muscle PDFF and volume measurements was excellent (>0.90; P < 0.001) for all muscles. At baseline, the average stiffness of all thigh muscles was significantly lower in adults with BMD than in controls for both Method A (-0.2 kPa, P = 0.025) and Method B (-0.6 kPa, P < 0.001). Regardless of which method was used, there was no significant difference in the evolution of muscle stiffness in patients and controls over 18 months. CONCLUSIONS Test-retest reliability of muscle MRE using a simple 2D technique was suboptimal, and did not reliably measure muscle stiffness changes in adults with BMD as compared with controls over 18 months. While the results provide motivation for testing more advanced 3D MRE methods, we conclude that the simple 2D MRE implementation used in this study is not suitable as an outcome measure for characterizing thigh muscle in clinical trials.
Collapse
Affiliation(s)
- Bram De Wel
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of NeurosciencesLaboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI)LeuvenBelgium
| | - Lotte Huysmans
- Medical Imaging Research CentreUniversity Hospitals LeuvenLeuvenBelgium
- Department ESATPSI, KU LeuvenLeuvenBelgium
| | - Ronald Peeters
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Stefan Ghysels
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Kris Byloos
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Guido Putzeys
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Frederik Maes
- Medical Imaging Research CentreUniversity Hospitals LeuvenLeuvenBelgium
- Department ESATPSI, KU LeuvenLeuvenBelgium
| | - Patrick Dupont
- Department of NeurosciencesLaboratory for Cognitive Neurology, KU Leuven, and Leuven Brain Institute (LBI)LeuvenBelgium
| | - Kristl G. Claeys
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of NeurosciencesLaboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI)LeuvenBelgium
| |
Collapse
|
2
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Jeong JH, Hwang Y, Choi YS, Jackaman C, Kennedy BF, Grounds MD. Multimodal three-dimensional characterization of murine skeletal muscle micro-scale elasticity, structure, and composition: Impact of dysferlinopathy, Duchenne muscular dystrophy, and age on three hind-limb muscles. J Mech Behav Biomed Mater 2024; 160:106751. [PMID: 39326249 DOI: 10.1016/j.jmbbm.2024.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
Skeletal muscle tissue function is governed by the mechanical properties and organization of its components, including myofibers, extracellular matrix, and adipose tissue, which can be modified by the onset and progression of many disorders. This study used a novel combination of quantitative micro-elastography and clearing-enhanced three-dimensional (3D) microscopy to assess 3D micro-scale elasticity and micro-architecture of muscles from two muscular dystrophies: dysferlinopathy and Duchenne muscular dystrophy, using male BLA/J and mdx mice, respectively, and their wild-type (WT) controls. We examined three muscles with varying proportions of slow- and fast-twitch myofibers: the soleus (predominantly slow), extensor digitorum longus (EDL; fast), and quadriceps (mixed), from BLA/J and WTBLA/J mice aged 3, 10, and 24 months, and mdx and WTmdx mice aged 10 months. Both dysferlin deficiency and age reduced the elasticity and variability of elasticity of the soleus and quadriceps, but not EDL. Overall, the BLA/J soleus was 20% softer than WT and less mechanically heterogeneous (-14% in standard deviation of elasticity). The BLA/J quadriceps at 24 months was 72% softer than WT and less mechanically heterogeneous (-59% in standard deviation), with substantial adipose tissue accumulation. While mdx muscles did not differ quantitatively from WT, regional heterogeneity was evident in micro-scale elasticity and micro-architecture of quadriceps (e.g., 11.2 kPa in a region with marked pathology vs 3.8 kPa in a less affected area). These results demonstrate differing biomechanical changes in hind-limb muscles of two distinct muscular dystrophies, emphasizing the potential for this novel multimodal technique to identify important differences between various myopathies.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland.
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
3
|
Kleiser B, Zimmer M, Ateş F, Marquetand J. Characterizing Mechanical Changes in the Biceps Brachii Muscle in Mild Facioscapulohumeral Muscular Dystrophy Using Shear Wave Elastography. Diagnostics (Basel) 2024; 14:1985. [PMID: 39272769 PMCID: PMC11394530 DOI: 10.3390/diagnostics14171985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
There is no general consensus on evaluating disease progression in facioscapulohumeral muscular dystrophy (FSHD). Recently, shear wave elastography (SWE) has been proposed as a noninvasive diagnostic tool to assess muscle stiffness in vivo. Therefore, this study aimed to characterize biceps brachii (BB) muscle mechanics in mild-FSHD patients using SWE. Eight patients with mild FSHD, the BB were assessed using SWE, surface electromyography (sEMG), elbow moment measurements during rest, maximum voluntary contraction (MVC), and isometric ramp contractions at 25%, 50%, and 75% MVC across five elbow positions (60°, 90°, 120°, 150°, and 180° flexion). The mean absolute percentage deviation (MAPD) was analyzed as a measure of force control during ramp contractions. The shear elastic modulus of the BB in FSHD patients increased from flexed to extended elbow positions (e.g., p < 0.001 at 25% MVC) and with increasing contraction intensity (e.g., p < 0.001 at 60°). MAPD was highly variable, indicating significant deviation from target values during ramp contractions. SWE in mild FSHD is influenced by contraction level and joint angle, similar to findings of previous studies in healthy subjects. Moreover, altered force control could relate to the subjective muscle weakness reported by patients with dystrophies.
Collapse
Affiliation(s)
- Benedict Kleiser
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
- MEG-Center, University of Tübingen, Otfried-Müller-Str. 47, 72076 Tübingen, Germany
| | - Manuela Zimmer
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
| | - Filiz Ateş
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
| | - Justus Marquetand
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
- MEG-Center, University of Tübingen, Otfried-Müller-Str. 47, 72076 Tübingen, Germany
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Goo M, Johnston LM, Tucker K. Shear modulus of lower limb muscles in school-aged children with mild hypotonia. J Biomech 2024; 174:112267. [PMID: 39141960 DOI: 10.1016/j.jbiomech.2024.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/24/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
The objective of this study is to compare shear modulus of lower limb muscles between children with hypotonia versus typical development (TD) or developmental disorders associated with altered tone. Nineteen children with mild hypotonia (mean age 9.4 ± 2.3y, 13 male) completed assessment of resting shear modulus of rectus femoris, biceps femoris (BF), tibialis anterior (TA) and gastrocnemius lateralis (GL) at short and long lengths using shear wave elastography. Data was compared with previous data from TD children and a scoping review for children with developmental disorders. Data were collated according to Net-Longitudinal Tension Angle (Net-LTA), which is the muscle length expressed as the net proximal and distal joint angles. Effects of Net-LTA (e.g., short, neutral, long) were examined according to sex, age and body mass index (BMI). In children with hypotonia, shear modulus was: higher at longer versus shorter lengths for four muscles (p < 0.01); correlated with age for BF-short (r = 0.60, p < 0.03) and GL-short (r = -0.54, p < 0.03), with BMI for BF-short (r = 0.71, p < 0.05); and not different between sexes (p > 0.05). The shear modulus values for lower limb muscles for children with mild hypotonia were lower than those for children with Duchenne Muscular Dystrophy (TA-neutral), or Cerebral Palsy (GL-neutral), but not TD children (all four muscles). In conclusion, shear modulus increases with longer muscle length (i.e. higher Net-LTA) in mildly hypotonic children. Children with mild hypotonia have lower shear modulus than children with cerebral palsy and Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Miran Goo
- The University of Queensland, School of Biomedical Sciences, Brisbane, Australia
| | - Leanne M Johnston
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Kylie Tucker
- The University of Queensland, School of Biomedical Sciences, Brisbane, Australia.
| |
Collapse
|
5
|
Chou WY, Shieh JY, Weng WC, Lin CW. Quantifying lower limb muscle stiffness in typically developing children and adolescents using acoustic radiation force impulse shear wave elastography (ARFI/SWE)-a pilot study. Skeletal Radiol 2024; 53:1111-1118. [PMID: 38057435 DOI: 10.1007/s00256-023-04534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE To investigate and quantify age-related changes in lower limb muscle stiffness in typically developing children and adolescents using acoustic radiation force impulse shear wave elastography. MATERIALS AND METHODS Shear wave velocities of bilateral rectus femoris, tibialis anterior, and medial gastrocnemius muscles at rest were obtained in typically developing children and adolescents aged 3 to 18 years. The participants were classified into three age groups: Group 1 (children), 3 to 7 years old; Group 2, 8 to 12 (pre-adolescent); and Group 3 (adolescent), 13 to 18. The shear wave velocities of muscle were compared across the three age groups, as well as compared between right- and left-side limbs. The correlation between shear wave velocities and body weight or body mass index was assessed. RESULTS Of the 47 participants, 21 were in Group 1, 17 in Group 2, and 9 in Group 3. There were no significant differences among the three age groups' shear wave velocities of bilateral lower limb muscles, and no significant differences between right and left sides. There was no correlation between muscle stiffness and body weight or body mass index. CONCLUSION The present pilot study applied acoustic radiation force impulse shear wave elastography to quantify lower limb muscle stiffness in typically developing children and adolescents aged 3 to 18 years, suggesting no marked change in muscle stiffness occurs as they develop.
Collapse
Affiliation(s)
- Wen-Yu Chou
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, No.1 Changde St., Taipei City, 100229, Taiwan
| | - Jeng-Yi Shieh
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, No.1 Changde St., Taipei City, 100229, Taiwan
| | - Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Chia-Wei Lin
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, No.1 Changde St., Taipei City, 100229, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Nguyen J, Wang L, Lei W, Hu Y, Gulati N, Chavez-Madero C, Ahn H, Ginsberg HJ, Krawetz R, Brandt M, Betz T, Gilbert PM. Culture substrate stiffness impacts human myoblast contractility-dependent proliferation and nuclear envelope wrinkling. J Cell Sci 2024; 137:jcs261666. [PMID: 38345101 PMCID: PMC11033523 DOI: 10.1242/jcs.261666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/04/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding how biophysical and biochemical microenvironmental cues together influence the regenerative activities of muscle stem cells and their progeny is crucial in strategizing remedies for pathological dysregulation of these cues in aging and disease. In this study, we investigated the cell-level influences of extracellular matrix (ECM) ligands and culture substrate stiffness on primary human myoblast contractility and proliferation within 16 h of plating and found that tethered fibronectin led to stronger stiffness-dependent responses compared to laminin and collagen. A proteome-wide analysis further uncovered cell metabolism, cytoskeletal and nuclear component regulation distinctions between cells cultured on soft and stiff substrates. Interestingly, we found that softer substrates increased the incidence of myoblasts with a wrinkled nucleus, and that the extent of wrinkling could predict Ki67 (also known as MKI67) expression. Nuclear wrinkling and Ki67 expression could be controlled by pharmacological manipulation of cellular contractility, offering a potential cellular mechanism. These results provide new insights into the regulation of human myoblast stiffness-dependent contractility response by ECM ligands and highlight a link between myoblast contractility and proliferation.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Lu Wang
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wen Lei
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Yechen Hu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Nitya Gulati
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Carolina Chavez-Madero
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Henry Ahn
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Howard J. Ginsberg
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Roman Krawetz
- McCaig Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Matthias Brandt
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University Münster, 48149 Münster, Germany
| | - Timo Betz
- Third Institute of Physics – Biophysics, Georg August University Göttingen, 37077 Göttingen, Germany
| | - Penney M. Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
7
|
Lubin P, Zidi M. Mechanical properties change of immobilized skeletal muscle in short position measured by shear wave elastography and pure shearing test. J Mech Behav Biomed Mater 2024; 150:106317. [PMID: 38118374 DOI: 10.1016/j.jmbbm.2023.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
The purpose of this study was to evaluate the effects of immobilization on mechanical properties of skeletal muscle over the time. An in vivo rat model was used to investigate the shear modulus change of the flexor carpi ulnaris (FCU) in a short position. Measurements were performed by shear wave elastography (SWE) to compare contralateral and immobilized cases. The results showed a significant increase of 18.1% (p = 3.86. 10-7) in the shear modulus of immobilized skeletal muscle after two weeks (D14) when compared with the contralateral case. For the purposes of comparison, in vitro mechanical pure shearing tests were performed on samples collected from the skeletal muscles of the same rats. Although the difference between contralateral and immobilized cases was 17.6% (p = 0.32) at D14, the shear modulus difference was 35.7% (p = 0.0126 and p = 1.57.10-5 for immobilization and contralateral respectively) between in vivo and in vitro approaches. The mechanical properties changes were then correlated with the density of collagen from histological analysis, and it was shown that the contralateral collagen surface density was 25.4% higher than the immobilized density at D14 (p = 0.001). Thus, the results showed the feasibility of the comparison between the two approaches, which can surely be improved by optimizing the experimental protocols.
Collapse
Affiliation(s)
- Pénélope Lubin
- Bioengineering, Tissues and Neuroplasticity, UR 7377, Université Paris-Est Créteil, Faculté de Santé /EPISEN, 8 rue du Général Sarrail, 94010, Créteil, France
| | - Mustapha Zidi
- Bioengineering, Tissues and Neuroplasticity, UR 7377, Université Paris-Est Créteil, Faculté de Santé /EPISEN, 8 rue du Général Sarrail, 94010, Créteil, France.
| |
Collapse
|
8
|
Ngo HHP, Andrade RJ, Lancelot J, Loumeaud A, Cornu C, Nordez A, Chatelin S, Gennisson JL. Unravelling anisotropic nonlinear shear elasticity in muscles: Towards a non-invasive assessment of stress in living organisms. J Mech Behav Biomed Mater 2024; 150:106325. [PMID: 38150816 DOI: 10.1016/j.jmbbm.2023.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Acoustoelasticity theory describes propagation of shear waves in uniaxially stressed medium and allows the retrieval of nonlinear elastic coefficients of tissues. In transverse isotropic medium such as muscles the theory leads to 9 different configurations of propagating shear waves (stress axis vs. fibers axis vs. shear wave polarization axis vs. shear wave propagation axis). In this work we propose to use 4 configurations to quantify these nonlinear parameters ex vivo and in vivo. Ex vivo experiments combining ultrasound shear wave elastography and mechanical testing were conducted on iliopsoas pig muscles to quantify three third-order nonlinear coefficients A, H and K that are possibly linked to the architectural structure of muscles. In vivo experiments were performed with human volunteers on biceps brachii during a stretching exercise on an ergometer. A combination of the third order nonlinear elastic parameters was assessed. The knowledge of this nonlinear elastic parameters paves the way to quantify in vivo the local forces produced by muscle during exercise, contraction or movements.
Collapse
Affiliation(s)
- Ha Hien Phuong Ngo
- Laboratoire d'imagerie biomédicale multimodale (BioMaps), University Paris-Saclay, CEA, CNRS UMR 9011, Inserm UMR 1281, Orsay, F-91401, France
| | - Ricardo J Andrade
- Mouvement Interactions Performance (MIP), University of Nantes, UR 4334, F-44000, Nantes, France
| | - Juliette Lancelot
- Mouvement Interactions Performance (MIP), University of Nantes, UR 4334, F-44000, Nantes, France
| | - Aude Loumeaud
- Engineering Science, Computer Science and Imaging Laboratory (ICube), University of Strasbourg, CNRS UMR 7357, Strasbourg, F-67000, France
| | - Corentin Cornu
- Laboratoire d'imagerie biomédicale multimodale (BioMaps), University Paris-Saclay, CEA, CNRS UMR 9011, Inserm UMR 1281, Orsay, F-91401, France
| | - Antoine Nordez
- Mouvement Interactions Performance (MIP), University of Nantes, UR 4334, F-44000, Nantes, France; Institut Universitaire de France (IUF), France
| | - Simon Chatelin
- Engineering Science, Computer Science and Imaging Laboratory (ICube), University of Strasbourg, CNRS UMR 7357, Strasbourg, F-67000, France
| | - Jean-Luc Gennisson
- Laboratoire d'imagerie biomédicale multimodale (BioMaps), University Paris-Saclay, CEA, CNRS UMR 9011, Inserm UMR 1281, Orsay, F-91401, France.
| |
Collapse
|
9
|
Komatsu Y, Mori S, Arakawa M, Kanai H. A novel ultrasonic method for measuring minute sinusoidal displacement by network analyzer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:025105. [PMID: 38345455 DOI: 10.1063/5.0177846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/14/2024] [Indexed: 03/13/2024]
Abstract
We developed a method for generating continuous sinusoidal displacements of an object to estimate viscoelastic parameters. However, the amplitude of the displacement caused by the ultrasonic excitation force under safe guidelines was small (a few micrometers), and it was difficult to stably measure the displacement. Therefore, to stably measure the amplitude of sinusoidal displacement as small as the order of micrometers, we proposed a novel method using a network analyzer. Ultrasonic waves were irradiated using an ultrasonic transducer on an object vibrating sinusoidally. The S parameter of the first reflected wave received from the surface of the object was measured using a network analyzer. The S parameter and the inverse Fourier transform were formulated theoretically, and the amplitude of the sinusoidal displacement of the object was estimated from the amplitude characteristics of the inverse Fourier-transformed signal. The proposed method was applied to measure sinusoidal displacements on the order of micrometers from 10 to 300 Hz on an object using a water tank experiment. The obtained sinusoidal displacement agreed well with the reference values measured using a laser displacement meter. The proposed method can accurately measure minute sinusoidal displacements that occur on an object.
Collapse
Affiliation(s)
- Yuya Komatsu
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Shohei Mori
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Mototaka Arakawa
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Hiroshi Kanai
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
10
|
Lin CW, Shieh JY, Tsui PH, Chen CL, Lu CH, Hung YH, Lee HY, Weng WC, Gau SSF. Acoustic radiation force impulse shear wave elastography quantifies upper limb muscle in patients with Duchenne muscular dystrophy. ULTRASONICS SONOCHEMISTRY 2023; 101:106661. [PMID: 37924615 PMCID: PMC10641721 DOI: 10.1016/j.ultsonch.2023.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
We investigated whether the upper limb muscle stiffness quantified by the acoustic radiation force impulse shear wave elastography (ARFI/SWE) is a potential biomarker for age-related muscle alteration and functional decline in patients with Duchenne muscular dystrophy (DMD). 37 patients with DMD and 30 typically developing controls (TDC) were grouped by age (3-8, 9-11, and 12-18 years). ARFI/SWE measured the biceps and deltoid muscle's shear wave velocities (SWVs). Performance of Upper Limb Module (PUL 1.2 module) assessed muscle function in DMD patients. Mann Whitney test compared muscle SWVs between DMD and TDC, stratified by three age groups. We used analysis of variance with Bonferroni correction to compare muscle SWVs between DMD and TDC and correlated muscle SWVs with PUL results in the DMD group. Results showed that the SWVs of biceps differentiated DMD patients from TDC across age groups. Younger DMD patients (3-8 years) exhibited higher SWVs (p = 0.013), but older DMD patients (12-18 years) showed lower SWVS (p = 0.028) than same-aged TDC. DMD patients had decreasing biceps SWVs with age (p < 0.001), with no such age effect in TDC. The SWVs of deltoid and biceps positively correlated with PUL scores (r = 0.527 ∼ 0.897, P < 0.05) and negatively correlated with PUL timed measures (r = -0.425 ∼ -0.542, P < 0.05) in DMD patients. Our findings suggest that ARFI/SWE quantifying the SWVs in upper limb muscle could be a potential biomarker to differentiate DMD from TDC across ages and that DMD patients showed age-related muscle alteration and limb functional decline.
Collapse
Affiliation(s)
- Chia-Wei Lin
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No.1, Chang-Te St., Taipei 10048, Taipei, Taiwan
| | - Jeng-Yi Shieh
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan Dist, Tao-Yuan City 33302, Taiwan
| | - Chia-Ling Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chun-Hao Lu
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan Dist, Tao-Yuan City 33302, Taiwan
| | - Yi-Hsuan Hung
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Hsiao-Yuan Lee
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, No. 2, Sec. 1, Shengyi Rd., Zhubei City, Hsinchu County 302, Taiwan
| | - Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, Taiwan 10002, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan 10002, Taiwan.
| | - Susan Shur-Fen Gau
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No.1, Chang-Te St., Taipei 10048, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, and College of Medicine, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, No.1 Jen Ai road section 1, Taipei 100 Taiwan.
| |
Collapse
|
11
|
Shembel AC, Morrison RA, Fetzer DT, Patterson-Lachowicz A, McDowell S, Comstock Smeltzer JC, Mau T. Extrinsic Laryngeal Muscle Tension in Primary Muscle Tension Dysphonia with Shear Wave Elastography. Laryngoscope 2023; 133:3482-3491. [PMID: 37334857 PMCID: PMC10728340 DOI: 10.1002/lary.30830] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES It has been assumed that patients with primary muscle tension dysphonia (pMTD) have more extrinsic laryngeal muscle (ELM) tension, but tools to study this phenomenon lack. Shear wave elastography (SWE) is a potential method to address these shortcomings. The objectives of this study were to apply SWE to the ELMs, compare SWE measures to standard clinical metrics, and determine group differences in pMTD and typical voice users before and after vocal load. METHODS SWE measurements of the ELMs from ultrasound examinations of the anterior neck, supraglottic compression severities from laryngoscopic images, cepstral peak prominences (CPP) from voice recordings, and self-perceptual ratings of vocal effort and discomfort were obtained in voice users with (N = 30) and without (N = 35) pMTD, before and after a vocal load challenge. RESULTS ELM tension significantly increased from rest-to-voiced conditions in both groups. However, the groups were similar in their ELM stiffness levels at SWE at baseline, during vocalization, and post-vocal load. Levels of vocal effort and discomfort and supraglottic compression were significantly higher and CPP was significantly lower in the pMTD group. Vocal load had a significant effect on vocal effort and discomfort but not on laryngeal or acoustic patterns. CONCLUSION SWE can be used to quantify ELM tension with voicing. Although the pMTD group reported significantly higher levels of vocal effort and vocal tract discomfort and, on average, exhibited significantly more severe supraglottic compression and lower CPP values, there were no group differences in levels of ELM tension using SWE. LEVEL OF EVIDENCE 2 Laryngoscope, 133:3482-3491, 2023.
Collapse
Affiliation(s)
- Adrianna C. Shembel
- Department of Otolaryngology-Head and Neck, Voice Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
- School of Behavioral and Brain Sciences, Department of Speech, Language, and Hearing, University of Texas at Dallas, Richardson, TX, United States
| | - Robert A. Morrison
- School of Behavioral and Brain Sciences, Department of Speech, Language, and Hearing, University of Texas at Dallas, Richardson, TX, United States
| | - David T. Fetzer
- Department of Radiology, CACTUS Lab, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Amber Patterson-Lachowicz
- Department of Radiology, CACTUS Lab, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sarah McDowell
- School of Behavioral and Brain Sciences, Department of Speech, Language, and Hearing, University of Texas at Dallas, Richardson, TX, United States
| | - Julianna C. Comstock Smeltzer
- School of Behavioral and Brain Sciences, Department of Speech, Language, and Hearing, University of Texas at Dallas, Richardson, TX, United States
| | - Ted Mau
- Department of Otolaryngology-Head and Neck, Voice Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
12
|
Lee J, Myrie NO, Jeong GJ, Han WM, Jang YC, García AJ, Emelianov S. In vivo shear wave elasticity imaging for assessment of diaphragm function in muscular dystrophy. Acta Biomater 2023; 168:277-285. [PMID: 37453552 PMCID: PMC10540053 DOI: 10.1016/j.actbio.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Duchenne muscular dystrophy (DMD) causes patients to suffer from ambulatory disability and cardiorespiratory failure, the latter of which leads to premature death. Due to its role in respiration, the diaphragm is an important muscle for study. A common method for evaluating diaphragm function is ex vivo force testing, which only allows for an end point measurement. In contrast, ultrasound shear wave elastography imaging (US-SWEI) can assess diaphragm function over time; however, US-SWEI studies in dystrophic patients to date have focused on the limbs without preclinical studies. In this work, we used US-SWEI to estimate the shear wave speed (SWS) in diaphragm muscles of healthy (WT) mice, mdx mice, and mdx mice haploinsufficient for utrophin (mdx-utr) at 6 and 12 months of age. Diaphragms were then subjected to ex vivo force testing and histological analysis at 12 months of age. Between 6 and 12 months, a 23.8% increase in SWS was observed in WT mice and a 27.8% increase in mdx mice, although no significant difference was found in mdx-utr mice. Specific force generated by mdx-utr diaphragms was lower than that of WT diaphragms following twitch stimulus. A strong correlation between SWS and collagen deposition was observed, as well as between SWS and muscle fiber size. Together, these data demonstrate the ability of US-SWEI to evaluate dystrophic diaphragm functionality over time and predict the biochemical and morphological make-up of the diaphragm. Additionally, our results highlight the advantage of US-SWEI over ex vivo testing by obtaining longitudinal measurements in the same subject. STATEMENT OF SIGNIFICANCE: In DMD patients, muscles experience cycles of regeneration and degeneration that contribute to chronic inflammation and muscle weakness. This pathology only worsens with time and leads to muscle wasting, including in respiratory and cardiac muscles. Because respiratory failure is a major contributor to premature death in DMD patients, the diaphragm muscle is an important muscle to evaluate and treat over time. Currently, diaphragm function is assessed using ex vivo force testing, a technique that only allows measurement at sacrifice. In contrast, ultrasonography, particularly shear wave elasticity imaging (USSWEI), is a promising tool for longitudinal assessment; however, most US-SWEI in DMD patients aimed for limb muscles only with the absence of preclinical studies. This work broadens the applications of US-SWE imaging by demonstrating its ability to track properties and function of dystrophic diaphragm muscles longitudinally in multiple dystrophic mouse models.
Collapse
Affiliation(s)
- Jeehyun Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nia O Myrie
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Gun-Jae Jeong
- Institute of Cell and Tissue Engineering, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Woojin M Han
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Young C Jang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA; Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA 30329, USA.
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Stanislav Emelianov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
| |
Collapse
|
13
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
14
|
Ashir A, Jerban S, Barrère V, Wu Y, Shah SB, Andre MP, Chang EY. Skeletal Muscle Assessment Using Quantitative Ultrasound: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:4763. [PMID: 37430678 PMCID: PMC10222479 DOI: 10.3390/s23104763] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 07/12/2023]
Abstract
Ultrasound (US) is an important imaging tool for skeletal muscle analysis. The advantages of US include point-of-care access, real-time imaging, cost-effectiveness, and absence of ionizing radiation. However, US can be highly dependent on the operator and/or US system, and a portion of the potentially useful information carried by raw sonographic data is discarded in image formation for routine qualitative US. Quantitative ultrasound (QUS) methods provide analysis of the raw or post-processed data, revealing additional information about normal tissue structure and disease status. There are four QUS categories that can be used on muscle and are important to review. First, quantitative data derived from B-mode images can help determine the macrostructural anatomy and microstructural morphology of muscle tissues. Second, US elastography can provide information about muscle elasticity or stiffness through strain elastography or shear wave elastography (SWE). Strain elastography measures the induced tissue strain caused either by internal or external compression by tracking tissue displacement with detectable speckle in B-mode images of the examined tissue. SWE measures the speed of induced shear waves traveling through the tissue to estimate the tissue elasticity. These shear waves may be produced using external mechanical vibrations or internal "push pulse" ultrasound stimuli. Third, raw radiofrequency signal analyses provide estimates of fundamental tissue parameters, such as the speed of sound, attenuation coefficient, and backscatter coefficient, which correspond to information about muscle tissue microstructure and composition. Lastly, envelope statistical analyses apply various probability distributions to estimate the number density of scatterers and quantify coherent to incoherent signals, thus providing information about microstructural properties of muscle tissue. This review will examine these QUS techniques, published results on QUS evaluation of skeletal muscles, and the strengths and limitations of QUS in skeletal muscle analysis.
Collapse
Affiliation(s)
- Aria Ashir
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Radiology, Santa Barbara Cottage Hospital, Santa Barbara, CA 93105, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
| | - Victor Barrère
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
| | - Yuanshan Wu
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Sameer B. Shah
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Michael P. Andre
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
| |
Collapse
|
15
|
Okyar Baş A, Baş H, Ceylan S, Güner Oytun M, Koca M, Hafızoğlu M, Şahiner Z, Öztürk Y, Balcı C, Doğu BB, Cankurtaran M, Halil MG. Changes in muscle quality identified by shear-wave elastography and association with sarcopenia. JPEN J Parenter Enteral Nutr 2023; 47:253-264. [PMID: 36227071 DOI: 10.1002/jpen.2457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND AIMS This study aimed to investigate the potential role of shear-wave elastography (SWE) in evaluating muscle quality and assess its association with muscle strength and mass. METHODS A total of 129 patients aged 18-87 years were included. Patients aged >65 years underwent comprehensive geriatric assessment. Anthropometric measurements, assessment of physical performance, muscle strength (handgrip strength [HGS]), muscle mass (B-mode muscle ultrasonography), and muscle quality (identified via SWE) were performed for all patients. RESULTS The median (interquartile range) age of participants was 69 (59-76) years and 62% (n = 80) were female. According to HGS, patients were divided into normal and low HGS groups, and there were 85 (65.9%) and 44 (34.1%) patients in each group, respectively. The median average value of SWE measurement (Vmean ) of the rectus femoris (RF) in passive stretching was significantly lower in the low HGS group. In regression analyses, Vmean was significantly associated with HGS independently of age, sex, and body mass index. Optimal cutoff values of the Vmean value (m/s) of RF in passive stretching for predicting low HGS were ≤2.62 for male (area under the curve [AUC], 0.882; 95% CI, 0.705-0.938; P = <0.0001), and ≤2.52 for female (AUC, 0.719; 95% CI, 0.605-0.833; P = 0.002). CONCLUSION To the best of our knowledge, this is the first study revealing SWE is a good predictor of muscle strength, and it could be a useful tool for evaluating muscle quality in clinical practice. Further randomized controlled studies are needed to confirm the presented cutoff values.
Collapse
Affiliation(s)
- Arzu Okyar Baş
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Hakan Baş
- Department of Radiology, Ankara Gazi Mustafa Kemal Occupational and Environmental Diseases Hospital, Ankara, Turkey
| | - Serdar Ceylan
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Merve Güner Oytun
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Meltem Koca
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Merve Hafızoğlu
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Zeynep Şahiner
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Yelda Öztürk
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Cafer Balcı
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Burcu Balam Doğu
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Mustafa Cankurtaran
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Meltem Gülhan Halil
- Department of Internal Medicine, Division of Geriatrics, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
16
|
Hannaford A, Vucic S, van Alfen N, Simon NG. Muscle ultrasound in hereditary muscle disease. Neuromuscul Disord 2022; 32:851-863. [PMID: 36323605 DOI: 10.1016/j.nmd.2022.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/31/2022]
Abstract
In this review we summarise the key techniques of muscle ultrasound as they apply to hereditary muscle disease. We review the diagnostic utility of muscle ultrasound including its role in guiding electromyography and muscle biopsy sampling. We summarize the different patterns of sonographic muscle involvement in the major categories of genetic muscle disorders and discuss the limitations of the technique. We hope to encourage others to adopt ultrasound in their care for patients with hereditary muscle diseases.
Collapse
Affiliation(s)
- Andrew Hannaford
- Brain and Nerve Research Center, Concord Clinical School, University of Sydney, Sydney, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, Concord Clinical School, University of Sydney, Sydney, Australia
| | - Nens van Alfen
- Department of Neurology and Clinical Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Neil G Simon
- Northern Beaches Clinical School, Macquarie University, Suite 6a, 105 Frenchs Forest Rd W, Frenchs Forest, Sydney, NSW 2086, Australia.
| |
Collapse
|
17
|
Xin Y, Liu F, Li D, Zhu J. Viscoelasticity assessment for in vivo quantification of muscle contusion injury in rats using shear wave elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2019-2028. [PMID: 35868906 DOI: 10.1016/j.ultrasmedbio.2022.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The aim of the study described here was to investigate the role of viscoelasticity in assessing muscle fibrosis and inflammation in a rat model of contusion using quantitative shear wave elastography (SWE). Unilateral gastrocnemius muscle contusion was induced in 32 male rats using an impactor apparatus. The contralateral muscles served as the control group. SWE was applied to the control group and rats 1, 3, 14 and 21 d after successful modeling (each time point group, n = 8). Histologic features were used as reference standards. The degree of fibrosis was moderately correlated with shear wave speed (r = 0.53), whereas the degree of inflammation was well correlated with shear wave dispersion (SWD) slope (r = 0.74). The area under the receiver operating characteristic curve (AUC) for the dispersion slope for muscle inflammation and fibrosis assessment was 0.87 (95% confidence interval: 0.705-0.963), which exceeded that of the shear wave speed (0.68, 95% confidence interval: 0.494-0.834). The larger decline in dispersion slope in the fibrotic stage than in the inflammation stage (1-d group vs. 14-d group or 21-d group, p < 0.05) indicated better predictive performance than the shear wave speed.
Collapse
Affiliation(s)
- Yuwei Xin
- Department of Ultrasound, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
| | - Feifei Liu
- Department of Ultrasound, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
| | - Diancheng Li
- Department of Ultrasound, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China
| | - Jiaan Zhu
- Department of Ultrasound, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, China.
| |
Collapse
|
18
|
Preliminary Study on Grading Diagnosis of Early Knee Osteoarthritis by Shear Wave Elastography. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4229181. [PMID: 36072618 PMCID: PMC9381192 DOI: 10.1155/2022/4229181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 01/12/2023]
Abstract
Knee osteoarthritis (KOA) is the most common chronic bone joint disease. The WHO points out that KOA has become the fourth most disabling disease in the world, and the main clinical treatment is prevention. At present, the clinical diagnosis of knee osteoarthritis with deformation is mainly made by X-ray and two-dimensional ultrasound, and the preventive treatment effect is not good. Shear wave elastography (SWE) has been widely used in clinical practice for its advantages of noninvasive, simple, rapid, and high accuracy in soft tissue hardness. This study investigates the feasibility of using SWE in the grading diagnosis of KOA and the detection of early skeletal muscle injury. 60 patients were enrolled with unilateral KOA who met the inclusion criteria. Routine scanning and SWE exploration were carried out and compared between the affected and healthy knee joints. The measurements included morphology, damage degree of cartilage, joint effusion, joint synovial thickness, the degree of meniscus convexity, and shear wave speed (SWS) in the tendon attachment area of the quadriceps femoris superior patella, and tendon thickness and SWS between and within groups. The affected was scored according to the ultrasonic characteristics. The correlation between them was analyzed to evaluate the feasibility of SWE in grading the diagnosis of KOA. 57 cases had knee cavity effusion (57/60, 95.0%), 58 cases had knee cartilage injury (58/60, 96.6%), and 35 cases had a lateral process of the medial meniscus (35/60, 53.3%); 30 cases had synovial hyperplasia (30/60, 50%), 21 cases had osteophyte formation (21/60, 35%), and no one had a popliteal cyst. There was no significant difference in tendon thickness between and within groups (p > 0.05), but a significant difference in SWS (p < 0.01); the SWS of the quadriceps femoris tendon is negatively correlated with ultrasound score (r = 0.955, p < 0.01). There is a strong negative correlation between SWS and the degree of KOA. It can be used in the grading diagnosis of KOA to help find more early strain points.
Collapse
|
19
|
Zhu Y, Peng N, Wang J, Jin Z, Zhu L, Wang Y, Chen S, Hu Y, Zhang T, Song Q, Xie F, Yan L, Li Y, Xiao J, Li X, Jiang B, Peng J, Wang Y, Luo Y. Peripheral nerve defects repaired with autogenous vein grafts filled with platelet-rich plasma and active nerve microtissues and evaluated by novel multimodal ultrasound techniques. Biomater Res 2022; 26:24. [PMID: 35690849 PMCID: PMC9188244 DOI: 10.1186/s40824-022-00264-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developing biocompatible nerve conduits that accelerate peripheral nerve regeneration, lengthening and functional recovery remains a challenge. The combined application of nerve microtissues and platelet-rich plasma (PRP) provides abundant Schwann cells (SCs) and various natural growth factors and can compensate for the deficiency of SCs in the nerve bridge, as well as the limitations of applying a single type of growth factor. Multimodal ultrasound evaluation can provide additional information on the stiffness and microvascular flow perfusion of the tissue. This study was designed to investigate the effectiveness of a novel tissue-engineered nerve graft composed of an autogenous vein, nerve microtissues and PRP in reconstructing a 12-mm tibial nerve defect and to explore the value of multimodal ultrasound techniques in evaluating the prognosis of nerve repair. METHODS In vitro, nerve microtissue activity was first investigated, and the effects on SC proliferation, migration, factor secretion, and axonal regeneration of dorsal root ganglia (DRG) were evaluated by coculture with nerve microtissues and PRP. In vivo, seventy-five rabbits were equally and randomly divided into Hollow, PRP, Micro-T (Microtissues), Micro-T + PRP and Autograft groups. By analysing the neurological function, electrophysiological recovery, and the comparative results of multimodal ultrasound and histological evaluation, we investigated the effect of these new nerve grafts in repairing tibial nerve defects. RESULTS Our results showed that the combined application of nerve microtissues and PRP could significantly promote the proliferation, secretion and migration of SCs and the regeneration of axons in the early stage. The Micro-T + PRP group and Autograft groups exhibited the best nerve repair 12 weeks postoperatively. In addition, the changes in target tissue stiffness and microvascular perfusion on multimodal ultrasound (shear wave elastography; contrast-enhanced ultrasonography; Angio PlaneWave UltrasenSitive, AngioPLUS) were significantly correlated with the histological results, such as collagen area percentage and VEGF expression, respectively. CONCLUSION Our novel tissue-engineered nerve graft shows excellent efficacy in repairing 12-mm defects of the tibial nerve in rabbits. Moreover, multimodal ultrasound may provide a clinical reference for prognosis by quantitatively evaluating the stiffness and microvescular flow of nerve grafts and targeted muscles.
Collapse
Affiliation(s)
- Yaqiong Zhu
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Nan Peng
- Department of Geriatric Rehabilitation, The Second Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Zhuang Jin
- General hospital of Northern Theater Command, Liaoning, China
| | - Lianhua Zhu
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Wang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Siming Chen
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Yongqiang Hu
- Department of Anesthesiology, JiangXi PingXiang People's Hospital, Jiangxi, China
| | - Tieyuan Zhang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China.,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Qing Song
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Xie
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Yan
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Yingying Li
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Xiao
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Xinyang Li
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Bo Jiang
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China. .,Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China.
| | - Yuexiang Wang
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China.
| | - Yukun Luo
- Departments of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
20
|
Harada R, Taniguchi-Ikeda M, Nagasaka M, Nishii T, Inui A, Yamamoto T, Morioka I, Kuroda R, Iijima K, Nozu K, Sakai Y, Toda T. Assessment of the upper limb muscles in patients with Fukuyama muscular dystrophy: Noninvasive assessment using visual ultrasound muscle analysis and shear wave elastography. Neuromuscul Disord 2022; 32:754-762. [DOI: 10.1016/j.nmd.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
|
21
|
Diaphragm dysfunction and peripheral muscle wasting in septic shock patients: Exploring their relationship over time using ultrasound technology (the MUSiShock protocol). PLoS One 2022; 17:e0266174. [PMID: 35344570 PMCID: PMC8959181 DOI: 10.1371/journal.pone.0266174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
Background Intensive Care Unit (ICU) patients are known to lose muscle mass and function during ICU stay. Ultrasonography (US) application for the assessment of the skeletal muscle is a promising tool and might help detecting muscle changes and thus several dysfunctions during early stages of ICU stay. MUSiShock is a research project aiming to investigate structure and function of diaphragm and peripheral muscles using ultrasound techniques in septic shock patients, and to assess their relevance in several clinical outcomes such as the weaning process. Methods and design This is a research protocol from an observational prospective cohort study. We plan to assess eighty-four septic shock patients during their ICU stay at the following time-points: at 24 hours of ICU admission, then daily until day 5, then weekly, at extubation time and at ICU discharge. At each time-point, we will measure the quadriceps rectus femoris and diaphragm muscles, using innovative US muscle markers such as Shear-Wave Elastography (SWE). In parallel, the Medical Research Council (MRC) sum score for muscle testing and the Airway occlusion pressure (P0.1) will also be collected. We will describe the association between SWE assessment and other US markers for each muscle. The association between the changes in both diaphragm and rectus femoris US markers over time will be explored as well; finally, the analysis of a combined model of one diaphragm US marker and one limb muscle US marker to predict weaning success/failure will be tested. Discussion By using muscle ultrasound at both diaphragm and limb levels, MUSiShock aims to improve knowledge in the early detection of muscle dysfunction and weakness, and their relationship with muscle strength and MV weaning, in critically ill patients. A better anticipation of these short-term muscle structure and function outcomes may allow clinicians to rapidly implement measures to counteract it. Trial registration ClinicalTrials.gov, NCT04550143. Registered on 16 September 2020.
Collapse
|
22
|
Yu HK, Liu X, Pan M, Chen JW, Liu C, Wu Y, Li ZB, Wang HY. Performance of Passive Muscle Stiffness in Diagnosis and Assessment of Disease Progression in Duchenne Muscular Dystrophy. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:414-421. [PMID: 34893358 DOI: 10.1016/j.ultrasmedbio.2021.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/07/2021] [Accepted: 09/02/2021] [Indexed: 06/14/2023]
Abstract
The aim of this study was to evaluate the performance of passive muscle stiffness in diagnosing and assessing disease progression in Duchenne muscular dystrophy (DMD). Boys with DMD and age-matched controls were recruited. Shear wave elastography (SWE) videos were collected by performing dynamic stretching of the gastrocnemius medius (GM). At ankle angles from plantar flexion (PF) 30° to dorsiflexion (DF) 20°, the shear modulus of the GM was measured for each 10° of ankle movement. Shear modulus at each ankle angle was compared between the DMD and control group. Correlation between passive muscle stiffness and motor function grading was also analyzed. A total of 26 patients with DMD and 20 healthy boys were enrolled. At multiple stretch levels, passive muscle stiffness of the GM was significantly higher in patients with DMD than in those in the control group (all p values <0.05). The shear modulus of GM at an ankle angle of DF 10° had the largest area under the receiver operating characteristic curve in differentiating DMD patients from normal subjects (AUC = 0.902, 95% confidence interval: 0.814-0.990). Motor function grading was a significant determinant of passive muscle stiffness at an ankle angle of DF 10° (B = 21.409, t = 3.372, p = 0.003). Passive muscle stiffness may potentially serve as a useful non-invasive tool to monitor disease progression in DMD patients.
Collapse
Affiliation(s)
- Hong-Kui Yu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Liu
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Min Pan
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Jin-Wei Chen
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chen Liu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Wu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi-Bin Li
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hong-Ying Wang
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Abstract
Physicians have used palpation as a diagnostic examination to understand the elastic properties of pathology for a long time since they realized that tissue stiffness is closely related to its biological characteristics. US elastography provided new diagnostic information about elasticity comparing with the morphological feathers of traditional US, and thus expanded the scope of the application in clinic. US elastography is now widely used in the field of diagnosis and differential diagnosis of abnormality, evaluating the degree of fibrosis and assessment of treatment response for a range of diseases. The World Federation of Ultrasound Medicine and Biology divided elastographic techniques into strain elastography (SE), transient elastography and acoustic radiation force impulse (ARFI). The ARFI techniques can be further classified into point shear wave elastography (SWE), 2D SWE, and 3D SWE techniques. The SE measures the strain, while the shear wave-based techniques (including TE and ARFI techniques) measure the speed of shear waves in tissues. In this review, we discuss the various techniques separately based on their basic principles, clinical applications in various organs, and advantages and limitations and which might be most appropriate given that the majority of doctors have access to only one kind of machine.
Collapse
|
24
|
Romano A, Staber D, Grimm A, Kronlage C, Marquetand J. Limitations of Muscle Ultrasound Shear Wave Elastography for Clinical Routine-Positioning and Muscle Selection. SENSORS 2021; 21:s21248490. [PMID: 34960581 PMCID: PMC8706081 DOI: 10.3390/s21248490] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Shear wave elastography (SWE) is a clinical ultrasound imaging modality that enables non-invasive estimation of tissue elasticity. However, various methodological factors—such as vendor-specific implementations of SWE, mechanical anisotropy of tissue, varying anatomical position of muscle and changes in elasticity due to passive muscle stretch—can confound muscle SWE measurements and increase their variability. A measurement protocol with a low variability of reference measurements in healthy subjects is desirable to facilitate diagnostic conclusions on an individual-patient level. Here, we present data from 52 healthy volunteers in the areas of: (1) Characterizing different limb and truncal muscles in terms of inter-subject variability of SWE measurements. Superficial muscles with little pennation, such as biceps brachii, exhibit the lowest variability whereas paravertebral muscles show the highest. (2) Comparing two protocols with different limb positioning in a trade-off between examination convenience and SWE measurement variability. Repositioning to achieve low passive extension of each muscle results in the lowest SWE variability. (3) Providing SWE shear wave velocity (SWV) reference values for a specific ultrasound machine/transducer setup (Canon Aplio i800, 18 MHz probe) for a number of muscles and two positioning protocols. We argue that methodological issues limit the current clinical applicability of muscle SWE.
Collapse
Affiliation(s)
- Alyssa Romano
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (A.R.); (D.S.); (A.G.); (C.K.)
| | - Deborah Staber
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (A.R.); (D.S.); (A.G.); (C.K.)
| | - Alexander Grimm
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (A.R.); (D.S.); (A.G.); (C.K.)
| | - Cornelius Kronlage
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (A.R.); (D.S.); (A.G.); (C.K.)
| | - Justus Marquetand
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (A.R.); (D.S.); (A.G.); (C.K.)
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany
- MEG-Center, University of Tübingen, 72074 Tübingen, Germany
- Correspondence: ; Tel.: +49-7071-298-0442
| |
Collapse
|
25
|
Cebula A, Cebula M, Kopyta I. Muscle Ultrasonographic Elastography in Children: Review of the Current Knowledge and Application. CHILDREN 2021; 8:children8111042. [PMID: 34828755 PMCID: PMC8623756 DOI: 10.3390/children8111042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Ultrasonographic elastography is a relatively new imaging modality for the qualitative and quantitative assessments of tissue elasticity. While it has steadily gained use in adult clinical practice, including for liver diseases, breast cancer, thyroid pathologies, and muscle and tendon diseases, data on its paediatric application is still limited. Moreover, diagnosis of muscular diseases in children remains challenging. The gold standard methods, namely biopsy, electroneurography, and electromyography, are often limited owing to their invasive characteristics, possible contraindications, complications, and need for good cooperation, that is, a patient’s ability to perform certain tasks during the examination while withstanding discomfort, which is a significant problem especially in younger or uncooperative children. Genetic testing, which has broad diagnostic possibilities, often entails a high cost, which limits its application. Thus, a non-invasive, objective, repeatable, and accessible tool is needed to aid in both the diagnosis and monitoring of muscle pathologies. We believe that elastography may prove to be such a method. The aim of this review was to present the current knowledge on the use of muscle elastography in the paediatric population and information on the limitations of elastography in relation to examination protocols and factors for consideration in everyday practice and future studies.
Collapse
Affiliation(s)
- Agnieszka Cebula
- Department of Paediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Str 16, 40-752 Katowice, Poland;
- Correspondence: ; Fax: +48-322071546
| | - Maciej Cebula
- Department of Radiodiagnostics, Invasive Radiology and Nuclear Medicine, Department of Radiology and Nuclear Medicine, Faculty of Medicine in Katowice, Medical University of Silesia in Katowice, Medykow Str 14, 40-752 Katowice, Poland;
| | - Ilona Kopyta
- Department of Paediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Str 16, 40-752 Katowice, Poland;
| |
Collapse
|
26
|
Olchowy C, Olchowy A, Pawluś A, Więckiewicz M, Sconfienza LM. Stiffness of the Masseter Muscle in Children-Establishing the Reference Values in the Pediatric Population Using Shear-Wave Elastography. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189619. [PMID: 34574544 PMCID: PMC8469581 DOI: 10.3390/ijerph18189619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022]
Abstract
In children, the quality and muscle function are altered in many pathologic conditions, including temporomandibular disorders. Although several methods have been used to evaluate muscle tonus, none became a golden standard. Moreover, the masseter muscle characteristics in children have not been investigated to date. This study aimed to measure the stiffness of the masseter muscle using shear-wave elastography in healthy children. We enrolled 30 healthy children (mean age 10.87 ± 3.38 years). The stiffness of masseter muscles was measured with shear wave elastography. Stiffness for the total sample was 6.37 ± 0.77 kPa. A comparison of the measurements did not show significant differences between the right and the left masseter muscles (left—6.47 ± 0.78 kPa; right—6.24 ± 0.76 kPa; p = 0.3546). A significant difference was seen between boys and girls (boys—5.94 ± 0.50 kPa; girls—6.63 ± 0.80; p = 0.0006). Shear-wave elastography is a promising diagnostic tool. It may help to detect changes in the stiffness of the masseter muscle and draw attention to pathological processes within the jaw muscles. Directions for further research shall include determining stiffness values in pathological conditions and the impact of biological and functional factors on the stiffness of the masseter muscle.
Collapse
Affiliation(s)
- Cyprian Olchowy
- Department of Oral Surgery, Wroclaw Medical University, 50-425 Wroclaw, Poland
- Correspondence:
| | - Anna Olchowy
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland; (A.O.); (M.W.)
| | - Aleksander Pawluś
- Department of General Radiology, Provincial Specialist Hospital in Legnica, 59-220 Legnica, Poland;
| | - Mieszko Więckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland; (A.O.); (M.W.)
| | - Luca Maria Sconfienza
- Unità Operativa di Radiologia Diagnostica e Interventistica, IRCCS Istituto Ortopedico Galeazzi, 20161 Milano, Italy;
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20161 Milano, Italy
| |
Collapse
|
27
|
Günay KA, Silver JS, Chang TL, Bednarski OJ, Bannister KL, Rogowski CJ, Olwin BB, Anseth KS. Myoblast mechanotransduction and myotube morphology is dependent on BAG3 regulation of YAP and TAZ. Biomaterials 2021; 277:121097. [PMID: 34481290 DOI: 10.1016/j.biomaterials.2021.121097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Skeletal muscle tissue is mechanically dynamic with changes in stiffness influencing function, maintenance, and regeneration. We modeled skeletal muscle mechanical changes in culture with dynamically stiffening hydrogels demonstrating that the chaperone protein BAG3 transduces matrix stiffness by redistributing YAP and TAZ subcellular localization in muscle progenitor cells. BAG3 depletion increases cytoplasmic retention of YAP and TAZ, desensitizing myoblasts to changes in hydrogel elastic moduli. Upon differentiation, muscle progenitors depleted of BAG3 formed enlarged, round myotubes lacking the typical cylindrical morphology. The aberrant morphology is dependent on YAP/TAZ signaling, which was sequestered in the cytoplasm in BAG3-depleted myotubes but predominately nuclear in cylindrical myotubes of control cells. Control progenitor cells induced to differentiate on soft (E' = 4 and 12 kPa) hydrogels formed circular myotubes similar to those observed in BAG3-depleted cells. Inhibition of the Hippo pathway partially restored myotube morphologies, permitting nuclear translocation of YAP and TAZ in BAG3-depleted myogenic progenitors. Thus, BAG3 is a critical mediator of dynamic stiffness changes in muscle tissue, coupling mechanical alterations to intracellular signals and inducing changes in gene expression that influence muscle progenitor cell morphology and differentiation.
Collapse
Affiliation(s)
- K Arda Günay
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Jason S Silver
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tze-Ling Chang
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Olivia J Bednarski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Kendra L Bannister
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Cameron J Rogowski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Bradley B Olwin
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
28
|
Tokunaga A, Shimizu M. Age-related change in shear elastic modulus of the thoracolumbar multifidus muscle in healthy Beagle dogs using ultrasound shear wave elastography. J Vet Sci 2021; 22:e3. [PMID: 33522155 PMCID: PMC7850783 DOI: 10.4142/jvs.2021.22.e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022] Open
Abstract
Background Multifidus muscle stiffness decreases in patients with lumbar intervertebral disk herniation; however, age-related changes in humans have not been reported. Objectives The reliability of ultrasound shear wave elastography in dogs, and changes in the shear elastic modulus of the thoracolumbar multifidus muscle with aging in dogs, were investigated. Methods Twelve beagle dogs were divided into 2 groups based on the age of onset of intervertebral disk herniation: young (aged not exceeding 2 years; 1.3 ± 0.6 years old, n = 5) and adult (4.9 ± 1.2 years old, n = 7). The shear elastic modulus of the multifidus muscle, from the thirteenth thoracic spine to the fourth lumbar spine, was measured using ultrasound shear wave elastography. The length, cross-sectional area and muscle to fat ratio of the multifidus muscle, and the grade of intervertebral disk degeneration, were assessed using radiographic and magnetic resonance imaging examinations. Results The length and cross-sectional area of the multifidus muscle increased caudally. In the young group, the shear elastic modulus of the multifidus muscle of the thirteenth thoracic spine was less than that of the third lumbar spine. In the adult group, the shear elastic modulus of the multifidus muscle of first and third lumbar spine was lower than that of the same site in the young group. Conclusions Ultrasound can be used to measure shear wave elastography of the thoracolumbar multifidus in dogs. If the multifidus muscle stiffness decreases, we should consider age-related change.
Collapse
Affiliation(s)
- Akari Tokunaga
- Department of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Miki Shimizu
- Department of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.
| |
Collapse
|
29
|
Aarab Y, Flatres A, Garnier F, Capdevila M, Raynaud F, Lacampagne A, Chapeau D, Klouche K, Etienne P, Jaber S, Molinari N, Gamon L, Matecki S, Jung B. Shear Wave Elastography, A New Tool for Diaphragmatic Qualitative Assessment. A Translational Study. Am J Respir Crit Care Med 2021; 204:797-806. [PMID: 34255974 DOI: 10.1164/rccm.202011-4086oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Prolonged mechanical ventilation (MV) is often associated either with a decrease (known atrophy) or an increase (supposed injury) in diaphragmatic thickness. Shear wave elastography is a non-invasive technique that measures shear modulus, a surrogate of tissue stiffness and mechanical properties. OBJECTIVES To describe changes in shear modulus (SM) during the ICU stay and the relationship with alterations in muscle thickness. To perform a comprehensive ultrasound-based characterization of histological and force production changes occurring in the diaphragm. METHODS Translational study using critically ill patients and mechanically ventilated piglets. Serial ultrasound examination of the diaphragm collecting thickness and SM was performed in both patients and piglets. Transdiaphragmatic pressure and diaphragmatic biopsies were collected in piglets. MEASUREMENTS AND MAIN RESULTS We enrolled 102 patients, 88 of whom were invasively mechanically ventilated. At baseline, SM was 14.3+/-4.3 kPa and diaphragm end-expiratory thickness was 2.0+/-0.5 mm. Decrease or increase by more than 10% from baseline was reported in 86% of the patients for thickness and in 92% of the patients for shear modulus. An increase in diaphragmatic thickness during the stay was associated with a decrease in SM (β=-9.34±4.41; p=0.03) after multivariable analysis. In the piglet sample, a decrease in SM over 3 days of MV was associated with loss of force production, slow and fast fiber atrophy and increased lipid droplets accumulation. CONCLUSIONS Increases in diaphragm thickness during critical illness is associated with decreased tissue stiffness as demonstrated by shear wave ultrasound elastography, consistent with the development of muscle injury and weakness.
Collapse
Affiliation(s)
| | | | - Fanny Garnier
- Centre Hospitalier Regional Universitaire de Montpellier, 26905, Montpellier, France
| | - Mathieu Capdevila
- Montpellier University and Montpellier Teaching Hospital,, Saint Eloi Anesthesiology and Critical Care Medicine, Montpellier University and Montpellier Teaching Hospital, Montpellier, France , Montpellier, France.,Montpellier Universite d'Excellence, 539031, PhyMedExp, Montpellier, France
| | | | - Alain Lacampagne
- PhyMedExp, Montpellier University, INSERM, CNRS, Montpellier, France
| | - David Chapeau
- Lapeyronie University Hospital, Intensive Care Unit, Montpellier, France
| | - Kada Klouche
- Lapeyronie University Hospital, Intensive Care Unit, Montpellier, France
| | - Pascal Etienne
- Laboratoire Charles Coulomb, 131799, Montpellier, France
| | - Samir Jaber
- University hospital. CHU de MONTPELLIER HOPITAL SAINT ELOI, Intensive Care Unit and transplantation-Departement of Anesthesiology DAR B, Montpellier Cedex 5, France
| | - Nicolas Molinari
- CHU Montpellier - Hôpital la Colombière, DIM, Montpellier, France
| | - Lucie Gamon
- Montpellier University and Montpellier Teaching Hospital,, Saint Eloi Anesthesiology and Critical Care Medicine, Montpellier University and Montpellier Teaching Hospital, Montpellier, France
| | - Stefan Matecki
- Universite de Montpellier, 27037, 4. Pediatric Functional Exploration Unit, University Hospital of Montpellier, Montpellier, France
| | - Boris Jung
- Centre Hospitalier Regional Universitaire de Montpellier, 26905, medical ICU, Montpellier, France;
| |
Collapse
|
30
|
Soldos P, Besenyi Z, Hideghéty K, Pávics L, Hegedűs Á, Rácz L, Kopper B. Comparison of Shear Wave Elastography and Dynamometer Test in Muscle Tissue Characterization for Potential Medical and Sport Application. Pathol Oncol Res 2021; 27:1609798. [PMID: 34267604 PMCID: PMC8275576 DOI: 10.3389/pore.2021.1609798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022]
Abstract
Skeletal muscle status and its dynamic follow up are of particular importance in the management of several diseases where weight and muscle mass loss and, consequently, immobilization occurs, as in cancer and its treatment, as well as in neurodegenerative disorders. But immobilization is not the direct result of body and muscle mass loss, but rather the loss of the maximal tension capabilities of the skeletal muscle. Therefore, the development of a non-invasive and real-time method which can measure muscle tension capabilities in immobile patients is highly anticipated. Our aim was to introduce and evaluate a special ultrasound measurement technique to estimate a maximal muscle tension characteristic which can be used in medicine and also in sports diagnostics. Therefore, we determined the relationship between the results of shear wave elastography measurements and the dynamometric data of individuals. The measurements were concluded on the m. vastus lateralis. Twelve healthy elite athletes took part in our preliminary proof of principle study—five endurance (S) and seven strength (F) athletes showing unambiguously different muscle composition features, nine healthy subjects (H) without prior sports background, and four cancer patients in treatment for a stage 3 brain tumor (T). Results showed a high correlation between the maximal dynamometric isometric torque (Mmax) and mean elasticity value (E) for the non-athletes [(H + T), (r = 0.795)] and for the athletes [(S + F), (r = 0.79)]. For the athletes (S + F), the rate of tension development at contraction (RTDk) and E correlation was also determined (r = 0.84, p < 0.05). Our measurements showed significantly greater E values for the strength athletes with fast muscle fiber dominance than endurance athletes with slow muscle fiber dominance (p < 0.05). Our findings suggest that shear wave ultrasound elastography is a promising method for estimating maximal muscle tension and, also, the human skeletal muscle fiber ratio. These results warrant further investigations with a larger number of individuals, both in medicine and in sports science.
Collapse
Affiliation(s)
- Peter Soldos
- Faculty of Kinesiology, University of Physical Education, Budapest, Hungary
| | - Zsuzsanna Besenyi
- Department of Nuclear Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Katalin Hideghéty
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Pávics
- Department of Nuclear Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ádám Hegedűs
- Faculty of Kinesiology, University of Physical Education, Budapest, Hungary
| | - Levente Rácz
- Faculty of Kinesiology, University of Physical Education, Budapest, Hungary
| | - Bence Kopper
- Faculty of Kinesiology, University of Physical Education, Budapest, Hungary
| |
Collapse
|
31
|
van Doorn JLM, Pennati F, Hansen HHG, van Engelen BGM, Aliverti A, Doorduin J. Respiratory muscle imaging by ultrasound and MRI in neuromuscular disorders. Eur Respir J 2021; 58:13993003.00137-2021. [PMID: 33863737 DOI: 10.1183/13993003.00137-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/26/2021] [Indexed: 11/05/2022]
Abstract
Respiratory muscle weakness is common in neuromuscular disorders and leads to significant respiratory difficulties. Therefore, reliable and easy assessment of respiratory muscle structure and function in neuromuscular disorders is crucial. In the last decade, ultrasound and MRI emerged as promising imaging techniques to assess respiratory muscle structure and function. Respiratory muscle imaging directly measures the respiratory muscles and, in contrast to pulmonary function testing, is independent of patient effort. This makes respiratory muscle imaging suitable to use as tool in clinical respiratory management and as outcome parameter in upcoming drug trials for neuromuscular disorders, particularly in children. In this narrative review, we discuss the latest studies and technological developments in imaging of the respiratory muscles by US and MR, and its clinical application and limitations. We aim to increase understanding of respiratory muscle imaging and facilitate its use as outcome measure in daily practice and clinical trials.
Collapse
Affiliation(s)
- Jeroen L M van Doorn
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Hendrik H G Hansen
- Department of Medical Imaging, Medical Ultrasound Imaging Center (MUSIC), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
32
|
Ryu S, Martino N, Kwok SJJ, Bernstein L, Yun SH. Label-free histological imaging of tissues using Brillouin light scattering contrast. BIOMEDICAL OPTICS EXPRESS 2021; 12:1437-1448. [PMID: 33796364 PMCID: PMC7984781 DOI: 10.1364/boe.414474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 05/06/2023]
Abstract
Brillouin light scattering offers a unique label-free approach to measure biomechanical properties non-invasively. While this technique is used in biomechanical analysis of cells and tissues, its potential for visualizing structural features of tissues based on the biomechanical contrast has not been much exploited. Here, we present high-resolution Brillouin microscopy images of four basic tissue types: muscular, connective, epithelial, and nervous tissues. The Brillouin contrast distinguishes between muscle fiber cells and endomysium in skeletal muscle and reveals chondrocytes along with spatially varying stiffness of the extracellular matrix in articular cartilage. The hydration-sensitive contrast can visualize the stratum corneum, epidermis, and dermis in the skin epithelium. In brain tissues, the Brillouin images show the mechanical heterogeneity across the cortex and deeper regions. This work demonstrates the versatility of using the Brillouin shift as histological contrast for examining intact tissue substructures via longitudinal modulus without the need for laborious tissue processing steps.
Collapse
Affiliation(s)
- Seungmi Ryu
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
- National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
- These authors contributed equally to this work
| | - Nicola Martino
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
- These authors contributed equally to this work
| | - Sheldon J. J. Kwok
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liane Bernstein
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Goo M, Tucker K, Johnston LM. A profile of reference data for shear modulus for lower limb muscles in typically developing children. Clin Biomech (Bristol, Avon) 2021; 83:105254. [PMID: 33740498 DOI: 10.1016/j.clinbiomech.2020.105254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Shear wave elastography can measure shear wave speed in muscles, which is used to estimate shear modulus. Normative values and standardized methodology are needed for children. Study aims were to: estimate shear modulus behavior of lower limb muscles of typically developing children; and establish a profile of reference data and recommendations for clinical assessment. METHODS Forty-one typically developing children (mean 9.7 y, SD 1.9 y) completed assessment of resting shear modulus of rectus femoris, biceps femoris, gastrocnemius lateralis and tibialis anterior at short and long lengths using shear wave elastography. Effects of muscle length, age, sex and BMI were examined. Then, our data and data from a scoping review for typical individuals were collated according to Net-Longitudinal Tension Angle (net proximal and distal joint angles). FINDINGS Shear modulus was: higher at long versus short muscle lengths for all four muscles (P < 0.001); correlated with increasing age for tibialis anterior at short (r = 0.39) and long lengths (r = 0.42) (both P = 0.01); but not related to sex or BMI. Shear modulus: tended to increase with increasing Net-Longitudinal Tension Angle for 18 lower limb muscles; and was higher for children than adults for some muscles (e.g. tibialis anterior and gastrocnemius lateralis, both P < 0.001). INTERPRETATION In typically developing children, shear modulus of lower limb muscles increases with increasing Net-Longitudinal Tension Angle. Recommendations enable comparison of values across different test positions and populations. Some relation between shear modulus and age was identified, but more research is needed.
Collapse
Affiliation(s)
- Miran Goo
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
| | - Kylie Tucker
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
| | - Leanne M Johnston
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, QLD 4072, Australia.
| |
Collapse
|
34
|
Kronlage C, Grimm A, Romano A, Stahl JH, Martin P, Winter N, Marquetand J. Muscle Ultrasound Shear Wave Elastography as a Non-Invasive Biomarker in Myotonia. Diagnostics (Basel) 2021; 11:diagnostics11020163. [PMID: 33498617 PMCID: PMC7911703 DOI: 10.3390/diagnostics11020163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
Myotonia, i.e., delayed muscle relaxation in certain hereditary muscle disorders, can be assessed quantitatively using different techniques ranging from force measurements to electrodiagnostics. Ultrasound shear wave elastography (SWE) has been proposed as a novel tool in biomechanics and neuromuscular medicine for the non-invasive estimation of muscle elasticity and, indirectly, muscle force. The aim of this study is to provide ‘proof-of-principle’ that SWE allows a quantitative measurement of the duration of delayed muscle relaxation in myotonia in a simple clinical setting. In six myotonic muscle disorder patients and six healthy volunteers, shear wave velocities (SWV) parallel to the fiber orientation in the flexor digitorum superficialis muscle in the forearm were recorded with a temporal resolution of one per second during fist-clenching and subsequent relaxation; the relaxation time to 10% of normalized shear wave velocity (RT0.1) was calculated. Forty-six SWE imaging sequences were acquired, yielding a mean RT0.1 of 7.38 s in myotonic muscle disorder patients, significantly higher than in healthy volunteers (1.36 s), which is comparable to data obtained by mechanical dynamometry. SWV measurements during the baseline relaxation and voluntary contraction phases did not differ significantly between groups. We conclude that SWE is a promising, non-invasive, widely available tool for the quantitative assessment of myotonia to aid in diagnosis and therapeutic monitoring.
Collapse
|
35
|
Miller T, Ying M, Sau Lan Tsang C, Huang M, Pang MYC. Reliability and Validity of Ultrasound Elastography for Evaluating Muscle Stiffness in Neurological Populations: A Systematic Review and Meta-Analysis. Phys Ther 2021; 101:5928445. [PMID: 33508855 DOI: 10.1093/ptj/pzaa188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Ultrasound elastography is an emerging diagnostic technology used to investigate the biomechanical properties of the musculoskeletal system. The purpose of this study was to systematically review the psychometric properties of ultrasound elastography techniques for evaluating muscle stiffness in people with neurological conditions. METHODS A systematic search of MEDLINE, EMBASE, CINAHL, and Cochrane Library databases was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Using software, reviewers independently screened citations for inclusion. Peer-reviewed studies that evaluated in vivo muscle stiffness in people with neurological conditions and reported relevant psychometric properties were considered for inclusion. Twenty-one articles were included for final review. Data relevant to measurement technique, site, and neurological condition were extracted. The Consensus-Based Standards for the Selection of Health Measurement Instruments checklist was used to rate the methodological quality of included studies. The level of evidence for specific measurement outcomes was determined using a best-evidence synthesis approach. RESULTS Reliability varied across populations, ultrasound systems, and assessment conditions (ie, joint/body positions, active/passive muscle conditions, probe orientation), with most studies indicating moderate to good reliability (ICC = 0.5-0.9, n = 13). Meta-analysis results showed a good overall correlation across studies (r = 0.78, 95% confidence interval = 0.64-0.86), with no between-group difference based on population (Q1 = 0.00). Convergent validity was demonstrated by strong correlations between stiffness values and measures of spasticity (n = 5), functional motor recovery or impairment (n = 5), and grayscale or color histogram pixel intensities (n = 3). Discriminant or known-groups validity was also established for multiple studies and indicated either significant between-group differences in stiffness values (n = 12) or within-group differences between more and less affected limbs (n = 6). Responsiveness was observed in all intervention studies reporting posttreatment stiffness changes (n = 6). CONCLUSIONS Overall, ultrasound elastography techniques showed moderate reliability in evaluating in vivo muscle stiffness, good convergent validity with relevant clinical assessments, and good divergent validity in discriminating tissue changes within and between groups. IMPACT Ultrasound elastography has clinical utility in assessing muscle stiffness, monitoring its temporal changes, and measuring the response to intervention in people with neurological conditions.
Collapse
Affiliation(s)
- Tiev Miller
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong, S.A.R
| | - Michael Ying
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, S.A.R
| | - Charlotte Sau Lan Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong, S.A.R
| | - Meizhen Huang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong, S.A.R
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong, S.A.R
| |
Collapse
|
36
|
Association of Clinical Assessments of Hand Function and Quantitative Ultrasound Metrics in First Carpometacarpal Osteoarthritis. HSS J 2020; 16:420-424. [PMID: 33380976 PMCID: PMC7749908 DOI: 10.1007/s11420-020-09795-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Thumb carpometacarpal (CMC) osteoarthritis (OA), a degenerative condition affecting hand use, is typically evaluated through radiographs and clinical examination. Although this can determine treatment, it is difficult to evaluate functional limitations. Shear wave elastography (SWE) is a quantitative ultrasound technique that characterizes tissue stiffness. QUESTIONS/PURPOSES This pilot study aimed to establish data of the SWE findings in the thenar eminence muscles in patients with first CMC OA and correlate these findings with the clinical tests of hand function. METHODS This cross-sectional study correlated the SWE stiffness of thenar eminence muscles to clinical tests of hand function in patients with first CMC OA and in asymptomatic control subjects, using Spearman's correlation coefficient. Mean SWE values of the thenar eminence muscles in patients were compared with those in control subjects. The study was performed in a non-profit tertiary care hospital setting. Patients and control subjects were recruited on a volunteer basis. RESULTS SWE values in the abductor pollicis brevis and flexor pollicis brevis muscles showed moderate to very strong correlation with multiple measures of hand function. Mean SWE values of the thenar eminence muscles in first CMC OA patients were lower than those in asymptomatic control subjects. CONCLUSIONS Correlations between mean SWE values in the thenar eminence muscles and clinical measures of hand function suggest decreased function in subjects with less stiff thenar eminence muscles.
Collapse
|
37
|
Chen Y, Wang B, Xiao L, Li Y, Luo Y. Changes in Muscle Mass in Patients With Renal Transplants Based on Ultrasound: A Prospective Study. JOURNAL OF ULTRASOUND IN MEDICINE 2020; 40:1637-1648. [PMID: 33215772 DOI: 10.1002/jum.15552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES This original research aimed to investigate the value of ultrasound (US), including grayscale US and shear wave elastography (SWE), in quantitatively evaluating muscle mass after kidney transplantation. METHODS A total of 52 patients and 54 healthy control participants were recruited. High-frequency US was used to evaluate the echo intensity and muscle morphologic features. Muscle stiffness in the rectus femoris was assessed with SWE. Interclass and intraclass correlation coefficients were used for evaluating measurement reliability. The diagnostic performance of SWE was determined by a receiver operating characteristic curve analysis. RESULTS The intraobserver and interobserver repeatability was excellent (all correlation coefficients >0.940; P < .05). The best evaluation point after right iliac fossa transplantation was at the lower third of the right leg. In patients, the skin (0.154 versus 0.192 cm) and rectus femoris (0.700 versus 0.905 cm) were thinner, and the pinnate angle (6.500° versus 8.000°) and area (0.965 versus 1.270 cm2 ) were smaller (all P < .05). The US results showed that, compared with the controls, all patients' rectus femoris echo intensity (P < .001 in the transverse section) and elastic modulus (P < .001 in the Young modulus and shear wave speed) increased significantly. The cutoff values were 10.05 and 10.37, and the areas under the receiver operating characteristic curves were 0.843 and 0.845 for predicting kidney transplant and sarcopenia, respectively. CONCLUSIONS This noninvasive and convenient technique might be effective for objectively evaluating the muscle mass of patients after kidney transplantation.
Collapse
Affiliation(s)
- Yang Chen
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China.,West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Wang
- Key Laboratory for Neuroinformation, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - Lian Xiao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjie Li
- Key Laboratory for Neuroinformation, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Bastijns S, De Cock AM, Vandewoude M, Perkisas S. Usability and Pitfalls of Shear-Wave Elastography for Evaluation of Muscle Quality and Its Potential in Assessing Sarcopenia: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2891-2907. [PMID: 32843232 DOI: 10.1016/j.ultrasmedbio.2020.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
Sarcopenia is age-related progressive and generalized loss of skeletal muscle mass and strength. Its prevalence is rising, which poses a burden for society because it increases disability and dependency and therefore raises health care costs. Muscle mass quality, however-an essential part of sarcopenia-is not easily diagnosable yet. Recent interest has risen for ultrasonographic evaluation of muscle. This review introduces muscle elastography as a possible, easy and cheap tool to evaluate qualitative muscle parameters. Basic principles of muscle elastography are described, as well as different elastography techniques and some technical considerations. Furthermore, a proposal for practical guidelines is offered and factors influencing muscle stiffness are highlighted.
Collapse
Affiliation(s)
- Sophie Bastijns
- Department of Medicine, University of Antwerp, Antwerp, Belgium; Ziekenhuisnetwerk Antwerpen, Antwerp, Belgium.
| | - Anne-Marie De Cock
- Department of Medicine, University of Antwerp, Antwerp, Belgium; Ziekenhuisnetwerk Antwerpen, Antwerp, Belgium
| | - Maurits Vandewoude
- Department of Medicine, University of Antwerp, Antwerp, Belgium; Ziekenhuisnetwerk Antwerpen, Antwerp, Belgium; Belgian Ageing Muscle Society, Liege, Belgium
| | - Stany Perkisas
- Department of Medicine, University of Antwerp, Antwerp, Belgium; Ziekenhuisnetwerk Antwerpen, Antwerp, Belgium; Belgian Ageing Muscle Society, Liege, Belgium
| |
Collapse
|
39
|
Liu X, Yu HK, Sheng SY, Liang SM, Lu H, Chen RY, Pan M, Wen ZB. Quantitative evaluation of passive muscle stiffness by shear wave elastography in healthy individuals of different ages. Eur Radiol 2020; 31:3187-3194. [PMID: 33052467 DOI: 10.1007/s00330-020-07367-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/27/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To investigate age-related changes on passive muscle stiffness in healthy individuals and measure the shear modulus in different age groups. METHODS Shear wave elastography (SWE) movies of gastrocnemius medialis (GM) were collected during passive stretching induced by ankle rotation from plantarflexion (PF) to dorsiflexion (DF). A series of SWE images at ankle angles of PF 40°, PF 30°, PF 20°, PF 10°, 0°, DF 10°, DF 20°, and DF 30° were collected and shear moduli measured accordingly for analyses. RESULTS Eighty-six healthy volunteers (27 children, 31 middle-aged adults, and 28 older people) were recruited. No significant difference was observed in the shear modulus between the three groups at ankle angles of PF 40°, PF 30°, PF 20°, PF 10°, and 0° (p > 0.05). The difference in the shear modulus among the three groups became significant as DF increased. At ankle angles of DF 10°, DF 20°, and DF 30°, the shear modulus was the greatest in the older group, followed by the middle-aged group and then the children group (p = 0.007, 0.000, and 0.000, respectively). CONCLUSIONS Passive muscle stiffness increases with age, and the difference between age groups was pronounced only after reaching a certain degree of stretching. KEY POINTS • The influence of age on passive muscle stiffness becomes pronounced only after reaching a certain degree of stretching. • Age should be considered when evaluating passive muscle stiffness in muscular disorders.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, 253, Gongye Avenue, Guangzhou, 510282, Guangdong, China
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine, 6001, Beihuan Avenue, Shenzhen, 518034, Guangdong, China
| | - Hong-Kui Yu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, 253, Gongye Avenue, Guangzhou, 510282, Guangdong, China
| | - Shu-Ya Sheng
- Shenzhen Middle School, Shenzhen, Guangdong, China
| | - Si-Min Liang
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine, 6001, Beihuan Avenue, Shenzhen, 518034, Guangdong, China
| | - Hao Lu
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine, 6001, Beihuan Avenue, Shenzhen, 518034, Guangdong, China
| | - Rui-Yun Chen
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine, 6001, Beihuan Avenue, Shenzhen, 518034, Guangdong, China
| | - Min Pan
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine, 6001, Beihuan Avenue, Shenzhen, 518034, Guangdong, China.
| | - Zhi-Bo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, 253, Gongye Avenue, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
40
|
Gitto S, Messina C, Vitale N, Albano D, Sconfienza LM. Quantitative Musculoskeletal Ultrasound. Semin Musculoskelet Radiol 2020; 24:367-374. [PMID: 32992365 DOI: 10.1055/s-0040-1709720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ultrasound (US) imaging plays a crucial role in the assessment of musculoskeletal (MSK) disorders. Several quantitative tools are offered by US systems and add information to conventional US imaging. This article reviews the quantitative US imaging tools currently available in MSK radiology, specifically focusing on the evaluation of elasticity with shear-wave elastography, perfusion with contrast-enhanced US and noncontrast superb microvascular imaging, and bone and muscle mass with quantitative US methods. Some of them are well established and already of clinical value, such as elasticity and contrast-enhanced perfusion assessment in muscles and tendons. MSK radiologists should be aware of the potential of quantitative US tools and take advantage of their use in everyday practice, both for clinical and research purposes.
Collapse
Affiliation(s)
- Salvatore Gitto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Carmelo Messina
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Nicoló Vitale
- Scuola di Specializzazione in Medicina Fisica e Riabilitativa, Dipartimento di Scienze Biomediche e Biotecnologiche, Università Degli Studi di Catania, Catania, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.,Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy
| | - Luca Maria Sconfienza
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
41
|
Farrow M, Biglands J, Alfuraih AM, Wakefield RJ, Tan AL. Novel Muscle Imaging in Inflammatory Rheumatic Diseases-A Focus on Ultrasound Shear Wave Elastography and Quantitative MRI. Front Med (Lausanne) 2020; 7:434. [PMID: 32903395 PMCID: PMC7434835 DOI: 10.3389/fmed.2020.00434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years, imaging has played an increasing role in the clinical management of patients with rheumatic diseases with respect to aiding diagnosis, guiding therapy and monitoring disease progression. These roles have been underpinned by research which has enhanced our understanding of disease pathogenesis and pathophysiology of rheumatology conditions, in addition to their key role in outcome measurement in clinical trials. However, compared to joints, imaging research of muscles is less established, despite the fact that muscle symptoms are very common and debilitating in many rheumatic diseases. Recently, it has been shown that even though patients with rheumatoid arthritis may achieve clinical remission, defined by asymptomatic joints, many remain affected by lingering constitutional systemic symptoms like fatigue, tiredness, weakness and myalgia, which may be attributed to changes in the muscles. Recent improvements in imaging technology, coupled with an increasing clinical interest, has started to ignite new interest in the area. This perspective discusses the rationale for using imaging, particularly ultrasound and MRI, for investigating muscle pathology involved in common inflammatory rheumatic diseases. The muscles associated with rheumatic diseases can be affected in many ways, including myositis-an inflammatory muscle condition, and myopathy secondary to medications, such as glucocorticoids. In addition to non-invasive visual assessment of muscles in these conditions, novel imaging techniques like shear wave elastography and quantitative MRI can provide further useful information regarding the physiological and biomechanical status of the muscle.
Collapse
Affiliation(s)
- Matthew Farrow
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom
| | - John Biglands
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Abdulrahman M Alfuraih
- Radiology and Medical Imaging Department, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Richard J Wakefield
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Ai Lyn Tan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
42
|
Goo M, Johnston LM, Hug F, Tucker K. Systematic Review of Instrumented Measures of Skeletal Muscle Mechanical Properties: Evidence for the Application of Shear Wave Elastography with Children. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1831-1840. [PMID: 32423570 DOI: 10.1016/j.ultrasmedbio.2020.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/16/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The aim of this review was to identify instrumented devices that quantify skeletal muscle mechanical properties and to evaluate their potential clinical utility and clinimetric evidence with respect to children. Four databases were searched to identify articles reporting original clinimetric data for devices measuring muscle stiffness or elastic modulus, along a muscle's main fibre direction. Clinimetric evidence was rated using the Consensus-Based Standard for the Selection of Measurement Instruments (COSMIN) checklist. Sixty-five articles provided clinimetric data for two devices meeting our criteria: the Aixplorer and the Acuson. Both are shear wave elastography devices that determine the shear modulus of muscle tissue. The Aixplorer had strong construct validity and reliability, and the Acuson, moderate construct validity and reliability. Both devices have sound clinical utility with non-invasive application at various joint positions and data acquisition in real time, minimizing fatigue. Further research is warranted to evaluate utility for children with specific disorders of abnormal muscle structure or function.
Collapse
Affiliation(s)
- Miran Goo
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Leanne M Johnston
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Francois Hug
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia; Laboratory "Movement, Interactions, Performance", Nantes, France; Institut Universitaire de France, Faculty of Sport Sciences, University of Nantes, Paris, France
| | - Kylie Tucker
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
43
|
Hobson‐Webb LD. Emerging technologies in neuromuscular ultrasound. Muscle Nerve 2020; 61:719-725. [DOI: 10.1002/mus.26819] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Lisa D. Hobson‐Webb
- Department of Neurology/Neuromuscular DivisionDuke University North Carolina
| |
Collapse
|
44
|
Flatres A, Aarab Y, Nougaret S, Garnier F, Larcher R, Amalric M, Klouche K, Etienne P, Subra G, Jaber S, Molinari N, Matecki S, Jung B. Real-time shear wave ultrasound elastography: a new tool for the evaluation of diaphragm and limb muscle stiffness in critically ill patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:34. [PMID: 32014005 PMCID: PMC6998330 DOI: 10.1186/s13054-020-2745-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/16/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Muscle weakness following critical illness is the consequence of loss of muscle mass and alteration of muscle quality. It is associated with long-term disability. Ultrasonography is a reliable tool to quantify muscle mass, but studies that evaluate muscle quality at the critically ill bedside are lacking. Shear wave ultrasound elastography (SWE) provides spatial representation of soft tissue stiffness and measures of muscle quality. The reliability and reproducibility of SWE in critically ill patients has never been evaluated. METHODS Two operators tested in healthy controls and in critically ill patients the intra- and inter-operator reliability of the SWE using transversal and longitudinal views of the diaphragm and limb muscles. Reliability was calculated using the intra-class correlation coefficient and a bootstrap sampling method assessed their consistency. RESULTS We collected 560 images. Longitudinal views of the diaphragm (ICC 0.83 [0.50-0.94]), the biceps brachii (ICC 0.88 [0.67-0.96]) and the rectus femoris (ICC 0.76 [0.34-0.91]) were the most reliable views in a training set of healthy controls. Intra-class correlation coefficient for inter-operator reproducibility and intra-operator reliability was above 0.9 for all muscles in a validation set of healthy controls. In critically ill patients, inter-operator reproducibility and intra-operator 1 and 2 reliability ICCs were respectively 0.92 [0.71-0.98], 0.93 [0.82-0.98] and 0.92 [0.81-0.98] for the diaphragm; 0.96 [0.86-0.99], 0.98 [0.94-0.99] and 0.99 [0.96-1] for the biceps brachii and 0.91 [0.51-0.98], 0.97 [0.93-0.99] and 0.99 [0.97-1] for the rectus femoris. The probability to reach intra-class correlation coefficient greater than 0.8 in a 10,000 bootstrap sampling for inter-operator reproducibility was respectively 81%, 84% and 78% for the diaphragm, the biceps brachii and the rectus femoris respectively. CONCLUSIONS SWE is a reliable technique to evaluate limb muscles and the diaphragm in both healthy controls and in critically ill patients. TRIAL REGISTRATION The study was registered (ClinicalTrial NCT03550222).
Collapse
Affiliation(s)
- Aurelien Flatres
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France.,INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Yassir Aarab
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France.,INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Stephanie Nougaret
- IRCM, INSERM U1194, and Department of Radiology, Montpellier Cancer Research Institute, 208 Ave des Apothicaires, 34295, Montpellier, France
| | - Fanny Garnier
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France.,INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Romaric Larcher
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France.,INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Mathieu Amalric
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France
| | - Kada Klouche
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France.,INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Pascal Etienne
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 34000, Montpellier, France
| | - Samir Jaber
- INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France.,Saint Eloi Anesthesiology and Critical Care Medicine, Montpellier University and Montpellier Teaching Hospital, Montpellier, France
| | - Nicolas Molinari
- Biostatistics Department, Montpellier University and Montpellier Teaching Hospital, Montpellier, France
| | - Stefan Matecki
- INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Boris Jung
- Medical Intensive Care Unit, Montpellier University and Montpellier Lapeyronie Teaching Hospital, Avenue du Doyen Gaston Giraud, 34000, Montpellier, France. .,INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France.
| |
Collapse
|
45
|
Abd Ellah M, Taljanovic M, Klauser A. Musculoskeletal elastography. TISSUE ELASTICITY IMAGING 2020:197-224. [DOI: 10.1016/b978-0-12-809662-8.00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
46
|
Mackintosh S, Young A, Lee A, Sim J. Considerations in the application of two dimensional shear wave elastography in muscle. SONOGRAPHY 2019. [DOI: 10.1002/sono.12204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- S. Mackintosh
- Department of Anatomy and Medical Imaging, School of Medical SciencesThe University of Auckland Auckland New Zealand
- Pacific Radiology Group Wellington and Manawatu New Zealand
| | - A. Young
- Department of Anatomy and Medical Imaging, School of Medical SciencesThe University of Auckland Auckland New Zealand
| | - A. Lee
- Section of Epidemiology and Biostatistics, School of Population HealthThe University of Auckland Auckland New Zealand
| | - J. Sim
- Department of Anatomy and Medical Imaging, School of Medical SciencesThe University of Auckland Auckland New Zealand
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health CareMonash University Melbourne Australia
| |
Collapse
|
47
|
Regional Elastic Properties of the Achilles Tendon Is Heterogeneously Influenced by Individual Muscle of the Gastrocnemius. Appl Bionics Biomech 2019; 2019:8452717. [PMID: 31781292 PMCID: PMC6874961 DOI: 10.1155/2019/8452717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/02/2019] [Accepted: 09/19/2019] [Indexed: 11/17/2022] Open
Abstract
Background Anatomical studies and the mechanical property studies showed that there is a strong correlation between Achilles tendon (AT) elasticity and individual gastrocnemius muscle (the medial head of gastrocnemius (MG) and the lateral head of gastrocnemius (LG)) elasticity. Limited ankle dorsiflexion range of motion has been correlated with decreased flexibility of the MG/LG/AT complex. However, no studies have been conducted to examine the exact correlation between the Achilles tendon and the individual muscle of the gastrocnemius. Purposes The purposes of the present study were (1) to evaluate intra- and interoperator reliabilities of elastic property measurements in the gastrocnemius muscle-Achilles tendon complex by using the shear wave elastography (SWE) and (2) to examine the correlation between the regional elastic properties of the AT and the individual muscle of the gastrocnemius. Methods Twenty healthy subjects (mean age: 22.50 (3.02) years) were recruited in this study. The elastic properties of the AT and the individual muscle of the gastrocnemius were quantified using the SWE. Findings The SWE has comparatively high reliability in quantifying the elastic properties of the muscle-tendon range from good to excellent. The intraoperator ICC of the gastrocnemius muscle-Achilles tendon complex was 0.77 to 0.95, while the interoperator ICC was 0.76 to 0.94. The minimal detectable change (MDC) of the muscle was 1.72 kPa, while the AT was 32.90 kPa. A significant correlation was found between the elastic modulus of AT and the elastic modulus of the MG (r = 0.668 and p = 0.001 at the relaxing position and r = 0.481 and p = 0.032 at the neutral position). Conclusions The SWE has the potential to assess localized changes in muscle-tendon elastic properties, provide more intuitive relations between elastic properties of the muscle tendon and function, and evaluate the therapeutic effect of the muscle tendon. A significant correlation between the AT and the MG was found, and it may provide a new treatment idea (targeted to the tight muscle heads) for the clinical setting to treat subjects with AT disorders.
Collapse
|
48
|
Phan A, Lee J, Gao J. Ultrasound shear wave elastography in assessment of skeletal muscle stiffness in senior volunteers. Clin Imaging 2019; 58:22-26. [DOI: 10.1016/j.clinimag.2019.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023]
|
49
|
Barnes SL, Simon NG. Clinical and research applications of neuromuscular ultrasound in amyotrophic lateral sclerosis. Degener Neurol Neuromuscul Dis 2019; 9:89-102. [PMID: 31406480 PMCID: PMC6642653 DOI: 10.2147/dnnd.s215318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by dysfunction at multiple levels of the neuraxis. It remains a clinical diagnosis without a definitive diagnostic investigation. Electrodiagnostic testing provides supportive information and, along with imaging and biochemical markers, can help exclude mimicking conditions. Neuromuscular ultrasound has a valuable role in the diagnosis and monitoring of ALS and provides complementary information to clinical assessment and electrodiagnostic testing as well as insights into the underlying pathophysiology of this disease. This review highlights the evidence for ultrasound in the evaluation of bulbar, limb and respiratory musculature and peripheral nerves in ALS. Further research in this evolving area is required.
Collapse
Affiliation(s)
- Stephanie L Barnes
- Department of Neurology, Concord Repatriation General Hospital, Concord, NSW, Australia
- St Vincent’s Clinical School, School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
| | - Neil G Simon
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
50
|
Leng Y, Wang Z, Bian R, Lo WLA, Xie X, Wang R, Huang D, Li L. Alterations of Elastic Property of Spastic Muscle With Its Joint Resistance Evaluated From Shear Wave Elastography and Biomechanical Model. Front Neurol 2019; 10:736. [PMID: 31354610 PMCID: PMC6635717 DOI: 10.3389/fneur.2019.00736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 06/24/2019] [Indexed: 01/10/2023] Open
Abstract
This study aims to quantify passive muscle stiffness of spastic wrist flexors in stroke survivors using shear wave elastography (SWE) and to correlate with neural and non-neural contributors estimated from a biomechanical model to hyper-resistance measured during passive wrist extension. Fifteen hemiplegic individuals after stroke with Modified Ashworth Scale (MAS) score larger than one were recruited. SWE were used to measure Young's modulus of flexor carpi radialis muscle with joint from 0° (at rest) to 50° flexion (passive stretch condition), with 10° interval. The neural (NC) and non-neural components i.e., elasticity component (EC) and viscosity component (VC) of the wrist joint were analyzed from a motorized mechanical device NeuroFlexor® (NF). Combining with a validated biomechanical model, the neural reflex and muscle stiffness contribution to the increased resistance can be estimated. MAS and Fugl-Meyer upper limb score were also measured to evaluate the spasticity and motor function of paretic upper limb. Young's modulus was significantly higher in the paretic side of flexor carpi radialis than that of the non-paretic side (p < 0.001) and it increased significantly from 0° to 50° of the paretic side (p < 0.001). NC, EC, and VC on the paretic side were higher than the non-paretic side (p < 0.05). There was moderate significant positive correlation between the Young's Modulus and EC (r = 0.565, p = 0.028) and VC (r = 0.645, p = 0.009) of the paretic forearm flexor muscle. Fugl-Meyer of the paretic forearm flexor has a moderate significant negative correlation with NC (r = -0.578, p = 0.024). No significant correlation between MAS and shear elastic modulus or NF components was observed. This study demonstrated the feasibility of combining SWE and NF as a non-invasive approach to assess spasticity of paretic muscle and joint in stroke clinics. The neural and non-neural components analysis as well as correlation findings of muscle stiffness of SWE might provide understanding of mechanism behind the neuromuscular alterations in stroke survivors and facilitate the design of suitable intervention for them.
Collapse
Affiliation(s)
- Yan Leng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhu Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruihao Bian
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruoli Wang
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Mechanics, Royal Institute of Technology, Stockholm, Sweden.,KTH BioMEx Center, Royal Institute of Technology, Stockholm, Sweden
| | - Dongfeng Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Le Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|