1
|
Skals M, Broch-Lips M, Skov MB, Riisager A, Ceelen J, Nielsen OB, Brull SJ, de Boer HD, Pedersen TH. ClC-1 Inhibition as a Mechanism for Accelerating Skeletal Muscle Recovery After Neuromuscular Block in Rats. Nat Commun 2024; 15:9289. [PMID: 39468073 PMCID: PMC11519510 DOI: 10.1038/s41467-024-53237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Neuromuscular blocking agents are used commonly to induce skeletal muscle relaxation during surgery. While muscle relaxation facilitates surgical procedures and tracheal intubation, adequate recovery of muscle function after surgery is required to support pulmonary function, and even mild residual neuromuscular block increases the risk of severe postoperative pulmonary complications. While recovery of muscle function after surgery involving neuromuscular blocking agents can be monitored and, in addition, be accelerated by use of current antagonists (reversal agents), there is a clear clinical need for a safe drug to antagonize all types of neuromuscular blocking agents. Here, we show that inhibition of the skeletal muscle-specific chloride ion (Cl-) channel, the ClC-1 channel, markedly accelerates recovery of both single contraction (twitch) and, important physiologically, sustained (tetanic) contractions in a rat model mimicking neuromuscular blocking agent-induced muscle block used during surgery. This suggests ClC-1 inhibition as a mechanism for fast and efficacious recovery of neuromuscular function induced by any neuromuscular blocking agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sorin J Brull
- Department of Anesthesiology, Mayo Clinic College of Medicine and Science, Jacksonville, USA
| | - Hans D de Boer
- Department of Anesthesiology, Pain Medicine and Procedural Sedation and Analgesia, Martini General Hospital Groningen, Groningen, the Netherlands
| | - Thomas Holm Pedersen
- NMD Pharma, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Su M, Qiu F, Li Y, Che T, Li N, Zhang S. Mechanisms of the NAD + salvage pathway in enhancing skeletal muscle function. Front Cell Dev Biol 2024; 12:1464815. [PMID: 39372950 PMCID: PMC11450036 DOI: 10.3389/fcell.2024.1464815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is crucial for cellular energy production, serving as a coenzyme in oxidation-reduction reactions. It also supports enzymes involved in processes such as DNA repair, aging, and immune responses. Lower NAD+ levels have been associated with various diseases, highlighting the importance of replenishing NAD+. Nicotinamide phosphoribosyltransferase (NAMPT) plays a critical role in the NAD+ salvage pathway, which helps sustain NAD+ levels, particularly in high-energy tissues like skeletal muscle.This review explores how the NAMPT-driven NAD+ salvage pathway influences skeletal muscle health and functionality in aging, type 2 diabetes mellitus (T2DM), and skeletal muscle injury. The review offers insights into enhancing the salvage pathway through exercise and NAD+ boosters as strategies to improve muscle performance. The findings suggest significant potential for using this pathway in the diagnosis, monitoring, and treatment of skeletal muscle conditions.
Collapse
Affiliation(s)
- Mengzhu Su
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- School of Physical Education, Qingdao University, Qingdao, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, Qingdao, China
| | - Yansong Li
- School of Physical Education, Qingdao University, Qingdao, China
| | - Tongtong Che
- School of Physical Education, Qingdao University, Qingdao, China
| | - Ningning Li
- School of Physical Education, Qingdao University, Qingdao, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- School of Physical Education, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Dlamini M, Khathi A. Investigating the Effects of Diet-Induced Prediabetes on Skeletal Muscle Strength in Male Sprague Dawley Rats. Int J Mol Sci 2024; 25:4076. [PMID: 38612885 PMCID: PMC11012655 DOI: 10.3390/ijms25074076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Type 2 diabetes mellitus, a condition preceded by prediabetes, is documented to compromise skeletal muscle health, consequently affecting skeletal muscle structure, strength, and glucose homeostasis. A disturbance in skeletal muscle functional capacity has been demonstrated to induce insulin resistance and hyperglycemia. However, the modifications in skeletal muscle function in the prediabetic state are not well elucidated. Hence, this study investigated the effects of diet-induced prediabetes on skeletal muscle strength in a prediabetic model. Male Sprague Dawley rats were randomly assigned to one of the two groups (n = 6 per group; six prediabetic (PD) and six non-pre-diabetic (NPD)). The PD group (n = 6) was induced with prediabetes for 20 weeks. The diet that was used to induce prediabetes consisted of fats (30% Kcal/g), proteins (15% Kcal/g), and carbohydrates (55% Kcal/g). In addition to the diet, the experimental animals (n = 6) were supplied with drinking water that was supplemented with 15% fructose. The control group (n = 6) was allowed access to normal rat chow, consisting of 35% carbohydrates, 30% protein, 15% fats, and 20% other components, as well as ordinary tap water. At the end of week 20, the experimental animals were diagnosed with prediabetes using the American Diabetes Association (ADA) prediabetes impaired fasting blood glucose criteria (5.6-6.9 mmol/L). Upon prediabetes diagnosis, the animals were subjected to a four-limb grip strength test to assess skeletal muscle strength at week 20. After the grip strength test was conducted, the animals were euthanized for blood and tissue collection to analyze glycated hemoglobin (HbA1c), plasma insulin, and insulin resistance using the homeostatic model of insulin resistance (HOMA-IR) index and malondialdehyde (MDA) concentration. Correlation analysis was performed to examine the associations of skeletal muscle strength with HOMA-IR, plasma glucose, HbA1c, and MDA concentration. The results demonstrated increased HbA1c, FBG, insulin, HOMA-IR, and MDA concentrations in the PD group compared to the NPD group. Grip strength was reduced in the PD group compared to the NPD group. Grip strength was negatively correlated with HbA1c, plasma glucose, HOMA-IR, and MDA concentration in the PD group. These observations suggest that diet-induced prediabetes compromises muscle function, which may contribute to increased levels of sedentary behavior during prediabetes progression, and this may contribute to the development of hyperglycemia in T2DM.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine, Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| |
Collapse
|
4
|
Gao SY, Liu YP, Wen R, Huang XM, Li P, Yang YH, Yang N, Zhang TN. Kcnma1 is involved in mitochondrial homeostasis in diabetes-related skeletal muscle atrophy. FASEB J 2023; 37:e22866. [PMID: 36929614 DOI: 10.1096/fj.202201397rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Uncontrolled diabetes causes a catabolic state with multi-organic complications, of which impairment on skeletal muscle contributes to the damaged mobility. Kcnma1 gene encodes the pore-forming α-subunit of Ca2+ - and voltage-gated K+ channels of large conductance (BK channels), and loss-of-function mutations in Kcnma1 are in regards to impaired myogenesis. Herein, we observed a time-course reduction of Kcnma1 expression in the tibialis anterior muscles of leptin receptor-deficient (db/db) diabetic mice. To investigate the role of Kcnma1 in diabetic muscle atrophy, muscle-specific knockdown of Kcnma1 was achieved by mice receiving intravenous injection of adeno-associated virus-9 (AAV9)-encoding shRNA against Kcnma1 under the muscle creatine kinase (MCK) promoter. Impairment on muscle mass and myogenesis were observed in m/m mice with AAV9-shKcnma1 intervention, while this impairment was more obvious in diabetic db/db mice. Simultaneously, damaged mitochondrial dynamics and biogenesis showed much severer in db/db mice with AAV9-shKcnma1 intervention. RNA sequencing revealed the large transcriptomic changes resulted by Kcnma1 knockdown, and changes in mitochondrial homeostasis-related genes were validated. Besides, the artificial alteration of Kcnma1 in mouse C2C12 myoblasts was achieved with an adenovirus vector. Consistent results were demonstrated by Kcnma1 knockdown in palmitate-treated cells, whereas opposite results were exhibited by Kcnma1 overexpression. Collectively, we document Kcnma1 as a potential keeper of mitochondrial homeostasis, and the loss of Kcnma1 is a critical event in priming skeletal muscle loss in diabetes.
Collapse
Affiliation(s)
- Shan-Yan Gao
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Yamamoto H, Eshima H, Kakehi S, Kawamori R, Watada H, Tamura Y. Impaired fatigue resistance, sarcoplasmic reticulum function, and mitochondrial activity in soleus muscle of db/db mice. Physiol Rep 2022; 10:e15478. [PMID: 36117307 PMCID: PMC9483406 DOI: 10.14814/phy2.15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by reduced exercise tolerance due to increased fatigability in skeletal muscle. In this study, we investigated muscle fatigue resistance of soleus (SOL) muscle in obese type 2 diabetic model mice (db/db). No differences in muscle volume, absolute force, or specific force in SOL muscle were observed between db/db mice and control mice (db/+), while fatigue resistance evaluated by repeated tetanic contractions was significantly lower in db/db mice (30th tetani, db/+: 63.7 ± 4.7%, db/db: 51.3 ± 4.8%). The protein abundance related to Ca2+ release from the sarcoplasmic reticulum (SR) in SOL muscle was not different between db/db mice and db/+ mice, while SR Ca2+ -ATPase (Ca2+ reuptake to SR) protein was decreased in db/db mice compared to db/+ mice (db/+: 1.00 ± 0.17, db/db: 0.60 ± 0.04, relative units). In addition, mitochondrial oxidative enzyme activity (succinate dehydrogenase) was decreased in the SOL muscle of db/db mice (p < 0.05). These data suggest that fatigue resistance in slow-twitch dominant muscle is impaired in mice with T2DM. Decreased mitochondrial oxidative enzyme activity and impairment of Ca2+ uptake to SR, or both might be involved in the mechanisms.
Collapse
Affiliation(s)
- Hiro Yamamoto
- Department of International TourismNagasaki International UniversityNagasakiJapan
| | - Hiroaki Eshima
- Department of International TourismNagasaki International UniversityNagasakiJapan
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| | - Saori Kakehi
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| | - Ryuzo Kawamori
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| | - Hirotaka Watada
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
- Center for Therapeutic Innovations in DiabetesJuntendo University Graduate School of MedicineTokyoJapan
- Center for Identification of Diabetic Therapeutic TargetsJuntendo University Graduate School of MedicineTokyoJapan
| | - Yoshifumi Tamura
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
6
|
Li WX, Qin XH, Poon CCW, Wong MS, Feng R, Wang J, Lin FH, Sun YL, Liu SF, Wang YJ, Zhang Y. Vitamin D/Vitamin D Receptor Signaling Attenuates Skeletal Muscle Atrophy by Suppressing Renin-Angiotensin System. J Bone Miner Res 2022; 37:121-136. [PMID: 34490953 DOI: 10.1002/jbmr.4441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022]
Abstract
The nutritional level of vitamin D may affect musculoskeletal health. We have reported that vitamin D is a pivotal protector against tissue injuries by suppressing local renin-angiotensin system (RAS). This study aimed to explore the role of the vitamin D receptor (VDR) in the protection against muscle atrophy and the underlying mechanism. A cross-sectional study on participants (n = 1034) in Shanghai (China) was performed to analyze the association between vitamin D level and the risk of low muscle strength as well as to detect the circulating level of angiotensin II (Ang II). In animal studies, dexamethasone (Dex) was applied to induce muscle atrophy in wild-type (WT) and VDR-null mice, and the mice with the induction of muscle atrophy were treated with calcitriol for 10 days. The skeletal muscle cell line C2C12 and the muscle satellite cells were applied in in vitro studies. The increased risk of low muscle strength was correlated to a lower level of vitamin D (adjusted odds ratio [OR] 0.58) accompanied by an elevation in serum Ang II level. Ang II impaired the myogenic differentiation of C2C12 myoblasts as illustrated by the decrease in the area of myotubes and the downregulation of myogenic factors (myosin heavy chain [MHC] and myogenic differentiation factor D [MyoD]). The phenotype of muscle atrophy induced by Dex and Ang II was aggravated by VDR ablation in mice and in muscle satellite cells, respectively, and mediated by RAS and its downstream phosphatidylinositol 3-kinase/protein kinase B/forkhead box O1 (PI3K/Akt/FOXO1) signaling. Calcitriol treatment exhibited beneficial effects on muscle function as demonstrated by the increased weight-loaded swimming time, grip strength, and fiber area, and improved fiber type composition via regulating ubiquitin ligases and their substrates MHC and MyoD through suppressing renin/Ang II axis. Taken together, VDR protects against skeletal muscle atrophy by suppressing RAS. Vitamin D could be a potential agent for the prevention and treatment of skeletal muscle atrophy. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Wen-Xiong Li
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Xian-Hui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Christina Chui-Wa Poon
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Rui Feng
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Jing Wang
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai, China
| | - Fu-Hui Lin
- Department of Orthopaedic, Shenzhen Pingle Orthopaedic Hospital, Shenzhen, China
| | - Yue-Li Sun
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Shu-Fen Liu
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| |
Collapse
|
7
|
Eshima H. Influence of Obesity and Type 2 Diabetes on Calcium Handling by Skeletal Muscle: Spotlight on the Sarcoplasmic Reticulum and Mitochondria. Front Physiol 2021; 12:758316. [PMID: 34795598 PMCID: PMC8592904 DOI: 10.3389/fphys.2021.758316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity and diabetes have been shown to interfere with energy metabolism and cause peripheral insulin resistance in skeletal muscle. However, recent studies have focused on the effect metabolic insult has on the loss of muscle size, strength, and physical function. Contractile dysfunction has been linked to impaired intracellular Ca2+ concentration ([Ca2+]i) regulation. In skeletal muscle, [Ca2+]i homeostasis is highly regulated by Ca2+ transport across the sarcolemma/plasma membrane, the golgi apparatus, sarcoplasmic reticulum (SR), and mitochondria. Particularly, the SR and or mitochondria play an important role in the fine-tuning of this metabolic process. Recent studies showed that obesity and insulin resistance are associated with interactions between the SR and mitochondrial networks (the dynamic tubular reticulum formed by mitochondria), suggesting that metabolic disorders alter Ca2+ handling by these organelles. These interactions are facilitated by specific membrane proteins, including ion channels. This review considers the impact of metabolic disorders, such as obesity and type 2 diabetes, on the regulation of [Ca2+]i in skeletal muscle. It also discusses the mechanisms by which this occurs, focusing chiefly on the SR and mitochondria networks. A deeper understanding of the effect of metabolic disorders on calcium handling might be useful for therapeutic strategies.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of International Tourism, Nagasaki International University, Nagasaki, Japan
| |
Collapse
|
8
|
Oldfield C, Moffatt TL, Dolinsky VW, Duhamel TA. Sirtuin 3 overexpression preserves maximal sarco(endo)plasmic reticulum calcium ATPase activity in the skeletal muscle of mice subjected to high fat-high sucrose-feeding. Can J Physiol Pharmacol 2021; 100:361-370. [PMID: 34695364 DOI: 10.1139/cjpp-2021-0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sarco(endo)plasmic reticulum calcium (Ca2+) ATPase (SERCA) transports Ca2+ in muscle. Impaired SERCA activity contributes to diabetic myopathy. Sirtuin (SIRT) 3 regulates muscle metabolism and function. However, it is unknown if SIRT3 regulates muscle SERCA activity. We determined if SIRT3 overexpression enhances SERCA activity in mouse gastrocnemius muscle and if SIRT3 overexpression preserves gastrocnemius SERCA activity in a model of type 2 diabetes, induced by high fat-high sucrose (HFHS)-feeding. We also determined if the acetylation status of SERCA proteins in mouse gastrocnemius is altered by SIRT3 overexpression or HFHS-feeding. Wild-type (WT) mice and SIRT3 transgenic (SIRT3TG) mice, overexpressing SIRT3 in skeletal muscle, were fed a standard- or HFHS-diet for 4-months. SIRT3TG and WT mice developed obesity and glucose intolerance after 4-months of HFHS-feeding. SERCA Vmax was higher in gastrocnemius of SIRT3TG mice, compared to WT mice. HFHS-fed mice had lower SERCA1a protein levels and lower SERCA Vmax in their gastrocnemius than control-fed mice. The decrease in SERCA Vmax in gastrocnemius muscle due to HFHS-feeding was attenuated by SIRT3 overexpression in HFHS-fed SIRT3TG mice. SERCA1a and SERCA2a acetylation in mouse gastrocnemius was not altered by genotype or diet. These findings suggest SIRT3 overexpression improves SERCA function in diabetic mouse skeletal muscle.
Collapse
Affiliation(s)
- Christopher Oldfield
- University of Manitoba Faculty of Kinesiology and Recreation Management, 175106, Winnipeg, Canada.,St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Manitoba, Canada;
| | - Teri L Moffatt
- St Boniface General Hospital Research Centre, 120927, Winnipeg, Manitoba, Canada;
| | - Vernon W Dolinsky
- University of Manitoba, Pharmacology and Therapeutics, 601 J. Buhler Research Centre, 715 McDermot Avenue, Winnipeg, Manitoba, Canada, R3E 3P4;
| | - Todd A Duhamel
- St. Boniface General Hospital Research Center, 351 Tach� Avenue, Winnipeg, Manitoba, Canada, R2H 2A6;
| |
Collapse
|
9
|
Pineda-Cortel MRB, Bunag JAA, Mamerto TP, Abulencia MFB. Differential gene expression and network-based analyses of the placental transcriptome reveal distinct potential biomarkers for gestationaldiabetes mellitus. Diabetes Res Clin Pract 2021; 180:109046. [PMID: 34530062 DOI: 10.1016/j.diabres.2021.109046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
AIMS Gestational diabetes mellitus (GDM) is a common complication during pregnancy affecting the mother and fetus. With the problems encountered with the oral glucose tolerance test (OGTT), we aim to identify potential early biomarkers of GDM. METHODS A cross-sectional study was conducted among 80 pregnant women. Blood samples were collected every trimester, and total RNA was isolated. After quality control and library preparation, next-generation sequencing was performed. Differential expression analysis was done. Enriched Gene Ontology: Biological Processes (GO: BP) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified. Gene co-expression networks were constructed. Protein-protein Interaction (PPI) networks were then built from modules significantly correlated with Hemoglobin A1c. Genes with the highest degree of interaction were identified as hub genes. RESULTS IGKV2D-28 and PTPRG were consistently differentially expressed among the three comparisons. Top enriched GO: BP terms and KEGG pathways are linked to immune responses. Orange (r = 0.59, p = 0.02) and purple modules (r = 0.41, p = 0.02) of the GDM cohorts in the first and second trimesters, respectively, significantly correlated with Hemoglobin A1c. HDAC8 of the orange module and MPO and CRISP3 of the purple module were identified as hub genes. CONCLUSIONS In this study, potential biomarkers of GDM were identified, namely, IGKV2D-28, PTPRG, HDAC8, MPO, and CRISP3.
Collapse
Affiliation(s)
- Maria Ruth B Pineda-Cortel
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines; The Graduate School, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines; Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines.
| | - Jose Angelo A Bunag
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines
| | - Therriz P Mamerto
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines; Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines
| | - Miguel Francisco B Abulencia
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines
| |
Collapse
|
10
|
Takada Y, Hanaoka T, Imagita H, Yasui T, Takeshita D, Abe M, Kawata S, Yamakami T, Okada K, Washio H, Okuda S, Minematsu A, Nakamura T, Terada S, Yamada T, Nakatani A, Sakata S. Long-term wheel-running prevents reduction of grip strength in type 2 diabetic rats. Physiol Rep 2021; 9:e15046. [PMID: 34558206 PMCID: PMC8461031 DOI: 10.14814/phy2.15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Diabetic skeletal muscles show reduced contractile force and increased fatigability. Hands are a target for several diabetes-induced complications. Therefore, reduced handgrip strength often occurs as a consequence of diabetes. The aim of this study was to examine whether long-term exercise can prevent reduction of grip strength in type 2 diabetes mellitus (T2DM) model OLETF rats, and to explore the mechanisms underlying diabetes-induced grip strength reduction. Ten 5-week-old OLETF rats were used as experimental animals, and five non-diabetic LETO rats as controls of OLETF rats. Half OLETF rats performed daily voluntary wheel-running for 17 months (OLETF + EXE), and the rest of OLETF and LETO rats were sedentary. Grip strength was higher in OLETF + EXE and LETO groups than in OLETF group. OLETF group with hyperglycemia showed an increase in HbA1c, serum TNF-α, and muscle SERCA activity, but a decrease in circulating insulin. Each fiber area, total fiber area, and % total fiber area in type IIb fibers of extensor digitorum longus muscles were larger in OLETF + EXE and LETO groups than in OLETF group. There was a positive correlation between grip strength and the above three parameters concerning type IIb fiber area. Therefore, type IIb fiber atrophy may be the major direct cause of grip strength reduction in OLETF group, although there seems multiple etiological mechanisms. Long-term wheel-running may have blocked the diabetes-induced reduction of grip strength by preventing type IIb fiber atrophy. Regular exercise may be a potent modality for preventing not only the progression of diabetes but muscle dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Yoshihiro Takada
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
- Department of Human DevelopmentGraduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Tomoko Hanaoka
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Hidetaka Imagita
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Toshihide Yasui
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
- Department of Health and SportsMukogawa Women's UniversityNishinomiyaJapan
| | - Daisuke Takeshita
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Masami Abe
- Graduate School of Health SciencesSapporo Medical UniversitySapporoJapan
| | - Shinnosuke Kawata
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Taku Yamakami
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Keisuke Okada
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Hiroe Washio
- Department of NursingSchool of Health SciencesKansai University of International StudiesMikiJapan
| | - Syunji Okuda
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Akira Minematsu
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Tomohiro Nakamura
- Division of Human SciencesFaculty of EngineeringOsaka Institute of TechnologyOsakaJapan
| | - Shin Terada
- Department of Life SciencesGraduate School of Arts and SciencesUniversity of TokyoTokyoJapan
| | - Takashi Yamada
- Graduate School of Health SciencesSapporo Medical UniversitySapporoJapan
| | - Akira Nakatani
- Laboratory of Exercise PhysiologyDepartment of Health and Sports Science EducationNara University of EducationNaraJapan
| | - Susumu Sakata
- Department of Physiology 1Nara Medical University School of MedicineKashiharaJapan
| |
Collapse
|
11
|
Feraco A, Gorini S, Armani A, Camajani E, Rizzo M, Caprio M. Exploring the Role of Skeletal Muscle in Insulin Resistance: Lessons from Cultured Cells to Animal Models. Int J Mol Sci 2021; 22:ijms22179327. [PMID: 34502235 PMCID: PMC8430804 DOI: 10.3390/ijms22179327] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is essential to maintain vital functions such as movement, breathing, and thermogenesis, and it is now recognized as an endocrine organ. Muscles release factors named myokines, which can regulate several physiological processes. Moreover, skeletal muscle is particularly important in maintaining body homeostasis, since it is responsible for more than 75% of all insulin-mediated glucose disposal. Alterations of skeletal muscle differentiation and function, with subsequent dysfunctional expression and secretion of myokines, play a key role in the pathogenesis of obesity, type 2 diabetes, and other metabolic diseases, finally leading to cardiometabolic complications. Hence, a deeper understanding of the molecular mechanisms regulating skeletal muscle function related to energy metabolism is critical for novel strategies to treat and prevent insulin resistance and its cardiometabolic complications. This review will be focused on both cellular and animal models currently available for exploring skeletal muscle metabolism and endocrine function.
Collapse
Affiliation(s)
- Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.F.); (S.G.); (A.A.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.F.); (S.G.); (A.A.)
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.F.); (S.G.); (A.A.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- PhD Programme in Endocrinological Sciences, Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Manfredi Rizzo
- Promise Department, School of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.F.); (S.G.); (A.A.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Correspondence: ; Tel.: +39-065-225-3419
| |
Collapse
|
12
|
Dewanjee S, Vallamkondu J, Kalra RS, Chakraborty P, Gangopadhyay M, Sahu R, Medala V, John A, Reddy PH, De Feo V, Kandimalla R. The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus. Cells 2021; 10:1340. [PMID: 34071497 PMCID: PMC8228721 DOI: 10.3390/cells10061340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus (DM) is one of the principal manifestations of metabolic syndrome and its prevalence with modern lifestyle is increasing incessantly. Chronic hyperglycemia can induce several vascular complications that were referred to be the major cause of morbidity and mortality in DM. Although several therapeutic targets have been identified and accessed clinically, the imminent risk of DM and its prevalence are still ascending. Substantial pieces of evidence revealed that histone deacetylase (HDAC) isoforms can regulate various molecular activities in DM via epigenetic and post-translational regulation of several transcription factors. To date, 18 HDAC isoforms have been identified in mammals that were categorized into four different classes. Classes I, II, and IV are regarded as classical HDACs, which operate through a Zn-based mechanism. In contrast, class III HDACs or Sirtuins depend on nicotinamide adenine dinucleotide (NAD+) for their molecular activity. Functionally, most of the HDAC isoforms can regulate β cell fate, insulin release, insulin expression and signaling, and glucose metabolism. Moreover, the roles of HDAC members have been implicated in the regulation of oxidative stress, inflammation, apoptosis, fibrosis, and other pathological events, which substantially contribute to diabetes-related vascular dysfunctions. Therefore, HDACs could serve as the potential therapeutic target in DM towards developing novel intervention strategies. This review sheds light on the emerging role of HDACs/isoforms in diabetic pathophysiology and emphasized the scope of their targeting in DM for constituting novel interventional strategies for metabolic disorders/complications.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | | | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305 8565, Japan;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | - Moumita Gangopadhyay
- School of Life Science and Biotechnology, ADAMAS University, Barasat, Kolkata 700126, West Bengal, India;
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India;
| | - Vijaykrishna Medala
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India
| |
Collapse
|
13
|
Pandeya SR, Nagy JA, Riveros D, Semple C, Taylor RS, Mortreux M, Sanchez B, Kapur K, Rutkove SB. Predicting myofiber cross-sectional area and triglyceride content with electrical impedance myography: A study in db/db mice. Muscle Nerve 2021; 63:127-140. [PMID: 33063867 PMCID: PMC8891989 DOI: 10.1002/mus.27095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/02/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Electrical impedance myography (EIM) provides insight into muscle composition and structure. We sought to evaluate its use in a mouse obesity model characterized by myofiber atrophy. METHODS We applied a prediction algorithm, ie, the least absolute shrinkage and selection operator (LASSO), to surface, needle array, and ex vivo EIM data from db/db and wild-type mice and assessed myofiber cross-sectional area (CSA) histologically and triglyceride (TG) content biochemically. RESULTS EIM data from all three modalities provided acceptable predictions of myofiber CSA with average root mean square error (RMSE) of 15% in CSA (ie, ±209 μm2 for a mean CSA of 1439 μm2 ) and TG content with RMSE of 30% in TG content (ie, ±7.3 nmol TG/mg muscle for a mean TG content of 25.4 nmol TG/mg muscle). CONCLUSIONS EIM combined with a predictive algorithm provides reasonable estimates of myofiber CSA and TG content without the need for biopsy.
Collapse
Affiliation(s)
- Sarbesh R. Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Janice A. Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniela Riveros
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Carson Semple
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Rebecca S. Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah
| | - Kush Kapur
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Sneag DB, Tan ET. Can Quantitative MRI Be Used to Differentiate Physiologic Changes Behind Muscle Weakness in Type 2 Diabetes Mellitus? Radiology 2020; 297:620-621. [PMID: 33064035 PMCID: PMC7706872 DOI: 10.1148/radiol.2020203768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Darryl B. Sneag
- From the MRI Laboratory, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021
| | - Ek T. Tan
- From the MRI Laboratory, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021
| |
Collapse
|
15
|
Romanelli G, Varela R, Benech JC. Diabetes induces differences in the F-actin spatial organization of striated muscles. Cytoskeleton (Hoboken) 2020; 77:202-213. [PMID: 32020777 DOI: 10.1002/cm.21600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/05/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022]
Abstract
Studies have shown the cytoskeleton disorganization produced by diabetes and quantified F-actin fluorescence in the striated muscles of diabetic animals. However, at present, there are no studies that have quantified F-actin spatial organization (F-actin-SO). Through our research, we analyzed the effect of diabetes on F-actin-SO in the cardiac and skeletal muscles of a mouse model. The muscle samples were labeled with phalloidin-rhodamine and analyzed with confocal microscopy. The analysis was done in two dimensions using four approaches: quantitation of (a) phalloidin-occupied areas; (b) number of F-actin-unoccupied areas per muscular fiber; (c) F-actin filament discontinuity; and (d) costamere periodicity. Our results showed that both the cardiac and skeletal muscles of the control mice had more phalloidin-occupied areas than the diabetic mice. The skeletal muscles had a significantly higher number of F-actin-unoccupied areas per muscular fiber and more F-actin discontinuities. Additionally, using western blot analyses, we showed that those differences were not due to α-actin protein expression. Finally, we considered the importance of these findings in dysfunctional contraction, disassembly in cell-cell communication, conduction of muscle impulse, and changes in cell nanomechanics. Our results quantitatively demonstrated that diabetes severely affects F-actin-SO in striated muscles.
Collapse
Affiliation(s)
- Gerardo Romanelli
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Rocío Varela
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Juan C Benech
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
16
|
Emamgholipour S, Ebrahimi R, Bahiraee A, Niazpour F, Meshkani R. Acetylation and insulin resistance: a focus on metabolic and mitogenic cascades of insulin signaling. Crit Rev Clin Lab Sci 2020:1-19. [DOI: 10.1080/10408363.2019.1699498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farshad Niazpour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Eshima H, Tamura Y, Kakehi S, Nakamura K, Kurebayashi N, Murayama T, Kakigi R, Sakurai T, Kawamori R, Watada H. Dysfunction of muscle contraction with impaired intracellular Ca 2+ handling in skeletal muscle and the effect of exercise training in male db/db mice. J Appl Physiol (1985) 2018; 126:170-182. [PMID: 30433865 DOI: 10.1152/japplphysiol.00048.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes is characterized by reduced contractile force production and increased fatigability of skeletal muscle. While the maintenance of Ca2+ homeostasis during muscle contraction is a requisite for optimal contractile function, the mechanisms underlying muscle contractile dysfunction in type 2 diabetes are unclear. Here, we investigated skeletal muscle contractile force and Ca2+ flux during contraction and pharmacological stimulation in type 2 diabetic model mice ( db/db mice). Furthermore, we investigated the effect of treadmill exercise training on muscle contractile function. In male db/db mice, muscle contractile force and peak Ca2+ levels were both lower during tetanic stimulation of the fast-twitch muscles, while Ca2+ accumulation was higher after stimulation compared with control mice. While 6 wk of exercise training did not improve glucose tolerance, exercise did improve muscle contractile dysfunction, peak Ca2+ levels, and Ca2+ accumulation following stimulation in male db/db mice. These data suggest that dysfunctional Ca2+ flux may contribute to skeletal muscle contractile dysfunction in type 2 diabetes and that exercise training may be a promising therapeutic approach for dysfunctional skeletal muscle contraction. NEW & NOTEWORTHY The purpose of this study was to examine muscle contractile function and Ca2+ regulation as well as the effect of exercise training in skeletal muscle in obese diabetic mice ( db/db). We observed impairment of muscle contractile force and Ca2+ regulation in a male type 2 diabetic animal model. These dysfunctions in muscle were improved by 6 wk of exercise training.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Sportology Center, Juntendo University Graduate School of Medicine , Tokyo , Japan.,The Japan Society for the Promotion of Science , Tokyo , Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Sportology Center, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Saori Kakehi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Sportology Center, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Kyoko Nakamura
- Department of Physiology, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Ryo Kakigi
- Department of Physiology, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Sportology Center, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Sportology Center, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Center for Molecular Diabetology, Juntendo University Graduate School of Medicine , Tokyo , Japan
| |
Collapse
|
18
|
Lee H, Lim Y. Tocotrienol-rich fraction supplementation reduces hyperglycemia-induced skeletal muscle damage through regulation of insulin signaling and oxidative stress in type 2 diabetic mice. J Nutr Biochem 2018; 57:77-85. [DOI: 10.1016/j.jnutbio.2018.03.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/22/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
|
19
|
Gomes AA, Ackermann M, Ferreira JP, Orselli MIV, Sacco ICN. Muscle force distribution of the lower limbs during walking in diabetic individuals with and without polyneuropathy. J Neuroeng Rehabil 2017; 14:111. [PMID: 29121964 PMCID: PMC5679149 DOI: 10.1186/s12984-017-0327-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 10/31/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Muscle force estimation could advance the comprehension of the neuromuscular strategies that diabetic patients adopt to preserve walking ability, which guarantees their independence as they deal with their neural and muscular impairments due to diabetes and neuropathy. In this study, the lower limb's muscle force distribution during gait was estimated and compared in diabetic patients with and without polyneuropathy. METHODS Thirty individuals were evaluated in a cross-sectional study, equally divided among controls (CG) and diabetic patients with (DNG) and without (DG) polyneuropathy. The acquired ground reaction forces and kinematic data were used as input variables for a scaled musculoskeletal model in the OpenSim software. The maximum isometric force of the ankle extensors and flexors was reduced in the model of DNG by 30% and 20%, respectively. The muscle force was calculated using static optimization, and peak forces were compared among groups (flexors and extensors of hip, knee, and ankle; ankle evertors; and hip abductors) using MANOVAs, followed by univariate ANOVAs and Newman-Keuls post-hoc tests (p < 0.05). RESULTS From the middle to late stance phase, DG showed a lower soleus muscle peak force compared to the CG (p=0.024) and the DNG showed lower forces in the gastrocnemius medialis compared to the DG (p=0.037). At the terminal swing phase, the semitendinosus and semimembranosus peak forces showed lower values in the DG compared to the CG and DNG. At the late stance, the DNG showed a higher peak force in the biceps short head, semimembranosus, and semitendinosus compared to the CG and DG. CONCLUSION Peak forces of ankle (flexors, extensors, and evertors), knee (flexors and extensors), and hip abductors distinguished DNG from DG, and both of those from CG. Both diabetic groups showed alterations in the force production of the ankle extensors with reductions in the forces of soleus (DG) and gastrocnemius medialis (DNG) seen in both diabetic groups, but only DNG showed an increase in the hamstrings (knee flexor) at push-off. A therapeutic approach focused on preserving the functionality of the knee muscles is a promising strategy, even if the ankle dorsiflexors and plantarflexors are included in the resistance training.
Collapse
Affiliation(s)
- Aline A. Gomes
- Physical Education and Physiotherapy Faculty, Federal University of Amazonas, Manaus, AM Brazil
- Physical Therapy, Speech and Occupational Therapy department, School of Medicine, University of Sao Paulo, Sao Paulo, SP Brazil
| | - Marko Ackermann
- Department of Mechanical Engineering, FEI University, Sao Bernardo do Campo, SP Brazil
| | - Jean P. Ferreira
- Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, SP Brazil
| | | | - Isabel C. N. Sacco
- Physical Therapy, Speech and Occupational Therapy department, School of Medicine, University of Sao Paulo, Sao Paulo, SP Brazil
- Centro de Docência e Pesquisa do Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Rua Cipotânea, 51, Cidade Universitária, São Paulo, SP CEP: 05360-160 Brasil
| |
Collapse
|
20
|
Parasoglou P, Rao S, Slade JM. Declining Skeletal Muscle Function in Diabetic Peripheral Neuropathy. Clin Ther 2017; 39:1085-1103. [PMID: 28571613 PMCID: PMC5503477 DOI: 10.1016/j.clinthera.2017.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE The present review highlights current concepts regarding the effects of diabetic peripheral neuropathy (DPN) in skeletal muscle. It discusses the lack of effective pharmacologic treatments and the role of physical exercise intervention in limb protection and symptom reversal. It also highlights the importance of magnetic resonance imaging (MRI) techniques in providing a mechanistic understanding of the disease and helping develop targeted treatments. METHODS This review provides a comprehensive reporting on the effects of DPN in the skeletal muscle of patients with diabetes. It also provides an update on the most recent trials of exercise intervention targeting DPN pathology. Lastly, we report on emerging MRI techniques that have shown promise in providing a mechanistic understanding of DPN and can help improve the design and implementation of clinical trials in the future. FINDINGS Impairments in lower limb muscles reduce functional capacity and contribute to altered gait, increased fall risk, and impaired balance in patients with DPN. This finding is an important concern for patients with DPN because their falls are likely to be injurious and lead to bone fractures, poorly healing wounds, and chronic infections that may require amputation. Preliminary studies have shown that moderate-intensity exercise programs are well tolerated by patients with DPN. They can improve their cardiorespiratory function and partially reverse some of the symptoms of DPN. MRI has the potential to bring new mechanistic insights into the effects of DPN as well as to objectively measure small changes in DPN pathology as a result of intervention. IMPLICATIONS Noninvasive exercise intervention is particularly valuable in DPN because of its safety, low cost, and potential to augment pharmacologic interventions. As we gain a better mechanistic understanding of the disease, more targeted and effective interventions can be designed.
Collapse
Affiliation(s)
- Prodromos Parasoglou
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, New York University School of Medicine, New York, New York.
| | - Smita Rao
- Department of Physical Therapy, New York University, New York, New York
| | - Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, Michigan; Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan
| |
Collapse
|
21
|
Eshima H, Tamura Y, Kakehi S, Kurebayashi N, Murayama T, Nakamura K, Kakigi R, Okada T, Sakurai T, Kawamori R, Watada H. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol Rep 2017; 5:5/7/e13250. [PMID: 28408640 PMCID: PMC5392533 DOI: 10.14814/phy2.13250] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/25/2022] Open
Abstract
In this study, we investigated the effects of a short-term and long-term high-fat diet (HFD) on morphological and functional features of fast-twitch skeletal muscle. Male C57BL/6J mice were fed a HFD (60% fat) for 4 weeks (4-week HFD) or 12 weeks (12-week HFD). Subsequently, the fast-twitch extensor digitorum longus muscle was isolated, and the composition of muscle fiber type, expression levels of proteins involved in muscle contraction, and force production on electrical stimulation were analyzed. The 12-week HFD, but not the 4-week HFD, resulted in a decreased muscle tetanic force on 100 Hz stimulation compared with control (5.1 ± 1.4 N/g in the 12-week HFD vs. 7.5 ± 1.7 N/g in the control group; P < 0.05), whereas muscle weight and cross-sectional area were not altered after both HFD protocols. Morphological analysis indicated that the percentage of type IIx myosin heavy chain fibers, mitochondrial oxidative enzyme activity, and intramyocellular lipid levels increased in the 12-week HFD group, but not in the 4-week HFD group, compared with controls (P < 0.05). No changes in the expression levels of calcium handling-related proteins and myofibrillar proteins (myosin heavy chain and actin) were detected in the HFD models, whereas fast-troponin T-protein expression was decreased in the 12-week HFD group, but not in the 4-week HFD group (P < 0.05). These findings indicate that a long-term HFD, but not a short-term HFD, impairs contractile force in fast-twitch muscle fibers. Given that skeletal muscle strength largely depends on muscle fiber type, the impaired muscle contractile force by a HFD might result from morphological changes of fiber type composition.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan .,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Kakehi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyoko Nakamura
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Kakigi
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takao Okada
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Sharma S, Taliyan R. Histone deacetylase inhibitors: Future therapeutics for insulin resistance and type 2 diabetes. Pharmacol Res 2016; 113:320-326. [DOI: 10.1016/j.phrs.2016.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022]
|
23
|
Tong X, Kono T, Anderson-Baucum EK, Yamamoto W, Gilon P, Lebeche D, Day RN, Shull GE, Evans-Molina C. SERCA2 Deficiency Impairs Pancreatic β-Cell Function in Response to Diet-Induced Obesity. Diabetes 2016; 65:3039-52. [PMID: 27489309 PMCID: PMC5033263 DOI: 10.2337/db16-0084] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022]
Abstract
The sarcoendoplasmic reticulum (ER) Ca(2+) ATPase 2 (SERCA2) pump is a P-type ATPase tasked with the maintenance of ER Ca(2+) stores. Whereas β-cell SERCA2 expression is reduced in diabetes, the role of SERCA2 in the regulation of whole-body glucose homeostasis has remained uncharacterized. To this end, SERCA2 heterozygous mice (S2HET) were challenged with a high-fat diet (HFD) containing 45% of kilocalories from fat. After 16 weeks of the HFD, S2HET mice were hyperglycemic and glucose intolerant, but adiposity and insulin sensitivity were not different between HFD-fed S2HET mice and HFD-fed wild-type controls. Consistent with a defect in β-cell function, insulin secretion, glucose-induced cytosolic Ca(2+) mobilization, and the onset of steady-state glucose-induced Ca(2+) oscillations were impaired in HFD-fed S2HET islets. Moreover, HFD-fed S2HET mice exhibited reduced β-cell mass and proliferation, altered insulin production and proinsulin processing, and increased islet ER stress and death. In contrast, SERCA2 activation with a small molecule allosteric activator increased ER Ca(2+) storage and rescued tunicamycin-induced β-cell death. In aggregate, these data suggest a critical role for SERCA2 and the regulation of ER Ca(2+) homeostasis in the β-cell compensatory response to diet-induced obesity.
Collapse
Affiliation(s)
- Xin Tong
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Tatsuyoshi Kono
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | | | - Wataru Yamamoto
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Patrick Gilon
- Pôle d'endocrinologie, diabète et nutrition, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Djamel Lebeche
- Cardiovascular Research Institute and Diabetes Obesity and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Richard N Day
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Carmella Evans-Molina
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN Department of Medicine, Indiana University School of Medicine, Indianapolis, IN Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|