1
|
Masuda L, Hasegawa A, Kamura H, Hasegawa F, Yamamura M, Taniguchi K, Ito Y, Hata K, Samura O, Okamoto A. Missense BICD2 variants in fetuses with congenital arthrogryposis and pterygia. Hum Genome Var 2024; 11:32. [PMID: 39183348 PMCID: PMC11345410 DOI: 10.1038/s41439-024-00290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Type 2 spinal muscular atrophy with lower extremity dominance (SMALED2) is caused by bicaudal D cargo adaptor 2 (BICD2) variants. However, the SMALED2 genotype and phenotype correlation have not been thoroughly characterized. We identified de novo heterozygous BICD2 missense variants in two fetuses with severe, prenatally diagnosed multiple arthrogryposis congenita. This report provides further insights into the genetics of this rare disease.
Collapse
Affiliation(s)
- Layla Masuda
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Akihiro Hasegawa
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiromi Kamura
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Fuyuki Hasegawa
- Center for Clinical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Michihiro Yamamura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kosuke Taniguchi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yuki Ito
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Osamu Samura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Park JG, Jeon H, Hwang KY, Cha SS, Han RT, Cho H, Lee IG. Cargo specificity, regulation, and therapeutic potential of cytoplasmic dynein. Exp Mol Med 2024; 56:827-835. [PMID: 38556551 PMCID: PMC11059388 DOI: 10.1038/s12276-024-01200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 04/02/2024] Open
Abstract
Intracellular retrograde transport in eukaryotic cells relies exclusively on the molecular motor cytoplasmic dynein 1. Unlike its counterpart, kinesin, dynein has a single isoform, which raises questions about its cargo specificity and regulatory mechanisms. The precision of dynein-mediated cargo transport is governed by a multitude of factors, including temperature, phosphorylation, the microtubule track, and interactions with a family of activating adaptor proteins. Activating adaptors are of particular importance because they not only activate the unidirectional motility of the motor but also connect a diverse array of cargoes with the dynein motor. Therefore, it is unsurprising that dysregulation of the dynein-activating adaptor transport machinery can lead to diseases such as spinal muscular atrophy, lower extremity, and dominant. Here, we discuss dynein motor motility within cells and in in vitro, and we present several methodologies employed to track the motion of the motor. We highlight several newly identified activating adaptors and their roles in regulating dynein. Finally, we explore the potential therapeutic applications of manipulating dynein transport to address diseases linked to dynein malfunction.
Collapse
Affiliation(s)
- Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Rafael T Han
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, 02447, South Korea
| | - Hyesung Cho
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Biological Chemistry, University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
3
|
Yi J, Zhao X, Noell CR, Helmer P, Solmaz SR, Vallee RB. Role of Nesprin-2 and RanBP2 in BICD2-associated brain developmental disorders. PLoS Genet 2023; 19:e1010642. [PMID: 36930595 PMCID: PMC10022797 DOI: 10.1371/journal.pgen.1010642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/28/2023] [Indexed: 03/18/2023] Open
Abstract
Bicaudal D2 (BICD2) is responsible for recruiting cytoplasmic dynein to diverse forms of subcellular cargo for their intracellular transport. Mutations in the human BICD2 gene have been found to cause an autosomal dominant form of spinal muscular atrophy (SMA-LED2), and brain developmental defects. Whether and how the latter mutations are related to roles we and others have identified for BICD2 in brain development remains little understood. BICD2 interacts with the nucleoporin RanBP2 to recruit dynein to the nuclear envelope (NE) of Radial Glial Progenitor cells (RGPs) to mediate their well-known but mysterious cell-cycle-regulated interkinetic nuclear migration (INM) behavior, and their subsequent differentiation to form cortical neurons. We more recently found that BICD2 also mediates NE dynein recruitment in migrating post-mitotic neurons, though via a different interactor, Nesprin-2. Here, we report that Nesprin-2 and RanBP2 compete for BICD2-binding in vitro. To test the physiological implications of this behavior, we examined the effects of known BICD2 mutations using in vitro biochemical and in vivo electroporation-mediated brain developmental assays. We find a clear relationship between the ability of BICD2 to bind RanBP2 vs. Nesprin-2 in controlling of nuclear migration and neuronal migration behavior. We propose that mutually exclusive RanBP2-BICD2 vs. Nesprin-2-BICD2 interactions at the NE play successive, critical roles in INM behavior in RGPs and in post-mitotic neuronal migration and errors in these processes contribute to specific human brain malformations.
Collapse
Affiliation(s)
- Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Xiaoxin Zhao
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Crystal R. Noell
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Paige Helmer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Sozanne R. Solmaz
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Richard B. Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
4
|
Yamamoto K, Ohashi K, Fujimoto M, Ieda D, Nakamura Y, Hattori A, Kaname T, Ieda K, Nishino I, Saitoh S. Long-term follow-up of a patient with autosomal dominant lower extremity-predominant spinal muscular atrophy-2 due to a BICD2 variant. Brain Dev 2022; 44:578-582. [PMID: 35527075 DOI: 10.1016/j.braindev.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Bicaudal D homolog 2 (BICD2) is a causative gene of autosomal-dominant lower extremity-predominant spinal muscular atrophy-2 (SMA-LED2). The severity of SMA-LED2 varies widely, ranging from cases in which patients are able to walk to cases in which severe joint contractures lead to respiratory failure. In this study, we report the long-term course of a case of SMA-LED2 in comparison with previous reports. CASE REPORT The patient was a 19-year-old woman. She had knee and hip dislocations with contractures, femoral fracture, and talipes calcaneovalgus since birth, and was diagnosed with arthrogryposis multiplex congenita. Intense respiratory support was not needed during the neonatal period. She had aspiration pneumonia repeatedly, necessitating NICU admission until 8 months of age. She achieved head control at 9 months of age and was able to sit at 2 years of age; however, she could not walk. Tube feeding was required until 3 years of age. At present, she can eat orally, move around with a wheelchair, and write words by herself. She needs non-invasive positive pressure ventilation during sleep because of a restrictive respiratory disorder during adolescence. Exome analysis identified a de novo heterozygous missense variant (c.2320G>A; p.Glu774Lys) in BICD2. CONCLUSION Patients with SMA-LED2 may have a relatively better prognosis in terms of social activities in comparison with the dysfunction in the neonatal period. Moreover, it is important to periodically evaluate respiratory function in patients with SMA-LED2 because respiratory dysfunction may occur during adolescence.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Pediatrics, Gifu Prefectural Tajimi Hospital, Gifu, Japan
| | - Kei Ohashi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Fujimoto
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Daisuke Ieda
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuji Nakamura
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kuniko Ieda
- Department of Pediatrics, Tosei General Hospital, Aichi, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
5
|
Aziz I, Davis M, Liang C. Late adult-onset spinal muscular atrophy with lower extremity predominance (SMALED). BMJ Case Rep 2022; 15:e248297. [PMID: 35354563 PMCID: PMC8968532 DOI: 10.1136/bcr-2021-248297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 11/04/2022] Open
Abstract
An elderly man in his early 80s presented with a 6-month history of worsening lower limb weakness on a background of a longer-standing waddling gait. Examination revealed bilateral scapular winging, and weakness in his proximal and distal lower limbs. Electromyography showed widespread chronic partial denervation changes, while sensory and motor nerve conduction parameters were preserved. After little progression over the course of 18 months, motor neuron disease was deemed less likely. Genetic testing revealed BICD2-related spinal muscular atrophy with lower extremity dominance (SMALED2), a disease that is usually of earlier onset. He is the oldest patient in the literature to be diagnosed with SMALED2 while maintaining ambulation, suggesting the milder spectrum of BICD2-related disease.
Collapse
Affiliation(s)
- Iqra Aziz
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Mark Davis
- Diagnostic Genomics, PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Christina Liang
- Department of Neurology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Viollet LM, Swoboda KJ, Mao R, Best H, Ha Y, Toutain A, Guyant-Marechal L, Laroche-Raynaud C, Ghorab K, Barthez MA, Pedespan JM, Hernandorena X, Lia AS, Deleuze JF, Masson C, Nelson I, Nectoux J, Si Y. A novel pathogenic variant in DYNC1H1 causes various upper and lower motor neuron anomalies. Eur J Med Genet 2020; 63:104063. [PMID: 32947049 DOI: 10.1016/j.ejmg.2020.104063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To perform genotype-phenotype, clinical and molecular analysis in a large 3-generation family with autosomal dominant congenital spinal muscular atrophy. METHODS Using a combined genetic approach including whole genome scanning, next generation sequencing-based multigene panel, whole genome sequencing, and targeted variant Sanger sequencing, we studied the proband and multiple affected individuals of this family who presented bilateral proximal lower limb muscle weakness and atrophy. RESULTS We identified a novel heterozygous variant, c.1826T > C; p.Ile609Thr, in the DYNC1H1 gene localized within the common haplotype in the 14q32.3 chromosomal region which cosegregated with disease in this large family. Within the family, affected individuals were found to have a wide array of clinical variability. Although some individuals presented the typical lower motor neuron phenotype with areflexia and denervation, others presented with muscle weakness and atrophy, hyperreflexia, and absence of denervation suggesting a predominant upper motor neuron disease. In addition, some affected individuals presented with an intermediate phenotype characterized by hyperreflexia and denervation, expressing a combination of lower and upper motor neuron defects. CONCLUSION Our study demonstrates the wide clinical variability associated with a single disease causing variant in DYNC1H1 gene and this variant demonstrated a high penetrance within this large family.
Collapse
Affiliation(s)
- Louis M Viollet
- Pediatric Motor Disorders Research Program and Department of Medical Genetics/Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Kathryn J Swoboda
- Pediatric Motor Disorders Research Program, University of Utah School of Medicine, Salt Lake City, UT and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Rong Mao
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories and Departments of Pathology and Medical Genetics/Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Hunter Best
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories and Departments of Pathology and Medical Genetics/Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Youna Ha
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USA.
| | | | | | | | | | | | | | | | - Anne-Sophie Lia
- Biochimie et Genetique Moleculaire, Hopital Dupuytren, Limoges, France.
| | | | - Cecile Masson
- Institut Imagine, Hopital Necker Enfants Malades, Paris, France.
| | | | - Juliette Nectoux
- Biochimie et Genetique Moleculaire, Hopital Cochin, Paris, France.
| | - Yue Si
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories and Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA; Clinical Genomics Program, GeneDx, MD, USA.
| |
Collapse
|
7
|
Picher-Martel V, Morin C, Brunet D, Dionne A. SMALED2 with BICD2 gene mutations: Report of two cases and portrayal of a classical phenotype. Neuromuscul Disord 2020; 30:669-673. [PMID: 32709491 DOI: 10.1016/j.nmd.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
The spinal muscular atrophies (SMA) affect lower motor neurons leading to important muscle atrophy and paralysis. Some cases of SMA affect mostly the lower limbs and are called autosomal dominant spinal muscular atrophy, lower extremity predominant (SMALED). So far, two genes have been identified to cause this phenotype, DYNC1H1 (SMALED1) and BICD2 (SMALED2). This pathology is rare, but patients exhibit classical features which should be recognised by physicians. We present two unrelated cases of SMALED2 with previously described c.320C>T BICD2 mutations. Our cases exhibit non-progressive weakness and atrophy of the lower limbs associated with contractures and unique muscle MRI findings suggestive of classical SMALED2. We also performed an extensive review of the literature to present the classical and atypical phenotypes of BICD2. Indeed, some features appear to be highly suggestive of the disease, including upper limb sparing, sparing of the adductors muscles on physical examination and MRI, congenital contractures and normal nerve conductions studies.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- CERVO Brain Research Center, 2601 Chemin de la Canardière, Quebec, Quebec G1J 2G3, Canada; Université Laval, Québec, Canada; CHU de Québec, Hôpital de l'Enfant-Jésus, Département des sciences neurologiques, Quebec, Quebec, Canada.
| | - Clément Morin
- Centre régional de Rimouski, Département de neurologie, Quebec, Quebec, Canada
| | - Denis Brunet
- Université Laval, Québec, Canada; CHU de Québec, Hôpital de l'Enfant-Jésus, Département des sciences neurologiques, Quebec, Quebec, Canada
| | - Annie Dionne
- Université Laval, Québec, Canada; CHU de Québec, Hôpital de l'Enfant-Jésus, Département des sciences neurologiques, Quebec, Quebec, Canada
| |
Collapse
|
8
|
Analysis of gene expression profiles of lung cancer subtypes with machine learning algorithms. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165822. [PMID: 32360590 DOI: 10.1016/j.bbadis.2020.165822] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Lung cancer is one of the most common cancer types worldwide and causes more than one million deaths annually. Lung adenocarcinoma (AC) and lung squamous cell cancer (SCC) are two major lung cancer subtypes and have different characteristics in several aspects. Identifying their differentially expressed genes and different gene expression patterns can deepen our understanding of these two subtypes at the transcriptomic level. In this work, we used several machine learning algorithms to investigate the gene expression profiles of lung AC and lung SCC samples retrieved from Gene Expression Omnibus. First, the profiles were analyzed by using a powerful feature selection method, namely, Monte Carlo feature selection. A feature list, ranking all features according to their importance, and some informative features were obtained. Then, the feature list was used in the incremental feature selection method to extract optimal features, which can allow the support vector machine (SVM) to yield the best performance for classifying lung AC and lung SCC samples. Some top genes (CSTA, TP63, SERPINB13, CLCA2, BICD2, PERP, FAT2, BNC1, ATP11B, FAM83B, KRT5, PARD6G, PKP1) were extensively analyzed to prove that they can be differentially expressed genes between lung AC and lung SCC. Meanwhile, a rule learning procedure was applied on informative features to construct the classification rules. These rules provide a clear procedure of classification and show some different gene expression patterns between lung AC and lung SCC.
Collapse
|
9
|
Koboldt DC, Waldrop MA, Wilson RK, Flanigan KM. The Genotypic and Phenotypic Spectrum of
BICD2
Variants in Spinal Muscular Atrophy. Ann Neurol 2020; 87:487-496. [DOI: 10.1002/ana.25704] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel C. Koboldt
- Institute for Genomic Medicine Nationwide Children's Hospital Columbus OH
- Department of Pediatrics Ohio State University Columbus OH
| | - Megan A. Waldrop
- Department of Pediatrics Ohio State University Columbus OH
- Center for Gene Therapy Nationwide Children's Hospital Columbus OH
- Department of Neurology Ohio State University Columbus OH
| | - Richard K. Wilson
- Institute for Genomic Medicine Nationwide Children's Hospital Columbus OH
- Department of Pediatrics Ohio State University Columbus OH
| | - Kevin M. Flanigan
- Department of Pediatrics Ohio State University Columbus OH
- Center for Gene Therapy Nationwide Children's Hospital Columbus OH
- Department of Neurology Ohio State University Columbus OH
| |
Collapse
|
10
|
Ahmed AA, Skaria P, Safina NP, Thiffault I, Kats A, Taboada E, Habeebu S, Saunders C. Arthrogryposis and pterygia as lethal end manifestations of genetically defined congenital myopathies. Am J Med Genet A 2017; 176:359-367. [DOI: 10.1002/ajmg.a.38577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Atif A. Ahmed
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Priya Skaria
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Nicole P. Safina
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
- Center for Pediatric Genomic MedicineChildren's Mercy HospitalKansas CityMissouri
- Division of Clinical GeneticsChildren's Mercy HospitalKansas CityMissouri
| | - Isabelle Thiffault
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
- Center for Pediatric Genomic MedicineChildren's Mercy HospitalKansas CityMissouri
| | - Alex Kats
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Eugenio Taboada
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Sultan Habeebu
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
| | - Carol Saunders
- Department of PathologyChildren's Mercy HospitalKansas CityMissouri
- University of Missouri‐Kansas City School of MedicineKansas CityMissouri
- Center for Pediatric Genomic MedicineChildren's Mercy HospitalKansas CityMissouri
| |
Collapse
|
11
|
Reble E, Dineen A, Barr CL. The contribution of alternative splicing to genetic risk for psychiatric disorders. GENES BRAIN AND BEHAVIOR 2017; 17:e12430. [PMID: 29052934 DOI: 10.1111/gbb.12430] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/25/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
A genetic contribution to psychiatric disorders has clearly been established and genome-wide association studies now provide the location of risk genes and genetic variants associated with risk. However, the mechanism by which these genes and variants contribute to psychiatric disorders is mostly undetermined. This is in part because non-synonymous protein coding changes cannot explain the majority of variants associated with complex genetic traits. Based on this, it is predicted that these variants are causing gene expression changes, including changes to alternative splicing. Genetic changes influencing alternative splicing have been identified as risk factors in Mendelian disorders; however, currently there is a paucity of research on the role of alternative splicing in complex traits. This stems partly from the difficulty of predicting the role of genetic variation in splicing. Alterations to canonical splice site sequences, nucleotides adjacent to splice junctions, and exonic and intronic splicing regulatory sequences can influence splice site choice. Recent studies have identified global changes in alternatively spliced transcripts in brain tissues, some of which correlate with altered levels of splicing trans factors. Disease-associated variants have also been found to affect cis-acting splicing regulatory sequences and alter the ratio of alternatively spliced transcripts. These findings are reviewed here, as well as the current datasets and resources available to study alternative splicing in psychiatric disorders. Identifying and understanding risk variants that cause alternative splicing is critical to understanding the mechanisms of risk as well as to pave the way for new therapeutic options.
Collapse
Affiliation(s)
- E Reble
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - A Dineen
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C L Barr
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Phenotypic extremes of BICD2-opathies: from lethal, congenital muscular atrophy with arthrogryposis to asymptomatic with subclinical features. Eur J Hum Genet 2017. [PMID: 28635954 DOI: 10.1038/ejhg.2017.98] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Heterozygous variants in BICD cargo adapter 2 (BICD2) cause autosomal dominant spinal muscular atrophy, lower extremity-predominant 2 (SMALED2). The disease is usually characterized by a benign or slowly progressive, congenital or early onset muscle weakness and atrophy that mainly affects the lower extremities, although some affected individuals show involvement of the arms and the shoulder girdle. Here we report unusual extremes of BICD2-related diseases: A severe form of congenital muscular atrophy with arthrogryposis multiplex, respiratory insufficiency and lethality within four months. This was caused by three BICD2 variants, (c.581A>G, p.(Gln194Arg)), (c.1626C>G, p.(Cys542Trp)) and (c.2080C>T, p.(Arg694Cys)), two of which were proven to be de novo. Affected individuals showed reduced fetal movement, weak muscle tone and sparse or no spontaneous activity after birth. Despite assisted ventilation, the condition led to early death. At the other extreme, we identified an asymptomatic woman with a known BICD2 variant (c.2108C>T, p.(Thr703Met)). Radiological examination showed fatty degeneration of selected thigh and calf muscles without clinical consequences. Instead, her son carrying the same variant is affected by a mild childhood onset disease with myopathic and neurogenic features. Mechanisms leading to variable expressivity and onset of BICD2-related disease may include alterations in molecular interactions of BICD2 and suggest the presence of genetic modifiers that may act in a protective fashion to ameliorate or abrogate disease. Our data define an additional severe disease type caused by BICD2 and emphasize a possibly variable etiology of BICD2-opathies with regard to primary muscle and neuronal involvement.
Collapse
|
13
|
Juntas Morales R, Pageot N, Taieb G, Camu W. Adult-onset spinal muscular atrophy: An update. Rev Neurol (Paris) 2017; 173:308-319. [DOI: 10.1016/j.neurol.2017.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 03/01/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
|
14
|
Weis J, Claeys KG, Roos A, Azzedine H, Katona I, Schröder JM, Senderek J. Towards a functional pathology of hereditary neuropathies. Acta Neuropathol 2017; 133:493-515. [PMID: 27896434 DOI: 10.1007/s00401-016-1645-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 12/11/2022]
Abstract
A growing number of hereditary neuropathies have been assigned to causative gene defects in recent years. The study of human nerve biopsy samples has contributed substantially to the discovery of many of these neuropathy genes. Genotype-phenotype correlations based on peripheral nerve pathology have provided a comprehensive picture of the consequences of these mutations. Intriguingly, several gene defects lead to distinguishable lesion patterns that can be studied in nerve biopsies. These characteristic features include the loss of certain nerve fiber populations and a large spectrum of distinct structural changes of axons, Schwann cells and other components of peripheral nerves. In several instances the lesion patterns are directly or indirectly linked to the known functions of the mutated gene. The present review is designed to provide an overview on these characteristic patterns. It also considers other aspects important for the manifestation and pathology of hereditary neuropathies including the role of inflammation, effects of chemotherapeutic agents and alterations detectable in skin biopsies.
Collapse
Affiliation(s)
- Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Kristl G Claeys
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Neurology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Neurology, University Hospitals Leuven and University of Leuven (KU Leuven), Leuven, Belgium
| | - Andreas Roos
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Hamid Azzedine
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - J Michael Schröder
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Ziemssenstr. 1a, 80336, Munich, Germany.
| |
Collapse
|
15
|
Huang X, Fan D. A novel mutation of BICD2 gene associated with juvenile amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:454-456. [PMID: 28335620 DOI: 10.1080/21678421.2017.1304557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xiao Huang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Spinale Muskelatrophien. MED GENET-BERLIN 2017. [DOI: 10.1007/s11825-017-0129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Zheng W. Probing the Energetics of Dynactin Filament Assembly and the Binding of Cargo Adaptor Proteins Using Molecular Dynamics Simulation and Electrostatics-Based Structural Modeling. Biochemistry 2016; 56:313-323. [PMID: 27976861 DOI: 10.1021/acs.biochem.6b01002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dynactin, a large multiprotein complex, binds with the cytoplasmic dynein-1 motor and various adaptor proteins to allow recruitment and transportation of cellular cargoes toward the minus end of microtubules. The structure of the dynactin complex is built around an actin-like minifilament with a defined length, which has been visualized in a high-resolution structure of the dynactin filament determined by cryo-electron microscopy (cryo-EM). To understand the energetic basis of dynactin filament assembly, we used molecular dynamics simulation to probe the intersubunit interactions among the actin-like proteins, various capping proteins, and four extended regions of the dynactin shoulder. Our simulations revealed stronger intersubunit interactions at the barbed and pointed ends of the filament and involving the extended regions (compared with the interactions within the filament), which may energetically drive filament termination by the capping proteins and recruitment of the actin-like proteins by the extended regions, two key features of the dynactin filament assembly process. Next, we modeled the unknown binding configuration among dynactin, dynein tails, and a number of coiled-coil adaptor proteins (including several Bicaudal-D and related proteins and three HOOK proteins), and predicted a key set of charged residues involved in their electrostatic interactions. Our modeling is consistent with previous findings of conserved regions, functional sites, and disease mutations in the adaptor proteins and will provide a structural framework for future functional and mutational studies of these adaptor proteins. In sum, this study yielded rich structural and energetic information about dynactin and associated adaptor proteins that cannot be directly obtained from the cryo-EM structures with limited resolutions.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo , Buffalo, New York 14260, United States
| |
Collapse
|
18
|
Unger A, Dekomien G, Güttsches A, Dreps T, Kley R, Tegenthoff M, Ferbert A, Weis J, Heyer C, Linke WA, Martinez-Carrera L, Storbeck M, Wirth B, Hoffjan S, Vorgerd M. Expanding the phenotype of
BICD2
mutations toward skeletal muscle involvement. Neurology 2016; 87:2235-2243. [DOI: 10.1212/wnl.0000000000003360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/12/2016] [Indexed: 11/15/2022] Open
|