1
|
Brassea-Pérez E, Labrada-Martagón V, Hernández-Camacho CJ, Gaxiola-Robles R, Vázquez-Medina JP, Zenteno-Savín T. DEHP exposure impairs human skeletal muscle cell proliferation in primary culture conditions: preliminary study. Cytotechnology 2023; 75:335-348. [PMID: 37389127 PMCID: PMC10299991 DOI: 10.1007/s10616-023-00580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/27/2023] [Indexed: 07/01/2023] Open
Abstract
The plasticizer di (2-ethylhexyl) phthalate (DEHP) inhibits differentiation, impairs glucose metabolism, and decreases mitochondrial function in murine muscle satellite cells; however, if these effects are translated to human cells is unknown. The goal of this study was to evaluate changes in morphology and proliferation of primary human skeletal muscle cells exposed to DEHP. Rectus abdominis muscle samples were obtained from healthy women undergoing programed cesarean surgery. Skeletal muscle cells were isolated and grown under standard primary culture conditions, generating two independent sample groups of 25 subcultures each. Cells from the first group were exposed to 1 mM DEHP for 13 days and monitored for changes in cell morphology, satellite cell frequency and total cell abundance, while the second group remained untreated (control). Differences between treated and untreated groups were compared using generalized linear mixed models (GLMM). Cell membrane and nuclear envelope boundary alterations, loss of cell volume and presence of stress bodies were observed in DEHP-treated cultures. DEHP-treated cultures also showed a significant reduction in satellite cell frequency compared to controls. Exposure to DEHP reduced human skeletal muscle cell abundance. Statistical differences were found between the GLMM slopes, suggesting that exposure to DEHP reduced growth rate. These results suggest that exposure to DEHP inhibits human skeletal muscle cell proliferation, as evidenced by reduced cell abundance, potentially compromising long-term culture viability. Therefore, DEHP induces human skeletal muscle cell deterioration potentially inducing an inhibitory effect of myogenesis by depleting satellite cells. Graphical abstract
Collapse
Affiliation(s)
- Elizabeth Brassea-Pérez
- Centro de Investigaciones Biológicas del Noroeste S.C., Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, 23096 La Paz, Baja California Sur Mexico
| | - Vanessa Labrada-Martagón
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec #1570, Col. Privadas del Pedregal, 78295 San Luis Potosí , San Luis Potosí Mexico
| | - Claudia J. Hernández-Camacho
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, s/n, Col. Playa Palo de Santa Rita Sur, Baja California Sur 23096 La Paz, Mexico
| | - Ramón Gaxiola-Robles
- Hospital General de Zona No.1. Instituto Mexicano del Seguro Social. 5 de Febrero y Héroes de la Independencia, Centro, 23000 La Paz, Baja California Sur Mexico
| | | | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste S.C., Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, 23096 La Paz, Baja California Sur Mexico
| |
Collapse
|
2
|
Springhetti S, Bucan V, Liebsch C, Lazaridis A, Vogt PM, Strauß S. An Identification and Characterization of the Axolotl ( Ambystoma mexicanum, Amex) Telomerase Reverse Transcriptase (Amex TERT). Genes (Basel) 2022; 13:genes13020373. [PMID: 35205418 PMCID: PMC8924892 DOI: 10.3390/genes13020373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
The Mexican axolotl is one of the few vertebrates that is able to replace its lost body parts during lifespan. Due to its remarkable regenerative abilities, the axolotl emerged as a model organism especially for limb regeneration. Telomeres and the telomerase enzyme are crucial for regeneration and protection against aging processes and degenerating diseases. Despite its relevance for regeneration, the axolotl telomerase and telomere length have not yet been investigated. Therefore, in the present paper, we reveal the sequence of the axolotl telomerase reverse transcriptase gene (Tert) and protein (TERT). Multiple sequence alignment (MSA) showed the known conserved RT- and TERT-specific motifs and residues found in other TERTs. In addition, we establish methods to determine the Tert expression (RT-PCR) and telomerase activity (Q-TRAP) of adult axolotl and blastema tissues. We found that both differentiated forelimb tissue and regenerating blastema tissue express Tert and show telomerase activity. Furthermore, blastema tissue appears to exhibit a higher Tert expression and telomerase activity. The presence of active telomerase in adult somatic cells is a decisive difference to somatic cells of non-regenerating vertebrates, such as humans. These findings indicate that telomere biology may play a key role in the regenerative abilities of cells.
Collapse
Affiliation(s)
- Sina Springhetti
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.B.); (C.L.); (A.L.); (P.M.V.); (S.S.)
- Department of Oral and Maxillofacial Surgery, Diakovere Henriettenstift, 30171 Hannover, Germany
- Correspondence:
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.B.); (C.L.); (A.L.); (P.M.V.); (S.S.)
| | - Christina Liebsch
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.B.); (C.L.); (A.L.); (P.M.V.); (S.S.)
| | - Andrea Lazaridis
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.B.); (C.L.); (A.L.); (P.M.V.); (S.S.)
| | - Peter Maria Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.B.); (C.L.); (A.L.); (P.M.V.); (S.S.)
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.B.); (C.L.); (A.L.); (P.M.V.); (S.S.)
| |
Collapse
|
3
|
Vieira WF, Kenzo-Kagawa B, Alvares LE, Cogo JC, Baranauskas V, da Cruz-Höfling MA. Exploring the ability of low-level laser irradiation to reduce myonecrosis and increase Myogenin transcription after Bothrops jararacussu envenomation. Photochem Photobiol Sci 2021; 20:571-583. [PMID: 33895984 DOI: 10.1007/s43630-021-00041-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Envenoming caused by snakebites is a very important neglected tropical disease worldwide. The myotoxic phospholipases present in the bothropic venom disrupt the sarcolemma and compromise the mechanisms of energy production, leading to myonecrosis. Photobiomodulation therapy (PBMT) has been used as an effective tool to treat diverse cases of injuries, such as snake venom-induced myonecrosis. Based on that, the aim of this study was to analyze the effects of PBMT through low-level laser irradiation (904 nm) on the muscle regeneration after the myonecrosis induced by Bothrops jararacussu snake venom (Bjssu) injection, focusing on myogenic regulatory factors expression, such as Pax7, MyoD, and Myogenin (MyoG). Male Swiss mice (Mus musculus), 6-8-week-old, weighing 22 ± 3 g were used. Single sub-lethal Bjssu dose or saline was injected into the right mice gastrocnemius muscle. At 3, 24, 48, and 72 h after injections, mice were submitted to PBMT treatment. When finished the periods of 48 and 72 h, mice were euthanized and the right gastrocnemius were collected for analyses. We observed extensive inflammatory infiltrate in all the groups submitted to Bjssu injections. PBMT was able to reduce the myonecrotic area at 48 and 72 h after envenomation. There was a significant increase of MyoG mRNA expression at 72 h after venom injection. The data suggest that beyond the protective effect promoted by PBMT against Bjssu-induced myonecrosis, the low-level laser irradiation was able to stimulate the satellite cells, thus enhancing the muscle repair by improving myogenic differentiation.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-970, Brazil.,Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Semiconductors, Instruments and Photonics, Faculty of Electrical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Bruno Kenzo-Kagawa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lúcia Elvira Alvares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José Carlos Cogo
- Faculty of Biomedical Engineering, Brazil University, Itaquera - São Paulo, SP, Brazil
| | - Vitor Baranauskas
- Department of Semiconductors, Instruments and Photonics, Faculty of Electrical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-970, Brazil. .,Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
4
|
Ollewagen T, Myburgh KH, van de Vyver M, Smith C. Rheumatoid cachexia: the underappreciated role of myoblast, macrophage and fibroblast interplay in the skeletal muscle niche. J Biomed Sci 2021; 28:15. [PMID: 33658022 PMCID: PMC7931607 DOI: 10.1186/s12929-021-00714-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Although rheumatoid arthritis affects 1% of the global population, the role of rheumatoid cachexia, which occurs in up to a third of patients, is relatively neglected as research focus, despite its significant contribution to decreased quality of life in patients. A better understanding of the cellular and molecular processes involved in rheumatoid cachexia, as well as its potential treatment, is dependent on elucidation of the intricate interactions of the cells involved, such as myoblasts, fibroblasts and macrophages. Persistent RA-associated inflammation results in a relative depletion of the capacity for regeneration and repair in the satellite cell niche. The repair that does proceed is suboptimal due to dysregulated communication from the other cellular role players in this multi-cellular environment. This includes the incomplete switch in macrophage phenotype resulting in a lingering pro-inflammatory state within the tissues, as well as fibroblast-associated dysregulation of the dynamic control of the extracellular matrix. Additional to this endogenous dysregulation, some treatment strategies for RA may exacerbate muscle wasting and no multi-cell investigation has been done in this context. This review summarizes the most recent literature characterising clinical RA cachexia and links these features to the roles of and complex communication between multiple cellular contributors in the muscle niche, highlighting the importance of a targeted approach to therapeutic intervention.
Collapse
Affiliation(s)
- T Ollewagen
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - K H Myburgh
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - M van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| | - C Smith
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.
| |
Collapse
|
5
|
Tamaki T. Biomedical applications of muscle-derived stem cells: from bench to bedside. Expert Opin Biol Ther 2020; 20:1361-1371. [PMID: 32643444 DOI: 10.1080/14712598.2020.1793953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Skeletal muscle-derived stem cells (Sk-MDSCs) are considered promising sources of adult stem cell therapy. Skeletal muscle comprises approximately 40-50% of the total body mass with marked potential for postnatal adaptive response, such as muscle hypertrophy, hyperplasia, atrophy, and regenerative capacity. This strongly suggests that skeletal muscle contains various stem/progenitor cells related to muscle-nerve-vascular tissues, which would support the above postnatal events even in adulthood. AREA COVERED The focus of this review is the therapeutic potential of the Sk-MDSCs as an adult stem cell autograft. For this purpose, the validity of cell isolation and purification, tissue reconstitution capacity in vivo after transplantation, comparison of the results of basic mouse and preclinical human studies, potential problematic and beneficial aspects, and effective usage have been discussed following the history of clinical applications. EXPERT OPINION Although the clinical application of Sk-MDSCs began as a therapy for the systemic disease of Duchenne muscular dystrophy, here, through the unique local injection method, therapy for severely damaged peripheral nerves, particularly the long-gap nerve transection, has been introduced. The beneficial aspects of the use of Sk-MDSCs as the source of local tissue transplantation therapy have also been discussed.
Collapse
Affiliation(s)
- Tetsuro Tamaki
- Muscle Physiology and Cell Biology Unit, Department of Physiology, Tokai University School of Medicine , Isehara, Kanagawa ,Japan
| |
Collapse
|
6
|
Yanay N, Rabie M, Nevo Y. Impaired Regeneration in Dystrophic Muscle-New Target for Therapy. Front Mol Neurosci 2020; 13:69. [PMID: 32523512 PMCID: PMC7261890 DOI: 10.3389/fnmol.2020.00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Muscle stem cells (MuSCs), known as satellite cells (SCs) have an incredible ability to regenerate, which enables the maintenance and growth of muscle tissue. In response to damaging stimuli, SCs are activated, proliferate, differentiate, and fuse to repair or generate a new muscle fiber. However, dystrophic muscles are characterized by poor muscle regeneration along with chronic inflammation and fibrosis. Indications for SC involvement in muscular dystrophy pathologies are accumulating, but their contribution to muscle pathophysiology is not precisely understood. In congenital muscular dystrophy type 1A (LAMA2-CMD), mutations in Lama2 gene cause either complete or partial absence in laminin-211 protein. Laminin-211 functions as a link between muscle extracellular matrix (ECM) and two adhesion systems in the sarcolemma; one is the well-known dystrophin-glycoprotein complex (DGC), and the second is the integrin complex. Because of its protein interactions and location, laminin-211 has a crucial role in muscle function and survival by maintaining sarcolemma integrity. In addition, laminin-211 is expressed in SCs and suggested to have a role in SC proliferation and differentiation. Downstream to the primary defect in laminin-211, several secondary genes and pathways accelerate disease mechanism, while at the same time there are unsuccessful attempts to regenerate as compensation for the dystrophic process. Lately, next-generation sequencing platforms have advanced our knowledge about the secondary events occurring in various diseases, elucidate the pathophysiology, and characterize new essential targets for development of new treatment strategies. This review will mainly focus on SC contribution to impaired regeneration in muscular dystrophies and specifically new findings suggesting SC involvement in LAMA2-CMD pathology.
Collapse
Affiliation(s)
- Nurit Yanay
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Malcolm Rabie
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoram Nevo
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
7
|
Garcia Denegri ME, Bustillo S, Gay CC, Van De Velde A, Gomez G, Echeverría S, Gauna Pereira MDC, Maruñak S, Nuñez S, Bogado F, Sanchez M, Teibler GP, Fusco L, Leiva LCA. Venoms and Isolated Toxins from Snakes of Medical Impact in the Northeast Argentina: State of the Art. Potential Pharmacological Applications. Curr Top Med Chem 2019; 19:1962-1980. [PMID: 31345151 DOI: 10.2174/1568026619666190725094851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/05/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022]
Abstract
Among the ophidians that inhabit the Northeast of Argentina, the genus Bothrops such as B. alternatus and B. diporus species (also known as yararás) and Crotalus durisus terrificus (named cascabel), represent the most studied snake venom for more than thirty years. These two genera of venomous snakes account for the majority of poisonous snake envenomations and therefore, constitute a medical emergency in this region. This review presents a broad description of the compiled knowledge about venomous snakebite: its pathophysiological action, protein composition, isolated toxins, toxin synergism, toxin-antitoxin cross-reaction assays. Properties of some isolated toxins support a potential pharmacological application.
Collapse
Affiliation(s)
- María Emilia Garcia Denegri
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Soledad Bustillo
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Claudia Carolina Gay
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Andrea Van De Velde
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Gabriela Gomez
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Silvina Echeverría
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - María Del Carmen Gauna Pereira
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Silvana Maruñak
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Sandra Nuñez
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Fabián Bogado
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Matías Sanchez
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Gladys Pamela Teibler
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Luciano Fusco
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Laura Cristina Ana Leiva
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| |
Collapse
|
8
|
The natural involution of the sheep proximal sesamoidean ligament is due to depletion of satellite cells and simultaneous proliferation of fibroblasts: Ultrastructural evidence. Res Vet Sci 2019; 124:106-111. [PMID: 30877991 DOI: 10.1016/j.rvsc.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/11/2019] [Accepted: 03/07/2019] [Indexed: 01/08/2023]
Abstract
The rapid involution that happens in some muscles of ungulate fetlock joints has never been investigated at an ultrastructural level. In this study, the proximal sesamoidean ligament (PSL) of sheep was chosen as a model to investigate, at the cellular level, the transition from muscle to connective structures that occurs during early development. In particular, we were interested in observing the presence of satellite cells and fibroblasts, detecting fluctuations in their numbers in the postnatal developing PSL, and evaluating putative apoptotic mechanisms. Interestingly, some features were shared by both PSL involution and muscle ageing; the most relevant being the significant and rapid decrease in the number of satellite cells together with a quick proliferation of fibroblasts in the muscle-connective transitional area (MCT-TA). Electron microscopy and immunohistochemical analyses revealed putative cellular mechanisms that led to a progressive involution of the muscle portion of the PSL during postnatal growth. Our findings showed a fast transition from muscle to connective tissue due to the depletion of satellite cells, apoptosis of some muscle fibres, and simultaneous proliferation of fibroblasts originating from mesenchymal progenitors or from differentiation of satellite cells typically located at the border between muscle and connective tissue of the PSL.
Collapse
|
9
|
Effects of Two Fractions of Swietenia macrophylla and Catechin on Muscle Damage Induced by BothropsVenom and PLA₂. Toxins (Basel) 2019; 11:toxins11010040. [PMID: 30646591 PMCID: PMC6356255 DOI: 10.3390/toxins11010040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/09/2023] Open
Abstract
Plant natural products can attenuate the myonecrosis caused by Bothrops snake venom and their phospholipases A₂ (PLA₂). In this study, we evaluated the effects of two fractions (F4 and F6) from Swietenia macrophylla and purified catechin on the muscle damage caused by a myotoxic PLA₂ from Colombian Bothrops asper venom (BaColPLA₂) in mice and by Bothrops marmoratus venom from Brazil in mouse phrenic nerve-diaphragm muscle (PND) preparations in vitro. Male mice were injected with PLA₂ (50 µg) in the absence or presence of F4, F6, and catechin, in the gastrocnemius muscle and then killed 3, 7, 14, and 28 h later for histopathological analysis of myonecrosis, leukocyte infiltration, and the presence of collagen. Fractions F4 and F6 (500 µg) and catechin (90 µg) significantly reduced the extent of necrosis at all-time intervals. These two fractions and catechin also attenuated the leukocyte infiltration on day 3, as did catechin on day 14. There was medium-to-moderate collagen deposition in all groups up to day 7, but greater deposition on days 14 and 28 in the presence of F6 and catechin. Bothrops marmoratus venom (100 µg/mL) caused slight (~25%) muscle facilitation after 10 minutes and weak neuromuscular blockade (~64% decrease in contractile activity after a 120-minute incubation). Pre-incubation of venom with F4 or F6 abolished the facilitation, whereas catechin, which was itself facilitatory, did not. All three fractions attenuated the venom-induced decrease in muscle contractions. These findings indicate that fractions and catechin from S. macrophylla can reduce the muscle damage caused by Bothrops venom and PLA₂. These fractions or their components could be useful for treating venom-induced local damage.
Collapse
|
10
|
Koulmann N, Richard‐Bulteau H, Crassous B, Serrurier B, Pasdeloup M, Bigard X, Banzet S. Physical exercise during muscle regeneration improves recovery of the slow/oxidative phenotype. Muscle Nerve 2016; 55:91-100. [DOI: 10.1002/mus.25151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Nathalie Koulmann
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
- Ecole du Val‐de‐GrâceParis France
| | - Hélène Richard‐Bulteau
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Brigitte Crassous
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Bernard Serrurier
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Marielle Pasdeloup
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Xavier Bigard
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
- Ecole du Val‐de‐GrâceParis France
| | - Sébastien Banzet
- Ecole du Val‐de‐GrâceParis France
- Institut de Recherche Biomédicale des Armées, Département Soutien Médico‐Chirurgical des Forces1 rue du lieutenant Raoul Batany92140Clamart France
- INSERM U1197Clamart France
| |
Collapse
|
11
|
Garcia Denegri ME, Teibler GP, Maruñak SL, Hernández DR, Acosta OC, Leiva LC. Efficient muscle regeneration after highly haemorrhagic Bothrops alternatus venom injection. Toxicon 2016; 122:167-175. [PMID: 27720976 DOI: 10.1016/j.toxicon.2016.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/15/2016] [Accepted: 10/04/2016] [Indexed: 11/28/2022]
Abstract
Bothrops alternatus snake venom is particularly characterized for inducing a prominent haemorrhage and affecting hemostasis as a consequence of 43.1% of metallo-proteinases and less than 10% of PLA2 (almost all non-myotoxic phospholipases) in its venomics. In addition, myonecrosis is the major local effect in viper envenoming which might lead to permanent sequela. Then, the rebuilding of the microvasculature at the local injured site acquires significance since represents one of the pivotal stages for subsequent skeletal muscle regeneration either at morphological or functional aspects. Due to the significance played by vasculature in this process, it is important to study by histology and immunohistochemical techniques, the muscular damage and the sequence of skeletal muscle reconstruction (degree of damage, reconstitution of muscle fibres and capillaries). In this work, we injected intramuscularly 50 or 100 μg per mouse of B. alternatus venom in gastrocnemius muscles. We provided a complete description and characterization of the different stages of myogenesis after mild (50 µg) and severe (100 µg) local injury induced by B. alternatus venom toxins. The regeneration was evaluated 24 h, 3, 7, 14 and 28 days after receiving venom injection. Finally, both doses induced an extended necrosis at the site of injection where, when critical steps in the regenerative process are taking place, an efficient tissue rebuilding is achieved. B. alternatus venom is characterized by the high percentage of exclusively class P-III metalloproteinases, and by the lack of class P-I metalloproteinases in its venom composition. This could explain the effectiveness of muscle regeneration after venom injection despite the severity of the initial phase of envenoming.
Collapse
Affiliation(s)
- María Emilia Garcia Denegri
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA, UNNE, CONICET, FaCENA, Campus "Deodoro Roca" Av. Libertad N° 5460, Corrientes, Argentina; Cátedra de Farmacología y Toxicología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina.
| | - Gladys P Teibler
- Cátedra de Farmacología y Toxicología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina
| | - Silvana L Maruñak
- Cátedra de Farmacología y Toxicología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina
| | - David R Hernández
- Cátedra de Histología y Embriología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina
| | - Ofelia C Acosta
- Cátedra de Farmacología y Toxicología, Facultad de Ciencias Veterinarias -UNNE, Sargento Cabral N° 2139, Corrientes, Argentina
| | - Laura C Leiva
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA, UNNE, CONICET, FaCENA, Campus "Deodoro Roca" Av. Libertad N° 5460, Corrientes, Argentina
| |
Collapse
|
12
|
Otrocka-Domagała I, Mikołajczyk A, Paździor-Czapula K, Gesek M, Rotkiewicz T, Mikiewicz M. Effect of low-energy laser irradiation and antioxidant supplementation on cell apoptosis during skeletal muscle post-injury regeneration in pigs. Pol J Vet Sci 2016; 18:523-31. [PMID: 26618584 DOI: 10.1515/pjvs-2015-0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate the effect of low-energy laser irradiation, coenzyme Q10 and vitamin E supplementation on the apoptosis of macrophages and muscle precursor cells during skeletal muscle regeneration after bupivacaine-induced injury. The experiment was conducted on 75 gilts, divided into 5 experimental groups: I--control, II--low-energy laser irradiation, III--coenzyme Q10, IV--coenzyme Q10 and vitamin E, V--vitamin E. Muscle necrosis was induced by injection of 0.5% bupivacaine hydrochloride. The animals were euthanized on subsequent days after injury. Samples were formalin fixed and processed routinely for histopathology. Apoptosis was detected using the TUNEL method. The obtained results indicate that low-energy laser irradiation has a beneficial effect on macrophages and muscle precursor cell activity during muscle post-injury regeneration and protects these cells against apoptosis. Vitamin E has a slightly lower protective effect, limited mainly to the macrophages. Coenzyme Q10 co-supplemented with vitamin E increases the activity of macrophages and muscle precursor cells, myotube and young muscle formation. Importantly, muscle precursor cells seem to be more sensitive to apoptosis than macrophages in the environment of regenerating damaged muscle.
Collapse
|
13
|
Ishido M, Kasuga N. Characteristics of the Localization of Connexin 43 in Satellite Cells during Skeletal Muscle Regeneration In Vivo. Acta Histochem Cytochem 2015; 48:53-60. [PMID: 26019374 PMCID: PMC4427565 DOI: 10.1267/ahc.14056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/17/2015] [Indexed: 12/28/2022] Open
Abstract
For myogenesis, new myotubes are formed by the fusion of differentiated myoblasts. In the sequence of events for myotube formation, intercellular communication through gap junctions composed of connexin 43 (Cx43) plays critical roles in regulating the alignment and fusion of myoblasts in advances of myotube formation in vitro. On the other hand, the relationship between the expression patterns of Cx43 and the process of myotube formation in satellite cells during muscle regeneration in vivo remains poorly understood. The present study investigated the relationship between Cx43 and satellite cells in muscle regeneration in vivo. The expression of Cx43 was detected in skeletal muscles on day 1 post-muscle injury, but not in control muscles. Interestingly, the expression of Cx43 was not localized on the inside of the basement membrane of myofibers in the regenerating muscles. Moreover, although the clusters of differentiated satellite cells, which represent a more advanced stage of myotube formation, were observed on the inside of the basement membrane of myofibers in regenerating muscles, the expression of Cx43 was not localized in the clusters of these satellite cells. Therefore, in the present study, it was suggested that Cx43 may not directly contribute to muscle regeneration via satellite cells.
Collapse
Affiliation(s)
- Minenori Ishido
- Section for Health-related Physical Education, Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology
| | | |
Collapse
|
14
|
Krutki P, Hałuszka A, Mrówczyński W, Gardiner PF, Celichowski J. Adaptations of motoneuron properties to chronic compensatory muscle overload. J Neurophysiol 2015; 113:2769-77. [PMID: 25695651 PMCID: PMC4416630 DOI: 10.1152/jn.00968.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/16/2015] [Indexed: 01/01/2023] Open
Abstract
The aim of the study was to determine whether chronic muscle overload has measurable effect on electrophysiological properties of motoneurons (MNs), and whether duration of this overload influences intensity of adaptations. The compensatory overload was induced in the rat medial gastrocnemius (MG) by bilateral tenotomy of its synergists (lateral gastrocnemius, soleus, and plantaris); as a result, only the MG was able to evoke the foot plantar flexion. To assure regular activation of the MG muscle, rats were placed in wheel-equipped cages and subjected to a low-level treadmill exercise. The intracellular recordings from MG motoneurons were made after 5 or 12 wk of the overload, and in a control group of intact rats. Some of the passive and threshold membrane properties as well as rhythmic firing properties were considerably modified in fast-type MNs, while remaining unaltered in slow-type MNs. The significant changes included a shortening of the spike duration and the spike rise time, an increase of the afterhyperpolarization amplitude, an increase of the input resistance, a decrease of the rheobase, and a decrease of the minimum current necessary to evoke steady-state firing. The data suggest higher excitability of fast-type MNs innervating the overloaded muscle, and a shift towards electrophysiological properties of slow-type MNs. All of the adaptations could be observed after 5 wk of the compensatory overload with no further changes occurring after 12 wk. This indicates that the response to an increased level of chronic activation of MNs is relatively quick and stable.
Collapse
Affiliation(s)
- P Krutki
- Department of Neurobiology, University School of Physical Education, Poznań, Poland; and
| | - A Hałuszka
- Department of Neurobiology, University School of Physical Education, Poznań, Poland; and
| | - W Mrówczyński
- Department of Neurobiology, University School of Physical Education, Poznań, Poland; and
| | - P F Gardiner
- Spinal Cord Research Center and Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, Canada
| | - J Celichowski
- Department of Neurobiology, University School of Physical Education, Poznań, Poland; and
| |
Collapse
|
15
|
Ho Kim T, Heang Oh S, Kang SB, Ho Lee J. Myoblast differentiation on growth factor-immobilized polycaprolactone microparticles: a potential bioactive bulking agent for fecal incontinence. PURE APPL CHEM 2014. [DOI: 10.1515/pac-2014-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractFecal incontinence (FI), caused by damage or weakness of the anal sphincter, is a devastating problem for patients experiencing the symptom. Although injectable bulking agents are accepted as a minimally invasive therapeutic technique to treat FI, their short-term efficacy and inability to enhance the anal sphincter function are considered as challenges in clinical practices. In this study, growth factor [nerve growth factor (NGF) and/or basic fibroblast growth factor (bFGF)]-immobilized polycaprolactone (PCL) microparticles were prepared as an injectable bioactive bulking agent that can provide a bulking effect (by microparticles) and stimulate myoblast differentiation or injured muscles around the anus (by the sustained release of growth factors) to enhance the sphincter function for the effective treatment of FI. Pluronic F127-entrapped PCL microparticles were prepared by an isolated particle-melting method. Two different growth factors (NGF and bFGF) were incorporated on the surfaces of the Pluronic F127-entrapped PCL microparticles via heparin binding. The growth factors immobilized on the microparticles were released in a sustained manner over 4 weeks. From cell cultures on the growth factor-immobilized microparticles, it was observed that the myoblasts adhered on the microparticle surfaces showed differences in differentiation into myotubes depending on the growth factor type. In particular, the dual NGF/bFGF-immobilized microparticle group was effective for myogenic differentiation in comparison with the single growth factor (NGF or bFGF)-immobilized groups. The dual NGF/bFGF-immobilized microparticles are suitable to be applied as an injectable bulking agent for the treatment of FI.
Collapse
Affiliation(s)
- Tae Ho Kim
- 1Department of Advanced Materials, Hannam University, Daejeon 305-811, Republic of Korea
| | - Se Heang Oh
- 2Department of Nanobiomedical Science, Dankook University, Cheonan 330-714, Republic of Korea
| | - Sung Bum Kang
- 3Department of Surgery, Seoul National University Bundang Hospital, Seongnam 463-707, Republic of Korea
| | - Jin Ho Lee
- 1Department of Advanced Materials, Hannam University, Daejeon 305-811, Republic of Korea
| |
Collapse
|
16
|
Abstract
Large soft tissue defects involve significant tissue loss, requiring surgical reconstruction. Autologous flaps are occasionally scant, demand prolonged transfer surgery, and induce donor site morbidity. The present work set out to fabricate an engineered muscle flap bearing its own functional vascular pedicle for repair of a large soft tissue defect in mice. Full-thickness abdominal wall defect was reconstructed using this engineered vascular muscle flap. A 3D engineered tissue constructed of a porous, biodegradable polymer scaffold embedded with endothelial cells, fibroblasts, and/or myoblasts was cultured in vitro and then implanted around the femoral artery and veins before being transferred, as an axial flap, with its vascular pedicle to reconstruct a full-thickness abdominal wall defect in the same mouse. Within 1 wk of implantation, scaffolds showed extensive functional vascular density and perfusion and anastomosis with host vessels. At 1 wk posttransfer, the engineered muscle flaps were highly vascularized, were well-integrated within the surrounding tissue, and featured sufficient mechanical strength to support the abdominal viscera. Thus, the described engineered muscle flap, equipped with an autologous vascular pedicle, constitutes an effective tool for reconstruction of large defects, thereby circumventing the need for both harvesting autologous flaps and postoperative scarification.
Collapse
|
17
|
Hart CA, Tsui J, Khanna A, Abraham DJ, Baker DM. Stem cells of the lower limb: Their role and potential in management of critical limb ischemia. Exp Biol Med (Maywood) 2013; 238:1118-26. [DOI: 10.1177/1535370213503275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Peripheral arterial occlusive disease (PAOD) contributes to decreased exercise tolerance, poor balance, impaired proprioception, muscle atrophy and weakness, with advanced cases resulting in critical limb ischemia (CLI) where the viability of the limb is threatened. Patients with a diagnosis of CLI have a poor life expectancy due to concomitant cardio and cerebrovascular diseases. The current treatment options to avoid major amputation by re-establishing a blood supply to the limb generally have poor outcomes. Human skeletal muscle contains both multipotent stem cells and progenitor cells and thus has a capacity for regeneration. Phase I and II studies involving transplantation of bone marrow-derived progenitor cells into CLI limbs show positive effects on wound healing and angiogenesis; the increase in quiescent satellite cell numbers observed in CLI muscle may also provide a sufficient in vivo source of resident stem cells. These indigenous cells have been shown to be capable of forming multiple mesodermal cell lineages aiding the repair and regeneration of chronically ischemic muscle. They may also serve as a repository for autologous transplantation. The behavior and responses of the stem cell population in CLI is poorly understood and this review tries to elucidate the potential of these cells and their future role in the management of CLI.
Collapse
Affiliation(s)
- Colin A Hart
- Royal Free Vascular Unit, Division of Surgery & Interventional Science, UCL, Royal Free Campus, London NW3 2QG, UK
| | - Janice Tsui
- Royal Free Vascular Unit, Division of Surgery & Interventional Science, UCL, Royal Free Campus, London NW3 2QG, UK
| | - Achal Khanna
- Department of Surgery, Leicester Royal Infirmary, Leicester LE1 6WW, UK
| | - David J Abraham
- Department of Rheumatology, Royal Free Hospital, London NW3 2QG, UK
| | - Daryll M Baker
- Royal Free Vascular Unit, Division of Surgery & Interventional Science, UCL, Royal Free Campus, London NW3 2QG, UK
| |
Collapse
|
18
|
Glišović Š, Pregelj P, Dolenc I, Sketelj J. Suppression of collagen Q expression in the extrajunctional regions of rat fast muscles is encoded in their stem cells (satellite cells). Chem Biol Interact 2013; 203:292-6. [PMID: 22944068 DOI: 10.1016/j.cbi.2012.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/09/2012] [Accepted: 08/11/2012] [Indexed: 10/27/2022]
Abstract
In rat fast muscles, collagen Q (ColQ) expression is restricted to the neuromuscular junctions. In contrast, it is high also extrajunctionally in the slow soleus muscles. Fast muscles activated by chronic low-frequency electrical stimulation, similar to neural activation of the soleus muscles, did not increase their extrajunctional expression of ColQ. We assumed that the myogenic stem cells (satellite cells) in fast and slow muscles were intrinsically different in regard to the capacity that they convey to their respective muscle fibers to increase the extrajunctional ColQ expression upon innervation. ColQ mRNA levels were determined by quantitative real-time PCR. Extensive neural suppression of the extrajunctional ColQ expression in regenerating fast muscles during maturation is a very slow process requiring 30-60 days. If the immature regenerating fast EDL muscles were indirectly or directly electrically stimulated immediately after innervation by chronic low-frequency impulse pattern for 8 days, no significant increase of the extrajunctional ColQ mRNA levels was observed in stimulated regenerates in comparison to non-stimulated ones. In contrast, the extrajunctional ColQ mRNA levels in the regenerates of the soleus muscles, trans-innervated by the EDL nerve at the time of muscle injury, increased 4- to 5-fold after 8 days of the same chronic low-frequency electrical stimulation in comparison to those in the stimulated EDL regenerates. Since both fast and slow muscles completely regenerated only from their own myogenic stem cells and were innervated by the same nerve and later activated by the same tonic pattern of impulses, these results demonstrated that the mechanism causing incapacity of regenerating fast muscles to increase their extrajunctional ColQ expression upon tonic activation is encoded in their satellite cells, which in this respect differ from those in the slow muscles.
Collapse
Affiliation(s)
- Špela Glišović
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
19
|
Romanick M, Thompson LV, Brown-Borg HM. Murine models of atrophy, cachexia, and sarcopenia in skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1410-20. [PMID: 23523469 DOI: 10.1016/j.bbadis.2013.03.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/10/2013] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
With the extension of life span over the past several decades, the age-related loss of muscle mass and strength that characterizes sarcopenia is becoming more evident and thus, has a more significant impact on society. To determine ways to intervene and delay, or even arrest the physical frailty and dependence that accompany sarcopenia, it is necessary to identify those biochemical pathways that define this process. Animal models that mimic one or more of the physiological pathways involved with this phenomenon are very beneficial in providing an understanding of the cellular processes at work in sarcopenia. The ability to influence pathways through genetic manipulation gives insight into cellular responses and their impact on the physical expression of sarcopenia. This review evaluates several murine models that have the potential to elucidate biochemical processes integral to sarcopenia. Identifying animal models that reflect sarcopenia or its component pathways will enable researchers to better understand those pathways that contribute to age-related skeletal muscle mass loss, and in turn, develop interventions that will prevent, retard, arrest, or reverse this phenomenon. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Mark Romanick
- Department of Physical Therapy, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | | | | |
Collapse
|
20
|
Tamaki T. Multipotency and physiological role of skeletal muscle interstitium-derived stem cells. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Smith DL, Mattison JA, Desmond RA, Gardner JP, Kimura M, Roth GS, Ingram DK, Allison DB, Aviv A. Telomere dynamics in rhesus monkeys: no apparent effect of caloric restriction. J Gerontol A Biol Sci Med Sci 2011; 66:1163-8. [PMID: 21860014 DOI: 10.1093/gerona/glr136] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role of telomere attrition in limiting the replicative capacity of cells in culture is well established. In humans, epidemiologic evidence suggests telomere length (TL) in leukocytes is highly variable at birth and inversely related to age. Although calorie restriction (CR) significantly increases life span in most rodent models, its association with TL is unknown. Using linear regression analysis, TLs (as measured by Southern blot analysis) of skeletal muscle (a postmitotic tissue that largely represents early development TL), fat, leukocytes, and skin were tested for effects of age, sex, and diet in 48 control and 23 calorie restriction rhesus monkeys. After controlling for the individual's muscle mean TL, differences between leukocytes muscle and skin muscle were significantly associated with age (p = .002; p = .002) and sex (p = .003; p = .042), but not calorie restriction (p = .884; p = .766). Despite an age-dependent shortening of TL in leukocytes and skin, calorie restriction did not significantly affect TL dynamics in these samples.
Collapse
Affiliation(s)
- Daniel L Smith
- University of Alabama at Birmingham, Main Campus, Birmingham, AL 35294-3360, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Scharner J, Zammit PS. The muscle satellite cell at 50: the formative years. Skelet Muscle 2011; 1:28. [PMID: 21849021 PMCID: PMC3177780 DOI: 10.1186/2044-5040-1-28] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 08/17/2011] [Indexed: 12/25/2022] Open
Abstract
In February 1961, Alexander Mauro described a cell 'wedged' between the plasma membrane of the muscle fibre and the surrounding basement membrane. He postulated that it could be a dormant myoblast, poised to repair muscle when needed. In the same month, Bernard Katz also reported a cell in a similar location on muscle spindles, suggesting that it was associated with development and growth of intrafusal muscle fibres. Both Mauro and Katz used the term 'satellite cell' in relation to their discoveries. Today, the muscle satellite cell is widely accepted as the resident stem cell of skeletal muscle, supplying myoblasts for growth, homeostasis and repair. Since 2011 marks both the 50th anniversary of the discovery of the satellite cell, and the launch of Skeletal Muscle, it seems an opportune moment to summarise the seminal events in the history of research into muscle regeneration. We start with the 19th-century pioneers who showed that muscle had a regenerative capacity, through to the descriptions from the mid-20th century of the underlying cellular mechanisms. The journey of the satellite cell from electron microscope curio, to its gradual acceptance as a bona fide myoblast precursor, is then charted: work that provided the foundations for our understanding of the role of the satellite cell. Finally, the rapid progress in the age of molecular biology is briefly discussed, and some ongoing debates on satellite cell function highlighted.
Collapse
Affiliation(s)
- Juergen Scharner
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | | |
Collapse
|
23
|
Tamaki T, Tono K, Uchiyama Y, Okada Y, Masuda M, Soeda S, Nitta M, Akatsuka A. Origin and hierarchy of basal lamina-forming and -non-forming myogenic cells in mouse skeletal muscle in relation to adhesive capacity and Pax7 expression in vitro. Cell Tissue Res 2011; 344:147-68. [PMID: 21274567 DOI: 10.1007/s00441-010-1127-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/17/2010] [Indexed: 01/06/2023]
Abstract
As a novel approach to distinguish skeletal myogenic cell populations, basal lamina (BL) formation of myogenic cells was examined in the mouse compensatory enlarged plantaris muscles in vivo and in fiber-bundle cultures in vitro. MyoD(+) myogenic cells located inside the regenerative muscle fiber BL were laminin(-) but interstitial MyoD(+) cells were laminin(+). This was also confirmed by electron microscopy as structural BL formation. Similar trends were observed in the fiber-bundle cultures including satellite cells and interstitial myogenic cells and laminin(+) myogenic cells predominantly showed non-adhesive (non-Ad) behavior with Pax7(-), whereas laminin(-) cells were adhesive (Ad) with Pax7(+). Moreover, non-Ad/laminin(+) and Ad/laminin(-) myotubes were also observed and the former type showed spontaneous contractions, while the latter type did not. The origin and hierarchy of Ad/Pax7(+)/laminin(-) and non-Ad/Pax7(-)/laminin(+) myogenic cells were also examined using skeletal muscle interstitium-derived CD34(+)/45(-) (Sk-34) and CD34(-)/45(-) (Sk-DN) multipotent stem cells, which were composed of non-committed myogenic cells with a few (<1%) Pax7(+) cells in the Sk-DN cells at fresh isolation. Both cell types were separated by Ad/non-Ad capacity in repetitive culture. As expected, both Ad/Pax7(+)/laminin(-) and non-Ad/Pax7(-)/laminin(+) myogenic cells consistently appeared in the Ad and non-Ad cell culture. However, Ad/Pax7(+)/laminin(-) cells were repeatedly detected in the non-Ad cell culture, while the opposite phenomenon did not occur. This indicates that the source of non-Ad/ Pax7(-)/laminin(+) myogenic cells was present in the Sk-34 and Sk-DN stem cells and they were able to produce Ad/ Pax7(+)/ laminin(-) myogenic cells during myogenesis as primary myoblasts and situated hierarchically upstream of the latter cells.
Collapse
Affiliation(s)
- Tetsuro Tamaki
- Muscle Physiology and Cell Biology Unit, Department of Regenerative Medicine, Division of Basic Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Ye W, Abu AF, Liu ZJ. Assessment of cell proliferation and muscular structure following surgical tongue volume reduction in pigs. Cell Prolif 2010; 43:562-72. [PMID: 21039994 DOI: 10.1111/j.1365-2184.2010.00705.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Tongue volume reduction is an adjunct treatment in several orofacial orthopaedic procedures for various craniofacial deformities; it may affect structural reconstitution and functional recovery as a result of the repair process. The aim of this study was to investigate myogenic regeneration and structural alteration of the tongue following surgical tongue volume reduction. MATERIALS AND METHODS Five 12-week-old sibling pairs of Yucatan minipigs (three males and two females) were used. Midline uniform glossectomy was performed on one of each pair (reduction); siblings had identical incisions without tissue removal (sham). All pigs were raised for a further 4 weeks and received 5-bromo-2-deoxyuridine (BrdU) injection intravenously 1 day before killing. Tissue sections of tongues were stained with anti-BrdU antibody to evaluate numbers of replicating cells. Haematoxylin and eosin plus trichrome staining were performed to assess muscular structure. RESULTS Reduction tongues contained significantly more BrdU+ cells compared to sham tongues (P < 0.01). However, these BrdU+ cells were mostly identified in reparative connective tissues (fibroblasts) rather than in regenerating muscle tissue (myoblasts). Trichrome-stained sections showed disorganized collagen fibres linked to few intermittent muscle fibres in the reduction tongues. These myofibres presented signs of atrophy with reduced perimysium and endomysium. Matrix between reduced perimysium and endomysium was filled with fibrous tissue. CONCLUSIONS Fibrosis without predominant myogenic regeneration was the major histological consequence of surgical tongue volume reduction.
Collapse
Affiliation(s)
- W Ye
- Department of Orthodontics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
26
|
Griffin CA, Apponi LH, Long KK, Pavlath GK. Chemokine expression and control of muscle cell migration during myogenesis. J Cell Sci 2010; 123:3052-60. [PMID: 20736301 DOI: 10.1242/jcs.066241] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult regenerative myogenesis is vital for restoring normal tissue structure after muscle injury. Muscle regeneration is dependent on progenitor satellite cells, which proliferate in response to injury, and their progeny differentiate and undergo cell-cell fusion to form regenerating myofibers. Myogenic progenitor cells must be precisely regulated and positioned for proper cell fusion to occur. Chemokines are secreted proteins that share both leukocyte chemoattractant and cytokine-like behavior and affect the physiology of a number of cell types. We investigated the steady-state mRNA levels of 84 chemokines, chemokine receptors and signaling molecules, to obtain a comprehensive view of chemokine expression by muscle cells during myogenesis in vitro. A large number of chemokines and chemokine receptors were expressed by primary mouse muscle cells, especially during times of extensive cell-cell fusion. Furthermore, muscle cells exhibited different migratory behavior throughout myogenesis in vitro. One receptor-ligand pair, CXCR4-SDF-1alpha (CXCL12), regulated migration of both proliferating and terminally differentiated muscle cells, and was necessary for proper fusion of muscle cells. Given the large number of chemokines and chemokine receptors directly expressed by muscle cells, these proteins might have a greater role in myogenesis than previously appreciated.
Collapse
Affiliation(s)
- Christine A Griffin
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
27
|
CRASSOUS BRIGITTE, RICHARD-BULTEAU HÉLÈNE, DELDICQUE LOUISE, SERRURIER BERNARD, PASDELOUP MARIELLE, FRANCAUX MARC, BIGARD XAVIER, KOULMANN NATHALIE. Lack of Effects of Creatine on the Regeneration of Soleus Muscle after Injury in Rats. Med Sci Sports Exerc 2009; 41:1761-9. [DOI: 10.1249/mss.0b013e31819f75cb] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Politi PK, Havaki S, Manta P, Lyritis G. Bupivacaine-induced Regeneration of Rat Soleus Muscle: Ultrastructural and Immunohistochemical Aspects. Ultrastruct Pathol 2009; 30:461-9. [PMID: 17182439 DOI: 10.1080/01913120600854434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The regeneration of soleus muscle injury induced by the bupivacaine model was studied ultrastructurally and immunohistochemically. Twenty-one young (age range 3-3.5 months) male Wistar rats were subjected to a single intramuscular injection of 1 mL of 0.5% Marcaine. The muscles were examined on biopsy days 1, 2, 3, 5, 7, 14, and 21. By day 1, mononuclear inflammatory cells had invaded the necrotic sarcoplasm. Degenerative morphological findings counted mainly for the hypercontracted fibers, dilation of sarcoplasmic reticulum, plasma membrane defects, mitochondrial alterations, and myofibril discontinuities. By day 2 proliferating myoblasts were seen with variety in shape, which fused on the day 3. Myotubes with multiple central nuclei and euchromatic nucleoli were formed by day 5. Asynchronous repair events were seen with bundles of myofilaments toward the core of the fibers, in contrast to the least mature distal growth cones, which had free myoblasts in proximity and formatted pseudopods. Chronologically asynchronous regeneration stages possibly suggested successive satellite cell activation profiles or heterogeneity in satellite cell population. In parallel with the electron microscopy, in light microscope immunocytochemistry, desmin- and vimentin-positive mononuclear cells were observed within the first 3 biopsy days, but as regeneration proceeded, desmin predominated over vimentin. Merosin immunoreactivity revealed preservation of the basal lamina, which is crucial for the stability and survival of myotubes. By day 21, fibers restored the overall control architecture.
Collapse
MESH Headings
- Anesthetics, Local/pharmacology
- Animals
- Bupivacaine/pharmacology
- Desmin/metabolism
- Immunohistochemistry
- Laminin/metabolism
- Male
- Microscopy, Electron, Transmission
- Muscle Cells/drug effects
- Muscle Cells/metabolism
- Muscle Cells/ultrastructure
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Necrosis/metabolism
- Necrosis/pathology
- Rats
- Rats, Wistar
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/ultrastructure
- Time Factors
- Vimentin/metabolism
Collapse
Affiliation(s)
- Panorea K Politi
- Department of Sports Medicine and Biology of Exercise, Faculty of Physical Education and Sport Sciences, University of Athens, Athens, Greece.
| | | | | | | |
Collapse
|
29
|
Christiansen SP, Baker RS, Madhat M, Porter JD. Lengthening extraocular muscle with autologous muscle transplants. Strabismus 2009; 2:29-39. [DOI: 10.3109/09273979409105051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
The effect of downhill running on Notch signaling in regenerating skeletal muscle. Eur J Appl Physiol 2009; 106:759-67. [DOI: 10.1007/s00421-009-1077-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2009] [Indexed: 11/26/2022]
|
31
|
Makarov AA, Kovalyov LI, Kovalyova MA, Toropygin IY, Shishkin SS. A study of protein profile changes in differentiating human myoblasts. Russ J Dev Biol 2009. [DOI: 10.1134/s1062360409020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Tamaki T, Uchiyama Y, Okada Y, Tono K, Nitta M, Hoshi A, Akatsuka A. Multiple stimulations for muscle–nerve–blood vessel unit in compensatory hypertrophied skeletal muscle of rat surgical ablation model. Histochem Cell Biol 2009; 132:59-70. [DOI: 10.1007/s00418-009-0585-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
|
33
|
Tamaki T, Uchiyama Y, Okada Y, Tono K, Nitta M, Hoshi A, Akatsuka A. Anabolic-androgenic steroid does not enhance compensatory muscle hypertrophy but significantly diminish muscle damages in the rat surgical ablation model. Histochem Cell Biol 2009; 132:71-81. [DOI: 10.1007/s00418-009-0584-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2009] [Indexed: 11/24/2022]
|
34
|
Luxameechanporn T, Hadlock T, Shyu J, Cowan D, Faquin W, Varvares M. Successful myoblast transplantation in rat tongue reconstruction. Head Neck 2008; 28:517-24. [PMID: 16619280 DOI: 10.1002/hed.20325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Controversy exists regarding the success of myoblast transplantation. The purpose of this study was to determine the survival of transplanted myoblasts in a rat tongue reconstruction model by using fluorescently labeled myoblasts and surgical stains to mark the location of the pocket into which transplanted cells were delivered. We evaluated tongue histology after myoblast transplantation under the hypothesis that myoblast transplantation will promote muscle regeneration and result in minimal scar tissue formation. METHODS Sterile solutions of 1:10 India ink, 1% methylene blue, and 1% crystal violet were applied to the inner lining of a left-sided mucosa-sparing hemiglossectomy pocket. After air-drying, the hemiglossectomy defect was filled with collagen gel and closed. The tongues were evaluated histologically at 6 weeks. Next, myoblasts were cultured and labeled with three commercially available fluorescent dyes, 5-chloromethyl-fluorescein diacetate (CMFDA), chloromethylbenzamido (CM-DiI), and fluorescently labeled microspheres (FLMs), to determine which would optimally label myoblasts in a tongue reconstruction model. Next, Lewis rats underwent left hemiglossectomy, and the created pockets were coated with 1:10 India ink. Control animals received collagen gel alone, whereas experimental animals received labeled myoblast/collagen constructs into the tongue defect. Tongues were harvested at intervals to determine the presence of labeled fluorescent cells, the relative numbers of viable myoblasts, and the degree of scarring. RESULTS India ink coating of the hemiglossectomy pocket caused minimal inflammation and lasted longer than the other tested dyes. CMFDA and FLMs both successfully label myoblasts for transplantation. In vivo, donor cells were observed in all specimens at week 0 with increasing numbers of cells and muscle formation, determined by desmin immunofluorescence, after 6 weeks. There was less scar tissue contracture in the experimental group and a significant increase in the amount of desmin-stained muscle in the surgical defect. CONCLUSIONS India ink is an appropriate vehicle for intra-operative marking of a hemiglossectomy cavity. The introduction of myoblast/collagen constructs into the rat hemiglossectomy defect increases the amount of regenerated muscle, results in less scar contracture, and may increase meaningful tongue function.
Collapse
|
35
|
Richard-Bulteau H, Serrurier B, Crassous B, Banzet S, Peinnequin A, Bigard X, Koulmann N. Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity. Am J Physiol Cell Physiol 2007; 294:C467-76. [PMID: 18077604 DOI: 10.1152/ajpcell.00355.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to test the hypothesis that increasing physical activity by running exercise could favor the recovery of muscle mass after extensive injury and to determine the main molecular mechanisms involved. Left soleus muscles of female Wistar rats were degenerated by notexin injection before animals were assigned to either a sedentary group or an exercised group. Both regenerating and contralateral intact muscles from active and sedentary rats were removed 5, 7, 14, 21, 28 and 42 days after injury (n = 8 rats/group). Increasing contractile activity through running exercise during muscle regeneration ensured the full recovery of muscle mass and muscle cross-sectional area as soon as 21 days after injury, whereas muscle weight remained lower even 42 days postinjury in sedentary rats. Proliferator cell nuclear antigen and MyoD protein expression went on longer in active rats than in sedentary rats. Myogenin protein expression was higher in active animals than in sedentary animals 21 days postinjury. The Akt-mammalian target of rapamycin (mTOR) pathway was activated early during the regeneration process, with further increases of mTOR phosphorylation and its downstream effectors, eukaryotic initiation factor-4E-binding protein-1 and p70(s6k), in active rats compared with sedentary rats (days 7-14). The exercise-induced increase in mTOR phosphorylation, independently of Akt, was associated with decreased levels of phosphorylated AMP-activated protein kinase. Taken together, these results provided evidence that increasing contractile activity during muscle regeneration ensured early and full recovery of muscle mass and suggested that these beneficial effects may be due to a longer proliferative step of myogenic cells and activation of mTOR signaling, independently of Akt, during the maturation step of muscle regeneration.
Collapse
|
36
|
Gordon T, Bambrick L, Orozco R. Comparison of injury and development in the neuromuscular system. CIBA FOUNDATION SYMPOSIUM 2007; 138:210-26. [PMID: 3058429 DOI: 10.1002/9780470513675.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Comparisons of development and regeneration have suggested that axotomized motoneurons and denervated muscles undergo dedifferentiation to an embryonic state with recovery of adult properties after reinnervation. Using electrophysiological and radioligand-binding techniques to monitor axonal size and numbers of extrajunctional acetylcholine receptors in axotomized motoneurons and denervated muscles respectively, we have demonstrated that this dedifferentiation is limited. We suggest that this limited dedifferentiation may be adaptive for survival, regeneration and reinnervation. Correlative physiological and histochemical studies of reinnervated motor units in cat and rat hindlimb muscles show that the processes of regeneration and reinnervation differ in a number of fundamental ways from developmental processes of axonal growth and muscle innervation. Enlargement of motor units after partial nerve injuries does not appear to be limited to the size of the neonatal motor unit as originally suggested but may be influenced by factors operating at the level of axonal branching. Regeneration after complete and partial nerve injuries is a random process in contrast to the specific nature of the innervation of targets during development. Regenerating axons frequently fail to make connections with their original muscles and newly reinnervated motor units contain muscle fibres which formerly belonged to several different motor units. Despite this misdirection of regenerating nerve fibres, neuromuscular plasticity restores neuromuscular properties to the extent that these are appropriate at the single motor unit level for the gradation of force by the orderly recruitment of units during movement.
Collapse
Affiliation(s)
- T Gordon
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
37
|
Dahmane R, Djordjevic S, Smerdu V. Adaptive potential of human biceps femoris muscle demonstrated by histochemical, immunohistochemical and mechanomyographical methods. Med Biol Eng Comput 2006; 44:999-1006. [PMID: 17024467 DOI: 10.1007/s11517-006-0114-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 09/14/2006] [Indexed: 12/01/2022]
Abstract
The goal of this study was to estimate the ability of biceps femoris (BF) muscle, a hamstring muscle crucial for biarticulate movement, to adapt to changed functional demands. For this purpose and due to ethical reasons, in a group of healthy sedentary men and of 15 sprinters, a non-invasive mechanomyography (MMG) method was used to measure the muscle twitch contraction times (Tc). These correlate with the proportions of slow and fast fibres in the muscle. To further elucidate the data obtained by MMG method and to obtain reference data for the muscle, the fiber type proportions in autoptic samples of BF in sedentary young men were determined according to histochemical reaction for myofibrillar adenosine triphosphatase (mATPase). In one BF sample also myosin heavy chain (MyHC) isoform expression was demonstrated immunohistochemically. With MMG we indirectly demonstrated that biceps femoris muscle has a strong potential to transform into faster contracting muscle after sprint training, since the average Tc in sprinters was much lower (19.5 +/- 2.3 ms) than in the sedentary group (30.25 +/- 3.5 ms). The results of the histochemical and immunohistochemical analysis of BF muscle also imply a high adapting potential of this muscle. Beside type 1, 2a and 2x (2b) fibres a relatively high proportion of intermediate type 2c fibres (5.7% +/- 0.7), which co-expressed MyHC-1 and -2a, was found. Therefore, type 2c might represent a potential pool of fibres, capable of transformation either to slow type 1 or to fast type 2a in order to tune the functional response of BF muscle according to the actual functional demands of the organism.
Collapse
Affiliation(s)
- Raja Dahmane
- Institute of Anatomy, Medical Faculty, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia.
| | | | | |
Collapse
|
38
|
Koulmann N, Sanchez H, N'Guessan B, Chapot R, Serrurier B, Peinnequin A, Ventura-Clapier R, Bigard X. The responsiveness of regenerated soleus muscle to pharmacological calcineurin inhibition. J Cell Physiol 2006; 208:116-22. [PMID: 16547932 DOI: 10.1002/jcp.20643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The responsiveness of mature regenerated soleus (SOL) muscles to cyclosporin A (CsA) administration was studied in rats. Forty-two days after notexin-induced degeneration of left SOL muscles, rats were treated with CsA (25 mg/kg x day) or vehicle daily for 3 weeks. CsA administration decreased by eightfold the level of transcription of MCIP-1, a well-known calcineurin-induced gene, in intact as well as in regenerated muscles (P < 0.001). In response to CsA-administration we observed a slow-to-fast transition in the MHC profile, more marked in regenerated than in intact muscles (P < 0.05), but mainly restricted to MHC-Ibeta toward MHC-IIA. Immunohistochemical analysis showed that MHC-IIA was often co-expressed with MHC-Ibeta within myofibers of intact muscles, whereas it was mainly expressed within pure fast fibers of regenerated muscles. MHC-Ibeta mRNA levels were lower in regenerated than in intact muscles, but did not change in response to CsA-administration. CsA administration induced a significant increase in MHC-IIA mRNA levels (P < 0.001) similar in both intact and regenerated muscles. Present results suggest that in vivo in intact SOL muscles, calcineurin blocks the upregulation of the MHC-IIA isoform at the transcriptional level. On the other hand, the higher response of regenerated muscles to CsA administration cannot be explained by transcriptional events, and may result from either a more rapid turnover of MHC proteins in regenerated muscles than in intact ones, or translational events. This study further suggests that the developmental history of myofibers could play a role in the adaptability of skeletal muscle to variations in neuromuscular activity.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Body Weight
- Calcineurin/physiology
- Calcineurin Inhibitors
- Cyclosporine/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/genetics
- Gene Expression Regulation/physiology
- Immunohistochemistry
- Intracellular Signaling Peptides and Proteins
- Male
- Muscle, Skeletal/anatomy & histology
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/physiology
- Myosin Heavy Chains/analysis
- Myosin Heavy Chains/genetics
- Organ Size
- Protein Isoforms/analysis
- Protein Isoforms/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Wistar
- Regeneration/drug effects
- Regeneration/physiology
- Transcription Factors/analysis
- Transcription Factors/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Nathalie Koulmann
- Département des facteurs humains, Centre de Recherches du Service de Santé des Armées, La Tronche Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Shiraishi S, Nakamura YN, Iwamoto H, Haruno A, Sato Y, Mori S, Ikeuchi Y, Chikushi J, Hayashi T, Sato M, Cassens RG, Ito T. S-myotrophin promotes the hypertrophy of skeletal muscle of mice in vivo. Int J Biochem Cell Biol 2005; 38:1114-22. [PMID: 16531094 DOI: 10.1016/j.biocel.2005.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 10/22/2005] [Accepted: 11/27/2005] [Indexed: 11/16/2022]
Abstract
S-myotrophin is a newly discovered muscle growth factor. Effects of crude S-myotrophin injection on the growth and morphology of skeletal muscle of normal, ScN and mdx mice were investigated in the present study. Total dose of crude S-myotrophin was 100 microg (100 microg protein/ml x 50 microl x 20 times). In the case of normal mice (Sea:ddY), body weight and the weight of M. gluteus major of crude S-myotrophin injected mice was significantly heavier than that of control (PBS-injected) mice after 5 weeks' feeding. Antibody staining of laminin and dystrophin showed clear sarcolemmal and basement membrane structure surrounding each muscle fibre. The numbers of muscle fibres per 100 microm(2) was less in crude S-myotrophin-injected normal mice than in PBS-injected mice. Quite similar observations as in the case of normal mice were obtained in the case of ScN mice having heterogeneous gene of dystrophin. In the case of mdx mice, body weight and the weight of M. gluteus major of crude S-myotrophin injected mdx mice was significantly heavier than that of PBS-injected mdx mice. Antibody staining of laminin showed almost intact structure of the basement membrane containing laminin even in skeletal muscle of mdx mice subjected to crude S-myotrophin injection, while irregular and incompletely developed structure of muscle fibres or necrosis were observed in muscle fibres of PBS-injected mdx mice. In spite of crudeness of the preparation, the present animal experiments indicate that S-myotrophin has a strong growth promoting activity of muscle cells of normal and dystrophic mice.
Collapse
Affiliation(s)
- Shohei Shiraishi
- Laboratory of Chemistry and Technology of Animal Products, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-Ward, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Teixeira CFP, Chaves F, Zamunér SR, Fernandes CM, Zuliani JP, Cruz-Hofling MA, Fernandes I, Gutiérrez JM. Effects of neutrophil depletion in the local pathological alterations and muscle regeneration in mice injected with Bothrops jararaca snake venom. Int J Exp Pathol 2005; 86:107-15. [PMID: 15810982 PMCID: PMC2517402 DOI: 10.1111/j.0959-9673.2005.00419.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In order to study the role of neutrophils in the acute local pathological alterations induced by Bothrops jararaca snake venom, and in the process of skeletal muscle regeneration that follows, an experimental model was developed in mice pretreated with either an anti-mouse granulocyte rat monoclonal immunoglobulin G, which induces a profound neutropenia, or an isotype-matched control antibody. B. jararaca venom induced prominent haemorrhage and oedema, but only a moderate myonecrosis. No significant differences were observed in the extent of local haemorrhage, oedema and myonecrosis between neutropenic and control mice, suggesting that neutrophils do not play a determinant role in the acute pathological alterations induced by B. jararaca venom in this experimental model. Moreover, no differences were observed in skeletal muscle regeneration between these two experimental groups. In both the cases, limited areas of myonecrosis were associated with a drastic damage to the microvasculature and a scarce inflammatory infiltrate, with the consequent lack of removal of necrotic debris during the first week, resulting in a poor regenerative response at this time interval. Subsequently, a similar regenerative process occurred in both groups, and by 30 days, necrotic areas were substituted by groups of small regenerating muscle fibres. It is suggested that the drastic effect exerted by B. jararaca venom in the microvasculature precludes an effective access of inflammatory cells to necrotic areas, thereby compromising an effective removal of necrotic debris; this explains the poor regenerative response observed during the first week and the fact that there were no differences between neutropenic and control mice. As neutropenia in this model lasted only 7 days, the successful regenerative process observed at 30 days is associated with revascularization of necrotic regions and with a successful removal by phagocytes of necrotic debris in both groups.
Collapse
Affiliation(s)
| | - Fernando Chaves
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa RicaSan José, Costa Rica
| | - Stella R Zamunér
- Laboratorio de Farmacología, Instituto ButantanSao Paulo, Brazil
| | | | | | | | - Irene Fernandes
- Laboratorio de Imunopatología, Instituto ButantanSao Paulo, Brazil
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa RicaSan José, Costa Rica
| |
Collapse
|
41
|
Armand AS, Launay T, Gaspera BD, Charbonnier F, Gallien CL, Chanoine C. Effects of eccentric treadmill running on mouse soleus: degeneration/regeneration studied with Myf-5 and MyoD probes. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 179:75-84. [PMID: 12940941 DOI: 10.1046/j.1365-201x.2003.01187.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM The aim of this report is to show that eccentric exercise under well-controlled conditions is an alternative model, to chemical and mechanical analyses, and analyse the process of degeneration/regeneration in mouse soleus. METHODS For this, mice were submitted to a single bout of eccentric exercise on a treadmill down a 14 degrees decline for 150 min and the soleus muscle was analysed at different times following exercise by histology and in situ hybridization in comparison with cardiotoxin-injured muscles. RESULTS We analyse the regenerative process by detection of the accumulation of transcripts coding for the two myogenic regulatory factors, Myf-5 and MyoD, which are good markers of the activated satellite cells. From 24 h post-exercise (P-E), clusters of mononucleated Myf-5/MyoD-positive cells were detected. Their number increased up to 96 h P-E when young MyoD-positive myotubes with central nuclei began to appear. From 96 to 168 h P-E the number of myotubes increased, about 10-fold, the new myotubes representing 58% of the muscle cells (168 h P-E). CONCLUSION These results show that this protocol of eccentric exercise is able to induce a drastic degeneration/regeneration process in the soleus muscle. This offers the opportunity to perform biochemical and molecular analyses of a process of regeneration without muscle environment defects. The advantages of this model are discussed in the context of fundamental and therapeutical perspectives.
Collapse
Affiliation(s)
- A-S Armand
- Biologie du Développement et de la Différenciation Neuromusculaire, LNRS UMR 7060 CNRS, Université René Descartes, Paris Cedex, France
| | | | | | | | | | | |
Collapse
|
42
|
Teixeira CFP, Zamunér SR, Zuliani JP, Fernandes CM, Cruz-Hofling MA, Fernandes I, Chaves F, Gutiérrez JM. Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected withBothrops aspersnake venom. Muscle Nerve 2003; 28:449-59. [PMID: 14506717 DOI: 10.1002/mus.10453] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Local tissue damage induced by crotaline snake venoms includes edema, myonecrosis, hemorrhage, and an inflammatory response associated with a prominent cellular infiltrate. The role of neutrophils in the local tissue damage induced by Bothrops asper snake venom and by myotoxin I, a phospholipase A2 isolated from this venom, was investigated. Male Swiss mice were pretreated with either an antimouse granulocyte rat monoclonal immunoglobulin G (IgG) antibody or with isotype-matched control antibody. No significant differences in these local effects were observed between mice pretreated with antigranulocyte antibodies and those receiving control IgG. Moreover, myotoxicity induced by B. asper myotoxin I was similar in neutrophil-depleted and control mice. The role of neutrophils in the process of skeletal muscle regeneration was also assessed. Muscle regeneration was assessed by quantifying the muscle levels of creatine kinase and by morphometric histological analysis of the area comprised by regenerating cells in damaged regions of skeletal muscle. Mice depleted of neutrophils and then injected with B. asper venom showed a more deficient regenerative response than mice pretreated with control IgG. Moreover, a drastic difference in the regenerative response was observed in mice injected with myotoxin I, because animals pretreated with control IgG showed a successful regeneration, whereas those depleted of neutrophils had abundant areas of necrotic tissue that had not been removed 7 days after injection, associated with reduced contents of creatine kinase. It is concluded that (1) neutrophils do not play a significant role in the acute local pathological alterations induced by the venom of B. asper, and (2) neutrophils play a prominent role in the process of skeletal muscle regeneration after injection of B. asper venom and myotoxin I, probably related to the phagocytosis of necrotic material and the recruitment of other inflammatory cells, two events directly associated with a successful muscle regenerative response.
Collapse
Affiliation(s)
- C F P Teixeira
- Pharmacology Laboratory, Instituto Butantan, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kami K, Senba E. In vivo activation of STAT3 signaling in satellite cells and myofibers in regenerating rat skeletal muscles. J Histochem Cytochem 2002; 50:1579-89. [PMID: 12486080 DOI: 10.1177/002215540205001202] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although growth factors and cytokines play critical roles in skeletal muscle regeneration, intracellular signaling molecules that are activated by these factors in regenerating muscles have been not elucidated. Several lines of evidence suggest that leukemia inhibitory factor (LIF) is an important cytokine for the proliferation and survival of myoblasts in vitro and acceleration of skeletal muscle regeneration. To elucidate the role of LIF signaling in regenerative responses of skeletal muscles, we examined the spatial and temporal activation patterns of an LIF-associated signaling molecule, the signal transducer and activator transcription 3 (STAT3) proteins in regenerating rat skeletal muscles induced by crush injury. At the early stage of regeneration, activated STAT3 proteins were first detected in the nuclei of activated satellite cells and then continued to be activated in proliferating myoblasts expressing both PCNA and MyoD proteins. When muscle regeneration progressed, STAT3 signaling was no longer activated in differentiated myoblasts and myotubes. In addition, activation of STAT3 was also detected in myonuclei within intact sarcolemmas of surviving myofibers that did not show signs of necrosis. These findings suggest that activation of STAT3 signaling is an important molecular event that induces the successful regeneration of injured skeletal muscles.
Collapse
Affiliation(s)
- Katsuya Kami
- Department of Health Science, Osaka University of Health and Sport Sciences, Wakayama, Japan.
| | | |
Collapse
|
44
|
Abstract
In athletic competition, muscle contusion injury is a frequent and debilitating condition. Found in traditional contact and noncontact sports, contusions also can occur to the nonathlete by simple falls and accidents. The injury consists of a well-defined sequence of events involving microscopic rupture and damage to muscle cells, macroscopic defects in muscle bellies, infiltrative bleeding, and inflammation. The repair of the tissue can be thought of as a race between remodeling and scar formation. In the current study, the authors describe the relevant body of research directed at delineating the incidence, factors that affect injury severity, and treatment of muscle contusion injury. Emphasis is given to animal models that allow reproducible, quantitative injury, and study of the effects of various treatment modalities. Myositis ossificans traumatica, one of the most debilitating consequences of contusion injuries, also is discussed. The incidence, causative factors, and prevention strategies are reviewed.
Collapse
Affiliation(s)
- John M Beiner
- Section of Sports Medicine, Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06520-8071, USA
| | | |
Collapse
|
45
|
Kääriäinen M, Nissinen L, Kaufman S, Sonnenberg A, Järvinen M, Heino J, Kalimo H. Expression of alpha7beta1 integrin splicing variants during skeletal muscle regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1023-31. [PMID: 12213731 PMCID: PMC1867267 DOI: 10.1016/s0002-9440(10)64263-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integrin alpha7beta1 is a laminin receptor, both subunits of which have alternatively spliced, developmentally regulated variants. In skeletal muscle beta1 has two major splice variants of the intracellular domain (beta1A and beta1D). alpha7X1 and alpha7X2 represent variants of the alpha7 ectodomain, whereas alpha7A and alpha7B are variants of the intracellular domain. Previously we showed that during early regeneration after transection injury of muscle alpha7 integrin mediates dynamic adhesion of myofibers along their lateral aspects to the extracellular matrix. Stable attachment of myofibers to the extracellular matrix occurs during the third week after injury, when new myotendinous junctions develop at the ends of the regenerating myofibers. Now we have analyzed the relative expression of beta1A/beta1D and alpha7A/alpha7B and alpha7X1/alpha7X2 isoforms during regeneration for 2 to 56 days after transection of rat soleus muscle using reverse transcriptase-polymerase chain reaction and immunohistochemistry. During early regeneration beta1A was the predominant isoform in both the muscle and scar tissue. Expression of muscle-specific beta1D was detected in regenerating myofibers from day 4 onwards, ie, when myogenic mitotic activity began to decrease, and it became more abundant with the progression of regeneration. alpha7B isoform predominated on day 2. Thereafter, the relative expression of alpha7A transcripts increased until day 7 with the concomitant appearance of alpha7A immunoreactivity on regenerating myofibers. Finally, alpha7B again became the predominant variant in highly regenerated myofibers. Similarly as in the controls, alpha7X1 and alpha7X2 isoforms were both expressed throughout the regeneration with a peak in alpha7X1 expression on day 4 coinciding with the dynamic adhesion stage. The results suggest that during regeneration of skeletal muscle the splicing of beta1 and alpha7 integrin subunits is regulated according to functional requirements. alpha7A and alpha7X1 appear to have a specific role during the dynamic phase of adhesion, whereas alpha7B, alpha7X2, and beta1D predominate during stable adhesion.
Collapse
Affiliation(s)
- Minna Kääriäinen
- Medical School and the Institute of Medical Technology, University of Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
46
|
Conboy IM, Rando TA. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 2002; 3:397-409. [PMID: 12361602 DOI: 10.1016/s1534-5807(02)00254-x] [Citation(s) in RCA: 621] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have studied the role of Notch-1 and its antagonist Numb in the activation of satellite cells during postnatal myogenesis. Activation of Notch-1 promoted the proliferation of myogenic precursor cells expressing the premyoblast marker Pax3. Attenuation of Notch signaling by increases in Numb expression led to the commitment of progenitor cells to the myoblast cell fate and the expression of myogenic regulatory factors, desmin, and Pax7. In many intermediate progenitor cells, Numb was localized asymmetrically in actively dividing cells, suggesting an asymmetric cell division and divergent cell fates of daughter cells. The results indicate that satellite cell activation results in a heterogeneous population of precursor cells with respect to Notch-1 activity and that the balance between Notch-1 and Numb controls cellular homeostasis and cell fate determination.
Collapse
Affiliation(s)
- Irina M Conboy
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
47
|
Lopes-Ferreira M, Moura-da-Silva AM, Piran-Soares AA, Angulo Y, Lomonte B, Gutiérrez JM, Farsky SHP. Hemostatic effects induced by Thalassophryne nattereri fish venom: a model of endothelium-mediated blood flow impairment. Toxicon 2002; 40:1141-147. [PMID: 12165317 DOI: 10.1016/s0041-0101(02)00114-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accidents by Thalassophryne nattereri fish venom are characterised by severe local symptoms and signs including pain of fast onset, oedema and necrosis with impaired muscle regeneration. These effects have been related to alterations in hemostatic mechanisms and cytolytic effects rather than to conventional inflammatory pathways. In this work we evaluated the effects induced by the venom on microcirculatory vessels, platelets and blood coagulation. Effects evoked by topical application of venom on cremaster muscle were visualised through intravital microscopy. Stasis was observed, concomitantly with the presence of thrombi in venules and focal transient constrictions in arterioles, all of which impaired the blood flow. Significant alterations on vessel walls took place few minutes after venom application, characterised by increment in thickness, probably by deposition of fibrin. Increase in vascular permeability was also observed in venules. Additionally, the action of the venom was locally restricted since no alteration on systemic blood coagulation was observed. Venom lacked a direct pro-coagulant activity, but exerted a strong cytolytic effect on platelets and endothelial cells in vitro. These data suggest that venom action on endothelium may contribute to blood stasis and to the formation of platelet and fibrin thrombi, with the consequent ischemia, contributing to the local effects of the venom.
Collapse
Affiliation(s)
- Mônica Lopes-Ferreira
- Laboratórios de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, SP, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
48
|
Issarachai S, Priestley GV, Nakamoto B, Papayannopoulou T. Cells with hemopoietic potential residing in muscle are itinerant bone marrow-derived cells. Exp Hematol 2002; 30:366-73. [PMID: 11937273 DOI: 10.1016/s0301-472x(02)00773-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The nature of cells residing in muscle giving rise to hemopoietic colonies in vitro or hemopoietic reconstitution in vivo has been unclear. The goal of the present study was to characterize these cells and uncover their potential site of origin. MATERIALS AND METHODS Cells prepared from muscle were characterized for surface antigens (CD45, CD34, c-kit, Sca-1, CD31, VCAM-1), for their in vitro clonogenic capacity and in vivo repopulation potential either as unpurified cells or sorted subsets (CD45(+), CD45(-)). The presence of bone marrow (BM)-derived cells in muscle of mice reconstituted with marked BM cells before and after cytokine-induced mobilization was also examined. RESULTS Our data show: 1) The yield of CD45(+) cells is higher in muscle of neonates and young animals. Their composite phenotype does not favor contamination by blood. 2) The capacity of fresh muscle cell explants to give rise to colonies in vitro and hemopoietic reconstitution in vivo is associated with CD45(+) cells. 3) Irradiated recipients reconstituted with marked BM cells harbor marked BM-derived cells (CD45(+) or CD45(-)) in their muscle several months after transplant. 4) Cytokine-induced mobilization of transplanted animals modestly increases the yield of BM-derived cells recovered from muscle, unlike the yields from spleen, liver, or peripheral blood (PB). CONCLUSIONS Our data suggest a reinterpretation of previously published conclusions: hemopoietic colonies derived from fresh muscle explants do not originate from transdifferentiated muscle cells, but from BM-derived cells residing in muscle; the hemopoietic reconstituting potential of muscle cells is likewise attributed to these cells.
Collapse
|
49
|
Noah EM, Winkel R, Schramm U, Kühnel W. Impact of innervation and exercise on muscle regeneration in neovascularized muscle grafts in rats. Ann Anat 2002; 184:189-97. [PMID: 11936201 DOI: 10.1016/s0940-9602(02)80018-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The direction of known staged process of regeneration of free muscle grafts was inverted in our experimental rat model from a centripetal to a centrifugal by central implantation of blood vessels into isolated free muscle grafts. The effects of innervation, reinnervation and exercise on muscle fiber regeneration were analyzed at various intervals from 4 to 90 days by morphological and morphometric methods. Reinnervation occurred as well in grafts with the motor nerve left intact as it did in grafts with a severed and reimplanted nerve. Reinnervation proved to be prerequisite for a lasting muscle regeneration. Denervated muscle grafts even after neovascularization underwent irreversible fibrosis. A positive effect of exercise on the early states (30 days) of muscle regeneration was revealed by morphometrical analysis. In the long term (90 days) fiber diameter assimilated in all groups. The animal model mimics a clinical situation of flap prefabrication demonstrating the relationship of functional tissue regeneration and neovascularization. It can be transferred into the acute clinical situation as well as in tissue engineering.
Collapse
MESH Headings
- Animals
- Male
- Microscopy, Electron
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/cytology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/transplantation
- Necrosis
- Neovascularization, Physiologic/physiology
- Physical Conditioning, Animal
- Rats
- Rats, Wistar
- Regeneration/physiology
- Time Factors
- Transplantation, Isogeneic
Collapse
Affiliation(s)
- E M Noah
- Department of Plastic Surgery, RWTH University of Aachen, Germany
| | | | | | | |
Collapse
|
50
|
Bigard AX, Zoll J, Ribera F, Mateo P, Sanchez H, Serrurier B, Ventura-Clapier R. Influence of overload on phenotypic remodeling in regenerated skeletal muscle. Am J Physiol Cell Physiol 2001; 281:C1686-94. [PMID: 11600433 DOI: 10.1152/ajpcell.2001.281.5.c1686] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the effects of 10 wk of functional overload on the expression of myosin heavy chain (MHC), sarcoplasmic reticulum Ca(2+)-ATPase isoforms (SERCA), and the activity of several metabolic enzymes in sham and regenerated plantaris muscles. Overload was accomplished by bilateral surgical ablation of its synergists 4 wk after right plantaris muscles regenerated after myotoxic infiltration. The overload-induced muscle enlargement was slightly less in regenerated than in sham muscles [28% (P < 0.005) and 43% (P < 0.001), respectively]. Overload led to an increase in type I MHC expression (P < 0.01) to a similar extent in sham and regenerated plantaris, while the expected shift from type IIb to type IIa MHC was less marked in regenerated than in sham plantaris. The overload-induced decrease in the expression of the fast SERCA isoform and in the activity of the M subunit of lactate dehydrogenase occurred to a similar extent in sham and regenerated plantaris [66% (P < 0.01) and 27% (P < 0.005), respectively]. In conclusion, the lesser responses of muscle mass and fast MHC composition of regenerated plantaris to mechanical overload suggest an alteration of the transcriptional, translational, and/or posttranslational control of gene expression in regenerated muscle.
Collapse
Affiliation(s)
- A X Bigard
- Unité de Bioénergétique et Environnement, Centre de Recherches du Service de Santé des Armées, La Tronche, France.
| | | | | | | | | | | | | |
Collapse
|