1
|
Seidel T, Sankarankutty AC, Sachse FB. Remodeling of the transverse tubular system after myocardial infarction in rabbit correlates with local fibrosis: A potential role of biomechanics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:302-314. [PMID: 28709857 DOI: 10.1016/j.pbiomolbio.2017.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 02/03/2023]
Abstract
The transverse tubular system (t-system) of ventricular cardiomyocytes is essential for efficient excitation-contraction coupling. In cardiac diseases, such as heart failure, remodeling of the t-system contributes to reduced cardiac contractility. However, mechanisms of t-system remodeling are incompletely understood. Prior studies suggested an association with altered cardiac biomechanics and gene expression in disease. Since fibrosis may alter tissue biomechanics, we investigated the local microscopic association of t-system remodeling with fibrosis in a rabbit model of myocardial infarction (MI). Biopsies were taken from the MI border zone of 6 infarcted hearts and from 6 control hearts. Using confocal microscopy and automated image analysis, we quantified t-system integrity (ITT) and the local fraction of extracellular matrix (fECM). In control, fECM was 18 ± 0.3%. ITT was high and homogeneous (0.07 ± 0.006), and did not correlate with fECM (R2 = 0.05 ± 0.02). The MI border zone exhibited increased fECM within 3 mm from the infarct scar (30 ± 3.5%, p < 0.01 vs control), indicating fibrosis. Myocytes in the MI border zone exhibited significant t-system remodeling, with dilated, sheet-like components, resulting in low ITT (0.03 ± 0.008, p < 0.001 vs control). While both fECM and t-system remodeling decreased with infarct distance, ITT correlated better with decreasing fECM (R2 = 0.44) than with infarct distance (R2 = 0.24, p < 0.05). Our results show that t-system remodeling in the rabbit MI border zone resembles a phenotype previously described in human heart failure. T-system remodeling correlated with the amount of local fibrosis, which is known to stiffen cardiac tissue, but was not found in regions without fibrosis. Thus, locally altered tissue mechanics may contribute to t-system remodeling.
Collapse
Affiliation(s)
- T Seidel
- Institute for Cellular and Molecular Physiology, University of Erlangen-Nuremberg, Erlangen, Germany; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA.
| | - A C Sankarankutty
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Department of Bioengineering, University of Utah, Salt Lake City, USA
| | - F B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Department of Bioengineering, University of Utah, Salt Lake City, USA.
| |
Collapse
|
2
|
Crossman DJ, Jayasinghe ID, Soeller C. Transverse tubule remodelling: a cellular pathology driven by both sides of the plasmalemma? Biophys Rev 2017; 9:919-929. [PMID: 28695473 DOI: 10.1007/s12551-017-0273-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/06/2017] [Indexed: 01/10/2023] Open
Abstract
Transverse (t)-tubules are invaginations of the plasma membrane that form a complex network of ducts, 200-400 nm in diameter depending on the animal species, that penetrates deep within the cardiac myocyte, where they facilitate a fast and synchronous contraction across the entire cell volume. There is now a large body of evidence in animal models and humans demonstrating that pathological distortion of the t-tubule structure has a causative role in the loss of myocyte contractility that underpins many forms of heart failure. Investigations into the molecular mechanisms of pathological t-tubule remodelling to date have focused on proteins residing in the intracellular aspect of t-tubule membrane that form linkages between the membrane and myocyte cytoskeleton. In this review, we shed light on the mechanisms of t-tubule remodelling which are not limited to the intracellular side. Our recent data have demonstrated that collagen is an integral part of the t-tubule network and that it increases within the tubules in heart failure, suggesting that a fibrotic mechanism could drive cardiac junctional remodelling. We examine the evidence that the linkages between the extracellular matrix, t-tubule membrane and cellular cytoskeleton should be considered as a whole when investigating the mechanisms of t-tubule pathology in the failing heart.
Collapse
Affiliation(s)
- David J Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| | | | - Christian Soeller
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Biomedical Physics, University of Exeter, Exeter, UK
| |
Collapse
|
3
|
Cannell MB, Kong CHT, Imtiaz MS, Laver DR. Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination. Biophys J 2013; 104:2149-59. [PMID: 23708355 DOI: 10.1016/j.bpj.2013.03.058] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/18/2013] [Accepted: 03/25/2013] [Indexed: 10/26/2022] Open
Abstract
The factors responsible for the regulation of regenerative calcium-induced calcium release (CICR) during Ca(2+) spark evolution remain unclear. Cardiac ryanodine receptor (RyR) gating in rats and sheep was recorded at physiological Ca(2+), Mg(2+), and ATP levels and incorporated into a 3D model of the cardiac dyad, which reproduced the time course of Ca(2+) sparks, Ca(2+) blinks, and Ca(2+) spark restitution. The termination of CICR by induction decay in the model principally arose from the steep Ca(2+) dependence of RyR closed time, with the measured sarcoplasmic reticulum (SR) lumen Ca(2+) dependence of RyR gating making almost no contribution. The start of CICR termination was strongly dependent on the extent of local depletion of junctional SR Ca(2+), as well as the time course of local Ca(2+) gradients within the junctional space. Reducing the dimensions of the dyad junction reduced Ca(2+) spark amplitude by reducing the strength of regenerative feedback within CICR. A refractory period for Ca(2+) spark initiation and subsequent Ca(2+) spark amplitude restitution arose from 1), the extent to which the regenerative phase of CICR can be supported by the partially depleted junctional SR, and 2), the availability of releasable Ca(2+) in the junctional SR. The physical organization of RyRs within the junctional space had minimal effects on Ca(2+) spark amplitude when more than nine RyRs were present. Spark amplitude had a nonlinear dependence on RyR single-channel Ca(2+) flux, and was approximately halved by reducing the flux from 0.6 to 0.2 pA. Although rat and sheep RyRs had quite different Ca(2+) sensitivities, Ca(2+) spark amplitude was hardly affected. This suggests that moderate changes in RyR gating by second-messenger systems will principally alter the spatiotemporal properties of SR release, with smaller effects on the amount released.
Collapse
Affiliation(s)
- M B Cannell
- Department of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom.
| | | | | | | |
Collapse
|
4
|
Das T, Hoshijima M. Adding a new dimension to cardiac nano-architecture using electron microscopy: coupling membrane excitation to calcium signaling. J Mol Cell Cardiol 2012. [PMID: 23201225 DOI: 10.1016/j.yjmcc.2012.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Advances in microscopic imaging technologies and associated computational methods now allow descriptions of cellular anatomy to go beyond 2-dimensions, revealing new micro-domain dynamics at unprecedented resolutions. In cardiomyocytes, electron microscopy (EM) first described junctional membrane complexes between the sarcolemma and sarcoplasmic reticulum over a half-century ago. Since then, 3-dimensional EM technologies such as electron tomography have become successful in determining the realistic nano-geometry of membrane junctions (dyads and peripheral junctions) and associated structures such as transverse tubules (T-tubules, aka. T-system). Concomitantly, super-resolution light microscopy has gone beyond the diffraction-limit to determine the distribution of molecules, such as ryanodine receptors, with 10(-8) meter (10nm) order accuracy. This review provides the current structural perspective and functional interpretation of membrane junction complexes, which are the central machinery controlling cardiac excitation-contraction coupling via calcium signaling.
Collapse
Affiliation(s)
- Tapaswini Das
- The Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
5
|
Soeller C, Cannell MB. Analysing cardiac excitation–contraction coupling with mathematical models of local control. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 85:141-62. [PMID: 15142741 DOI: 10.1016/j.pbiomolbio.2003.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cardiac excitation-contraction (E-C) coupling describes the process that links sarcolemmal Ca2+ influx via L-type Ca2+ channels to Ca2+ release from the sarcoplasmic reticulum via ryanodine receptors (RyRs). This process has proven difficult to study experimentally, and complete descriptions of how the cell couples surface membrane and intracellular signal transduction proteins to achieve both stable and sensitive intracellular calcium release are still lacking. Mathematical models provide a framework to test our understanding of how this is achieved. While no single model is yet capable of describing all features of cardiac E-C coupling, models of increasing complexity are revealing unexpected subtlety in the process. In particular, modelling has established a general failure of 'common-pool' models and has emphasized the requirement for 'local control' so that microscopic sub-cellular domains can separate local behaviour from the whole-cell average (common-pool) behaviour. The micro-architecture of the narrow diadic cleft in which the local control takes place is a key factor in determining local Ca2+ dynamics. There is still considerable uncertainty about the number of Ca2+ ions required to open RyRs within the cleft and various gating models have been proposed, many of which are in reasonable agreement with available experimental data. However, not all models exhibit a realistic voltage dependence of E-C coupling gain. Furthermore, it is unclear which model features are essential to producing reasonable gain properties. Thus, despite the success of local-control models in explaining many features of cardiac E-C coupling, more work will be needed to provide a sound theoretical basis of cardiac E-C coupling.
Collapse
Affiliation(s)
- Christian Soeller
- Department of Physiology, School of Medical Sciences, University of Auckland, 85 Park Rd., Grafton, Private Bag 92019, Auckland 1, New Zealand.
| | | |
Collapse
|
6
|
Michailova A, DelPrincipe F, Egger M, Niggli E. Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum. Biophys J 2002; 83:3134-51. [PMID: 12496084 PMCID: PMC1302392 DOI: 10.1016/s0006-3495(02)75317-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ca(2+) signaling in cells is largely governed by Ca(2+) diffusion and Ca(2+) binding to mobile and stationary Ca(2+) buffers, including organelles. To examine Ca(2+) signaling in cardiac atrial myocytes, a mathematical model of Ca(2+) diffusion was developed which represents several subcellular compartments, including a subsarcolemmal space with restricted diffusion, a myofilament space, and the cytosol. The model was used to quantitatively simulate experimental Ca(2+) signals in terms of amplitude, time course, and spatial features. For experimental reference data, L-type Ca(2+) currents were recorded from atrial cells with the whole-cell voltage-clamp technique. Ca(2+) signals were simultaneously imaged with the fluorescent Ca(2+) indicator Fluo-3 and a laser-scanning confocal microscope. The simulations indicate that in atrial myocytes lacking T-tubules, Ca(2+) movement from the cell membrane to the center of the cells relies strongly on the presence of mobile Ca(2+) buffers, particularly when the sarcoplasmic reticulum is inhibited pharmacologically. Furthermore, during the influx of Ca(2+) large and steep concentration gradients are predicted between the cytosol and the submicroscopically narrow subsarcolemmal space. In addition, the computations revealed that, despite its low Ca(2+) affinity, ATP acts as a significant buffer and carrier for Ca(2+), even at the modest elevations of [Ca(2+)](i) reached during influx of Ca(2+).
Collapse
Affiliation(s)
- Anushka Michailova
- Department of Physiology, University of Bern, Buehlplatz 5, CH-3012 Bern, Switzerland.
| | | | | | | |
Collapse
|
7
|
|
8
|
Vierling W, Seibel K, Reiter M. Voltage-dependent calcium release in guinea-pig cardiac ventricular muscle as antagonized by magnesium and calcium. Basic Res Cardiol 1987; 82:415-27. [PMID: 3426520 DOI: 10.1007/bf01907089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An increase in extracellular potassium concentration from 4 to 16 mmol/l caused a decrease in membrane potential from -92 to -59 mV and selectively diminished the earlier of two contraction components of guinea-pig papillary muscles at 0.2 Hz stimulation frequency in the presence of noradrenaline. The influence on the early contraction component had a threshold of 8 mmol/l K+, corresponding to a membrane potential of -77 mV. However, test contractions elicited 800 ms after the 5 s stimulation interval exhibited an unimpaired early component. Since the activator calcium responsible for the early contraction component is derived, in mammalian ventricular muscle, from the junctional sarcoplasmic reticulum, it is assumed that the release site of the reticulum was filled with calcium shortly (800 ms) after a regular contraction, and lost its calcium at 16 mmol/l extracellular K+, during the 5 s stimulation interval. The potassium-induced depolarization determined the rate of calcium leakage during rest from the intracellular store. The depolarization-induced decline of the early contraction component was equally well antagonized by Mg2+ or Ca2+ without influencing the measured transmembrane potential. Both divalent cations shifted the relation between potassium concentration or membrane potential and the strength of the early contraction component to less negative membrane potentials. In order to reduce the early contraction component by 25% in the presence of 9.6 instead of 1.2 mmol/l Mg2+, the potassium concentration had to be increased from 9.6 to 22.0 mmol/l, with a respective decrease in resting membrane potential from -72.6 to -51.1 mV. The antagonistic effect of both divalent cations is though to result from the neutralization of negative charges outside the sarcolemma with a respective decrease in the outside surface potential.
Collapse
Affiliation(s)
- W Vierling
- Institut für Pharmakologie und Toxikologie, Technischen Universität München, FRG
| | | | | |
Collapse
|
9
|
Larsen TH, Saetersdal T, Grong K. The ultrastructure of the myocyte in different regions of experimental infarcts in the cat heart. RESEARCH IN EXPERIMENTAL MEDICINE. ZEITSCHRIFT FUR DIE GESAMTE EXPERIMENTELLE MEDIZIN EINSCHLIESSLICH EXPERIMENTELLER CHIRURGIE 1986; 186:295-306. [PMID: 3764092 DOI: 10.1007/bf01852306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ultrastructure of myocytes was studied in the left ventricular myocardium of the cat heart after 3 h of LAD ligation. The ischemic, borderline, and normally perfused myocardium was defined by in vivo injection of fluorescein and by regional myocardial blood flow measurements with 15.5 microns radio-labeled microspheres. A semiquantitation of the number of irreversible injured cells in per cent of total counted in the three different zones showed that 53%-63% were irreversibly injured in the ischemic zone, 7%-26% in the borderline area, while none were irreversibly injured in the normally perfused myocardium. The interior excitation-contraction couplings in the normally perfused myocardium comprise interior dyads, triads, reversed triads, and encircling couplings. While the couplings in general were structurally resistant to ischemia, injured interior couplings were apparent in severely damaged cells of the hypoperfused tissue. Such injuries comprise a widening of the junctional gap and a disintegration of the junctional processes.
Collapse
|
10
|
Abstract
The structure of corbular sarcoplasmic reticulum as part of the sarcoplasmic reticulum (SR) in perfusion-fixed rabbit cardiac muscle was studied by thin sections and freeze fracture. In thin sections, processes on the surface of corbular SR have all the anatomical features of junctional processes of junctional SR. By freeze fracture, the E face of corbular SR was particle poor and showed deep pits; the P face was particle rich. The demonstrated structural homology of corbular SR to all forms of junctional SR justifies its inclusion in that group.
Collapse
|
11
|
Brandt N. Identification of two populations of cardiac microsomes with nitrendipine receptors: correlation of the distribution of dihydropyridine receptors with organelle specific markers. Arch Biochem Biophys 1985; 242:306-19. [PMID: 2996434 DOI: 10.1016/0003-9861(85)90506-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Conventional sarcolemma and microsome preparations from rabbit and cat ventricular muscle were fractionated on continuous linear sucrose gradients. The distribution of nitrendipine receptors was compared with the distribution of organelle specific markers. For the conventional sarcolemma preparation, the dihydropyridine receptor distribution matched the pattern for external membrane markers in position and shape. The number of nitrendipine receptors was three times the number of muscarine binding sites (approximately 1.0 pmol/mg protein) at the isopycnic point of the vesicles. In contrast, two populations of vesicles with nitrendipine receptors were found in the microsome preparations. One population banded with the external membrane vesicles at a mean buoyant density of 24% (w/w) sucrose. The specific content of dihydropyridine receptors (0.2 pmol/mg) was 1/5 that for the muscarine receptors. The second and major population followed the distribution of an Mr 300K polypeptide, a marker for the junctional cisternae of the sarcoplasmic reticulum (SR). Muscarine receptors, however, were also present throughout that band, albeit at a reduced specific content (approximately 0.1 pmol/mg) compared to the light vesicles. The nitrendipine specific content increased over threefold from that of the light vesicles such that the relative content (nitrendipine/muscarine) was twice that determined for the conventional sarcolemma preparation. Nitrendipine receptors were not associated with nonjunctional SR or mitochondria. The light and heavy microsome populations were incubated with 0.2 mg digitonin/mg protein, a treatment which preferentially perturbs the isopycnic point of external membrane vesicles. For the light vesicles, the membranes with muscarine and nitrendipine receptors became heavier than the bulk of the SR. In contrast, after digitonin treatment of the heavy vesicle population, the nitrendipine and muscarine receptors and the SR marker appeared to comigrate into a sharpened band at 39% sucrose. The possibility that the dihydropyridine binding sites in the heavy microsome population are on external membrane vesicles physically linked to the junctional SR is discussed.
Collapse
|
12
|
High molecular weight proteins in cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles bind calmodulin, are phosphorylated, and are degraded by Ca2+-activated protease. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)39765-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Forbes MS, Hawkey LA, Sperelakis N. The transverse-axial tubular system (TATS) of mouse myocardium: its morphology in the developing and adult animal. THE AMERICAN JOURNAL OF ANATOMY 1984; 170:143-62. [PMID: 6465048 DOI: 10.1002/aja.1001700203] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Invaginations of the sarcolemma that generate the transverse-axial tubular system (TATS) of the ventricular myocardial cells have begun to develop in the mouse by the time of birth. The formation of the TATS appears to be derived from the repetitive generation of caveolae, which forms "beaded tubules". Beaded tubules are retained in the adult, in which they frequently present a spiraled topography. Development of the TATS progresses so rapidly that complex systems are already present in the cardiac muscle cells of young mice; by 10-14 days of age, the ultrastructure is essentially identical to that of the adult. The mouse myocardial TATS is composed of anastomosed elements that are directed transversely and axially (longitudinally). Many tubules have an oblique orientation, however, and most elements of the TATS are highly pleiomorphic. In this respect the TATS of the mouse heart is relatively primitive in appearance in comparison with the more ordered TATS latticeworks typical of the ventricular cells of other mammals. Stereological analysis of the mouse TATS indicates that the volume fraction (VV) and surface density (SV) are considerably greater than previously reported (3.24% and 0.5028 micron-1, respectively). The most complex ramifications of the TATS are embodied in the subsarcolemmal caveolar system and the deeper tubulovesicular "labyrinths", both of which can be found in early postnatal and adult ventricular cells. In atrial cells, TATS development is initiated several days later than in the ventricular cells. The TATS of adult atrial myocardial cells is less prominent than the ventricular TATS and consists largely of axial elements; the incidence of the TATS, furthermore, is more pronounced in the left than in the right atrium.
Collapse
|
14
|
|
15
|
Forbes MS, Sperelakis N. Ultrastructure of Mammalian Cardiac Muscle. PHYSIOLOGY AND PATHOPHYSIOLOGY OF THE HEART 1984. [DOI: 10.1007/978-1-4757-1171-4_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Forbes MS, Sperelakis N. The membrane systems and cytoskeletal elements of mammalian myocardial cells. CELL AND MUSCLE MOTILITY 1983; 3:89-155. [PMID: 6231093 DOI: 10.1007/978-1-4615-9296-9_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|