1
|
Daneshvar N, Anderson JE. Preliminary Study of S100B and Sema3A Expression Patterns in Regenerating Muscle Implicates P75-Expressing Terminal Schwann Cells and Muscle Satellite Cells in Neuromuscular Junction Restoration. Front Cell Dev Biol 2022; 10:874756. [PMID: 35923848 PMCID: PMC9340223 DOI: 10.3389/fcell.2022.874756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Terminal Schwann cells (TSCs) help regulate the formation, maintenance, function, and repair of neuromuscular junctions (NMJs) and axon guidance after muscle injury. Premature activation of muscle satellite cells (SCs), induced by isosorbide dinitrate (ISDN) before injury, accelerates myogenic regeneration, disrupts NMJ remodeling and maturation, decreases Sema3A protein-induced neuro-repulsion, and is accompanied by time-dependent changes in S100B protein levels. Here, to study the effects of premature SC activation on TSCs and SCs, both expressing P75 nerve growth-factor receptor, in situ hybridization was used to identify transcripts of S100B and Sema3A, and the number, intensity, and diameter of expression sites were analyzed. The number of sites/fields expressing S100B and Sema3A increased with regeneration time (both p < 0.001). Expression-site intensity (S100B) and diameter (S100B and Sema3A) decreased during regeneration (p = 0.005; p < 0.05, p = 0.006, respectively). P75 protein colocalized with a subset of S100B and Sema3A expression sites. Principal component analyses of gene expression, protein levels, and histological variables (fiber diameter, vascular density) in control and ISDN-pretreated groups explained 83% and 64% of the dataset variance, respectively. A very strong loading coefficient for colocalization of P75 protein with S100B and Sema3A mRNAs (0.91) in control regenerating muscle dropped markedly during regeneration disrupted by premature SC activation (-0.10 in Factor 1 to 0.55 in Factor 3). These findings strongly implicate the triple-expression profile by TSCs and/or SCs as a strong correlate of the important synchrony of muscle and nerve regeneration after muscle tissue injury. The results have the potential to focus future research on the complex interplay of TSCs and SCs in neuromuscular tissue repair and help promote effective function after traumatic muscle injury.
Collapse
Affiliation(s)
| | - Judy E. Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Hejbøl EK, Hajjaj MA, Nielsen O, Schrøder HD. Marker Expression of Interstitial Cells in Human Skeletal Muscle: An Immunohistochemical Study. J Histochem Cytochem 2019; 67:825-844. [PMID: 31411936 DOI: 10.1369/0022155419871033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is a growing recognition that myogenic stem cells are influenced by their microenvironment during regeneration. Several interstitial cell types have been described as supportive for myoblasts. In this role, both the pericyte as a possible progenitor for mesenchymal stem cells, and interstitial cells in the endomysium have been discussed. We have applied immunohistochemistry on normal and pathological human skeletal muscle using markers for pericytes, or progenitor cells and found a cell type co-expressing CD10, CD34, CD271, and platelet-derived growth factor receptor α omnipresent in the endomysium. The marker profile of these cells changed dynamically in response to muscle damage and atrophy, and they proliferated in response to damage. The cytology and expression profile of the CD10+ cells indicated a capacity to participate in myogenesis. Both morphology and indicated function of these cells matched properties of several previously described interstitial cell types. Our study suggests a limited number of cell types that could embrace many of these described cell types. Our study indicate that the CD10+, CD34+, CD271+, and platelet-derived growth factor receptor α+ cells could have a supportive role in human muscle regeneration, and thus the mechanisms by which they exert their influence could be implemented in stem cell therapy.
Collapse
Affiliation(s)
- Eva K Hejbøl
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
| | - Mohammad A Hajjaj
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Ole Nielsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Henrik D Schrøder
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Hara M, Yokota K, Saito T, Kobayakawa K, Kijima K, Yoshizaki S, Okazaki K, Yoshida S, Matsumoto Y, Harimaya K, Nakashima Y, Okada S. Periostin Promotes Fibroblast Migration and Inhibits Muscle Repair After Skeletal Muscle Injury. J Bone Joint Surg Am 2018; 100:e108. [PMID: 30106825 DOI: 10.2106/jbjs.17.01230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Skeletal muscle injury (SMI) can cause physical disability due to insufficient recovery of the muscle. The development of muscle fibrosis after SMI has been widely regarded as a principal cause of this failure to recover. Periostin (Postn) exacerbates tissue fibrosis in various organs. We investigated whether Postn is involved in the pathophysiology after SMI. METHODS Partial laceration injuries of the gastrocnemius were created in wild-type (WT) and Postn knockout (Postn) mice. We examined the expression of the Postn gene before and after SMI. Regeneration and fibrosis of skeletal muscle were evaluated by histological analyses, and recovery of muscle strength was measured by physiological testing. Immunohistochemistry was used to examine the number and proliferative potential of infiltrating fibroblasts in injured muscle. A trans-well migration assay was used to assess the migration capability of fibroblasts. Control immunoglobulin G (IgG) or Postn-neutralizing antibody (Postn-nAb) was injected into injured muscle at 7 and 14 days after injury (dpi). We evaluated the effects of Postn-nAb on muscle repair after SMI. RESULTS The expression of Postn was dramatically upregulated after SMI. Compared with WT mice, Postn mice had improved muscle recovery and attenuated fibrosis as well as a significantly reduced number of infiltrating fibroblasts. The proliferative potential of these fibroblasts in WT and Postn mice was comparable at 14 dpi; however, the migration capability of fibroblasts was significantly enhanced in the presence of Postn (mean, 258%; 95% confidence interval, 183% to 334%). Moreover, the administration of Postn-nAb inhibited fibroblast infiltration and promoted muscle repair after SMI. CONCLUSIONS Postn exacerbates fibrotic scar formation through the promotion of fibroblast migration into injured muscle after SMI. Treatment with Postn-nAb is effective for attenuating fibrosis and improving muscle recovery after SMI. CLINICAL RELEVANCE Our findings may provide a potential therapeutic strategy to enhance muscle repair and functional recovery after SMI.
Collapse
Affiliation(s)
- Masamitsu Hara
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Yokota
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeyuki Saito
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazu Kobayakawa
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Kijima
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Yoshizaki
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shigeo Yoshida
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsumi Harimaya
- Department of Orthopaedic Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yasuharu Nakashima
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Ettinger K, Nevo Y, Marcinkiewicz C, Lazarovici P. Nerve growth factor-induced myoprotection in C2C12 muscle cells is mediated by α9β1 integrin via release of PGE2. J Basic Clin Physiol Pharmacol 2016; 26:411-5. [PMID: 25741790 DOI: 10.1515/jbcpp-2014-0111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/21/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Nerve growth factor (NGF) mediates a wide range of activities in the central nervous system including neuronal differentiation, synaptic plasticity, and neuroprotection. In addition, NGF places an important role in skeletal muscle physiology by some unknown mechanisms. We recently demonstrated that NGF conferred myoprotection toward ischemia in C2C12 skeletal muscle cell model, establishing an important trophic role for NGF in skeletal muscle. METHODS In this report, using ELISA and oxygen-glucose deprivation (OGD) assays, we investigated the potential contribution of prostaglandin E2 (PGE2) to NGF myoprotective effects toward C2C12 cultures exposed to OGD insults. Vipera lebetina obtusa disintegrin 5 (VLO5), a selective antagonist of α9β1 integrin, was used as an experimental tool to clarify α9β1 integrin role in NGF action. RESULTS NGF-induced mitogen-activated protein kinase type 1 or 2 (ERK1/2) phosphorylation in C2C12 cells and in a dose-response fashion stimulated PGE2 release, both effects antagonized by VLO5 and PD98059. NGF-induced myoprotection of the cells exposed for 7 h to OGD, followed by 18 h of reoxygenation, was reversed by VLO5 treatment. CONCLUSIONS These results suggest that NGF activation of α9β1 integrin induced myoprotection by stimulation of ERK phosphorylation and release of cytoprotective PGE2 mediator. This effect may be also relevant for NGF-induced pain and hyperalgesia in the skeletal muscle.
Collapse
|
5
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
6
|
Ettinger K, Lecht S, Arien-Zakay H, Cohen G, Aga-Mizrachi S, Yanay N, Saragovi HU, Nedev H, Marcinkiewicz C, Nevo Y, Lazarovici P. Nerve growth factor stimulation of ERK1/2 phosphorylation requires both p75NTR and α9β1 integrin and confers myoprotection towards ischemia in C2C12 skeletal muscle cell model. Cell Signal 2012; 24:2378-88. [PMID: 22960610 DOI: 10.1016/j.cellsig.2012.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/06/2012] [Accepted: 08/23/2012] [Indexed: 01/11/2023]
Abstract
The functions of nerve growth factor (NGF) in skeletal muscles physiology and pathology are not clear and call for an updated investigation. To achieve this goal we sought to investigate NGF-induced ERK1/2 phosphorylation and its role in the C2C12 skeletal muscle myoblasts and myotubes. RT-PCR and western blotting experiments demonstrated expression of p75(NTR), α9β1 integrin, and its regulator ADAM12, but not trkA in the cells, as also found in gastrocnemius and quadriceps mice muscles. Both proNGF and βNGF induced ERK1/2 phosphorylation, a process blocked by (a) the specific MEK inhibitor, PD98059; (b) VLO5, a MLD-disintegrin with relative selectivity towards α9β1 integrin; and (c) p75(NTR) antagonists Thx-B and LM-24, but not the inactive control molecule backbone Thx. Upon treatment for 4 days with either anti-NGF antibody or VLO5 or Thx-B, the proliferation of myoblasts was decreased by 60-70%, 85-90% and 60-80% respectively, indicative of trophic effect of NGF which was autocrinically released by the cells. Exposure of myotubes to ischemic insult in the presence of βNGF, added either 1h before oxygen-glucose-deprivation or concomitant with reoxygenation insults, resulted with about 20% and 33% myoprotection, an effect antagonized by VLO5 and Thx-B, further supporting the trophic role of NGF in C2C12 cells. Cumulatively, the present findings propose that proNGF and βNGF-induced ERK1/2 phosphorylation in C2C12 cells by functional cooperation between p75(NTR) and α9β1 integrin, which are involved in myoprotective effects of autocrine released NGF. Furthermore, the present study establishes an important trophic role of α9β1 in NGF-induced signaling in skeletal muscle model, resembling the role of trkA in neurons. Future molecular characterization of the interactions between NGF receptors in the skeletal muscle will contribute to the understanding of NGF mechanism of action and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Keren Ettinger
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Colombo E, Romaggi S, Blasevich F, Mora M, Falcone C, Lochmüller H, Morandi L, Farina C. The neurotrophin receptor p75NTR is induced on mature myofibres in inflammatory myopathies and promotes myotube survival to inflammatory stress. Neuropathol Appl Neurobiol 2012; 38:367-78. [PMID: 21851375 DOI: 10.1111/j.1365-2990.2011.01212.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS Recent studies propose the neurotrophin receptor p75NTR as a marker for muscle satellite cells and a key regulator of regenerative processes after injury. Here, we investigated the contribution of cellular compartments other than satellite cells and regenerating myofibres to p75NTR signal in diseased skeletal muscle. METHODS We checked regulation of p75NTR expression in muscle biopsies from patients with inflammatory myopathies (polymyositis, dermatomyositis and inclusion body myositis), or Becker muscular dystrophy, and in nonmyopathic tissues. Quantitative PCR, immunohistochemistry, immunofluorescence or electron microscopy were used. RNA interference approaches were applied to myotubes to explore p75NTR function. RESULTS We found p75NTR transcript and protein upregulation in all inflammatory myopathies but not in dystrophic muscle, suggesting a role for inflammatory mediators in induction of p75NTR expression. In inflamed muscle p75NTR was localized on distinct cell types, including immune cells and mature myofibres. In vitro assays on human myotubes confirmed that inflammatory factors such as IL-1 could induce p75NTR. Finally, RNA interference experiments in differentiated cells showed that, in the absence of p75NTR, myotubes were more susceptible to apoptosis when exposed to inflammatory stimuli. CONCLUSIONS Our observations that p75NTR is upregulated on skeletal myofibres in inflammatory myopathies in vivo and promotes resistance to inflammatory mediators in vitro suggest that neurotrophin signalling through p75NTR may mediate a tissue-protective response to inflammation in skeletal myofibres.
Collapse
Affiliation(s)
- E Colombo
- Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Miura P, Amirouche A, Clow C, Bélanger G, Jasmin BJ. Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206. J Neurochem 2011; 120:230-8. [PMID: 22081998 DOI: 10.1111/j.1471-4159.2011.07583.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is required for efficient skeletal-muscle regeneration and perturbing its expression causes abnormalities in the proliferation and differentiation of skeletal muscle cells. In this study, we investigated the mechanism of BDNF suppression that occurs during myogenic differentiation. BDNF is expressed at the mRNA level as two isoforms that differ in the length of their 3'UTRs as a result of alternative cleavage and polyadenylation. Sequence analysis revealed the presence of three miR-206 target sites in the long BDNF 3'UTR (BDNF-L), whereas only one site was found in the short mRNA BDNF 3'UTR (BDNF-S). miR-206 is known to regulate the differentiation of C2C12 myoblasts and its expression is induced during the transition from myoblasts to myotubes. We thus examined whether miR-206-mediated suppression is responsible for the expression pattern of BDNF during myogenic differentiation. BDNF-L was suppressed to a greater extent than BDNF-S during differentiation of C2C12 myoblasts. Transfection of a miR-206 precursor decreased activity of reporters representative of the BDNF-L 3'UTR, but not BDNF-S 3'UTR, and repressed endogenous BDNF mRNA levels. This suppression was found to be dependent on the presence of multiple miR-206 target sites in the BDNF-L 3'UTR. Conversely, suppression of miR-206 levels resulted in de-repression of BDNF 3'UTR reporter activity and increased endogenous BDNF-L mRNA levels. A receptor for BDNF, p75(NTR) , was also suppressed during differentiation and in response to miR-206, but this appeared to not be entirely mediated via a miR-206 target site its 3'UTR. Based on these observations, BDNF represents a novel target through which miR-206 controls the initiation and maintenance of the differentiated state of muscle cells. These results further suggest that miR-206 might play a role in regulating retrograde signaling of BDNF at the neuromuscular junction.
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular & Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|
9
|
The recent understanding of the neurotrophin's role in skeletal muscle adaptation. J Biomed Biotechnol 2011; 2011:201696. [PMID: 21960735 PMCID: PMC3179880 DOI: 10.1155/2011/201696] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/24/2011] [Indexed: 12/31/2022] Open
Abstract
This paper summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of the maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors influence not only the survival and function of innervating motoneurons but also the development and differentiation of myoblasts and muscle fibers. Muscle contractions (e.g., exercise) produce BDNF mRNA and protein in skeletal muscle, and the BDNF seems to play a role in enhancing glucose metabolism and may act for myokine to improve various brain disorders (e.g., Alzheimer's disease and major depression). In adults with neuromuscular disorders, variations in neurotrophin expression are found, and the role of neurotrophins under such conditions is beginning to be elucidated. This paper provides a basis for a better understanding of the role of these factors under such pathological conditions and for treatment of human neuromuscular disease.
Collapse
|
10
|
Human neurotrophin receptor p75NTR defines differentiation-oriented skeletal muscle precursor cells: implications for muscle regeneration. J Neuropathol Exp Neurol 2011; 70:133-42. [PMID: 21343882 DOI: 10.1097/nen.0b013e3182084391] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Satellite cells are resident stem cells of adult skeletal muscle that have roles in tissue repair. Although several efforts have led to the functional characterization of distinct myogenic populations in animal models, the translation of these findings to humans has been limited. Here, we analyzed the expression and function of the neurotrophin receptor p75NTR in human skeletal muscle precursor cells. We combined histological investigations of muscle biopsies with molecular and cellular analyses of primary muscle precursor cells. p75NTR is expressed by most satellite cells in vivo and is a marker for regenerating fibers in inflamed and dystrophic muscle. p75NTR mRNA and protein are also detectable in primary myoblasts, and these levels increase transiently when cell differentiation is triggered. Transcriptome analyses of p75NTR high versus p75NTR low muscle cells showed that p75NTR is the prototype marker for a precursor cell population that has a broad transcriptional repertoire associated with muscle development and maturation. Several in vitro experiments, including receptor blockade and gene silencing in myoblasts, proved that p75NTR specifically regulates myogenesis and dystrophin expression. Taken together, the results indicate that p75NTR is a novel marker of human differentiation-prone muscle precursor cells that is involved in myogenesis in vivo and in vitro.
Collapse
|
11
|
Angelucci F, Colantoni L. Facioscapulohumeral muscular dystrophy: do neurotrophins play a role? Muscle Nerve 2010; 41:120-7. [PMID: 19813193 DOI: 10.1002/mus.21505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although the molecular defect of facioscapulohumeral muscular dystrophy (FSHD) is well established and involves the contraction of the polymorphic 3.3 kb D4Z4 repeat on the subtelomeric region of chromosome 4q35, the pathologic effects of this deletion remain largely unknown. As a consequence, no specific treatment for FSHD is at present available. Thus, there is the need to explore new areas in an attempt to better characterize pathophysiological alterations in FSHD that might be useful for managing the disease. Neurotrophins (nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5) are a class of proteins involved in the development, maintenance, and function of neurons of the peripheral and central nervous systems. In addition, neurotrophins and their RNAs are expressed in muscle, where they have a role in development and regeneration. In this article we put together the experimental evidence that indicates neurotrophins might be involved in the pathophysiology of FSHD and discuss the possible implications of this assumption.
Collapse
Affiliation(s)
- Francesco Angelucci
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, 00179, Rome, Italy.
| | | |
Collapse
|
12
|
Deponti D, Buono R, Catanzaro G, De Palma C, Longhi R, Meneveri R, Bresolin N, Bassi MT, Cossu G, Clementi E, Brunelli S. The low-affinity receptor for neurotrophins p75NTR plays a key role for satellite cell function in muscle repair acting via RhoA. Mol Biol Cell 2009; 20:3620-7. [PMID: 19553472 PMCID: PMC2777922 DOI: 10.1091/mbc.e09-01-0012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 06/15/2009] [Indexed: 11/11/2022] Open
Abstract
Regeneration of muscle fibers, lost during pathological muscle degeneration or after injuries, is mediated by the production of new myofibres. This process, sustained by the resident stem cells of the muscle, the satellite cells, is finely regulated by local cues, in particular by cytokines and growth factors. Evidence in the literature suggests that nerve growth factor (NGF) is involved in muscle fiber regeneration; however, its role and mechanism of action were unclear. We have investigated this issue in in vivo mouse models of muscle regeneration and in primary myogenic cells. Our results demonstrate that NGF acts through its low-affinity receptor p75(NTR) in a developmentally regulated signaling pathway necessary to myogenic differentiation and muscle repair in vivo. We also demonstrate that this action of NGF is mediated by the down-regulation of RhoA-GTP signaling in myogenic cells.
Collapse
MESH Headings
- Animals
- Cell Differentiation/physiology
- Cell Fusion
- Cells, Cultured
- Cytoskeleton/metabolism
- Humans
- Mice
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Nerve Growth Factor/metabolism
- Receptors, Nerve Growth Factor/metabolism
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/physiology
- Signal Transduction/physiology
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
| | - Roberta Buono
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppina Catanzaro
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clara De Palma
- Department of Preclinical Sciences, LITA-Vialba, University of Milano, 20157 Milan, Italy
| | - Renato Longhi
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche
| | - Raffaella Meneveri
- Department of Experimental Medicine, University of Milano-Bicocca, 20052 Monza, Italy
| | - Nereo Bresolin
- *E. Medea Scientific Institute, 23842 Bosisio Parini, Italy
- Department of Neurological Sciences, University of Milano, 20129 Milan, Italy; and
| | | | - Giulio Cossu
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Biology, University of Milano, 20130 Milan, Italy
| | - Emilio Clementi
- *E. Medea Scientific Institute, 23842 Bosisio Parini, Italy
- Department of Preclinical Sciences, LITA-Vialba, University of Milano, 20157 Milan, Italy
| | - Silvia Brunelli
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Experimental Medicine, University of Milano-Bicocca, 20052 Monza, Italy
| |
Collapse
|
13
|
Lavasani M, Lu A, Peng H, Cummins J, Huard J. Nerve growth factor improves the muscle regeneration capacity of muscle stem cells in dystrophic muscle. Hum Gene Ther 2006; 17:180-92. [PMID: 16454652 DOI: 10.1089/hum.2006.17.180] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Researchers have attempted to use gene- and cell-based therapies to restore dystrophin and alleviate the muscle weakness that results from Duchenne muscular dystrophy (DMD). Our research group has isolated populations of muscle-derived stem cells (MDSCs) from the postnatal skeletal muscle of mice. In comparison with satellite cells, MDSCs display an improved transplantation capacity in dystrophic mdx muscle that we attribute to their ability to undergo long-term proliferation, self-renewal, and multipotent differentiation, including differentiation toward endothelial and neuronal lineages. Here we tested whether the use of nerve growth factor (NGF) improves the transplantation efficiency of MDSCs. We used two methods of in vitro NGF stimulation: retroviral transduction of MDSCs with a CL-NGF vector and direct stimulation of MDSCs with NGF protein. Neither method of NGF treatment changed the marker profile or proliferation behavior of the MDSCs, but direct stimulation with NGF protein significantly reduced the in vitro differentiation ability of the cells. NGF stimulation also significantly enhanced the engraftment efficiency of MDSCs transplanted within the dystrophic muscle of mdx mice, resulting in the regeneration of numerous dystrophin-positive muscle fibers. These findings highlight the importance of NGF as a modulatory molecule, the study of which will broaden our understanding of its biologic role in the regeneration and repair of skeletal muscle by musclederived cells.
Collapse
Affiliation(s)
- Mitra Lavasani
- Department of Bioengineering, University of Pittsburgh, and Growth and Development Laboratory, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
14
|
Lavasani M, Lu A, Peng H, Cummins J, Huard J. Nerve Growth Factor Improves the Muscle Regeneration Capacity of Muscle Stem Cells in Dystrophic Muscle. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
15
|
Chevrel G, Hohlfeld R, Sendtner M. The role of neurotrophins in muscle under physiological and pathological conditions. Muscle Nerve 2006; 33:462-76. [PMID: 16228973 DOI: 10.1002/mus.20444] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of development, maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors not only modulates survival and function of innervating motoneurons and proprioceptive neurons but also development and differentiation of myoblasts and muscle fibers. Neurotrophins and neurotrophin receptors play a role in the coordination of muscle innervation and functional differentiation of neuromuscular junctions. However, neurotrophin receptors are also expressed in differentiating muscle cells, in particular at early developmental stages in myoblasts before they fuse. In adults with pathological conditions such as human degenerative and inflammatory muscle disorders, variations of neurotrophin expression are found, but the role of neurotrophins under such conditions is still not clear. The goal of this review is to provide a basis for a better understanding and future studies on the role of these factors under such pathological conditions and for treatment of human muscle diseases.
Collapse
Affiliation(s)
- Guillaume Chevrel
- Department of Neuroimmunology, Max-Planck Institute of Neurobiology, Martinsried, Germany
| | | | | |
Collapse
|
16
|
Reddypalli S, Roll K, Lee HK, Lundell M, Barea-Rodriguez E, Wheeler EF. p75NTR-mediated signaling promotes the survival of myoblasts and influences muscle strength. J Cell Physiol 2005; 204:819-29. [PMID: 15754321 DOI: 10.1002/jcp.20330] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
During muscle development, the p75(NTR) is expressed transiently on myoblasts. The temporal expression pattern of the receptor raises the possibility that the receptor is influencing muscle development. To test this hypothesis, p75(NTR)-deficient mutant mice were tested for muscle strength by using a standard wire gripe strength test and were found to have significantly decreased strength relative to that of normal mice. When normal mybolasts were examined in vivo for expression of NGF receptors, p75(NTR) was detected on myoblasts but the high affinity NGF receptor, trk A, was not co-expressed with p75(NTR). In vitro, proliferating C2C12 and primary myoblasts co-expressed the p75(NTR) and MyoD, but immunofluorescent analysis of primary myoblasts and RT-PCR analysis of C2C12 mRNA revealed that myoblasts were devoid of trk A. In contrast to the cell death functions that characterize the p75(NTR) in neurons, p75(NTR)-positive primary and C2C12 myoblasts did not differentiate or undergo apoptosis in response to neurotrophins. Rather, myoblasts survived and even proliferated when grown at subconfluent densities in the presence of the neurotrophins. Furthermore, when myoblasts treated with NGF were lysed and immunoprecipitated with antibodies against phosphorylated I-kappaB and AKT, the cells contained increased levels of both phospho-proteins, both of which promote cell survival. By contrast, neurotrophin-treated myoblasts did not induce phosphorylation of Map Kinase p42/44 or p38, indicating the survival was not mediated by the trk A receptor. Taken together, the data indicate that the p75(NTR) mediates survival of myoblasts prior to differentiation and that the activity of this receptor during myogenesis is important for developing muscle.
Collapse
|
17
|
Toti P, Villanova M, Vatti R, Schuerfeld K, Stumpo M, Barbagli L, Malandrini A, Costantini M. Nerve growth factor expression in human dystrophic muscles. Muscle Nerve 2003; 27:370-3. [PMID: 12635125 DOI: 10.1002/mus.10332] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nerve growth factor (NGF) is a neurotrophin that is expressed during muscle development and is also capable of favoring muscle regeneration in experimental studies. The presence of NGF in muscular dystrophies, such as Duchenne and Becker muscular dystrophies, has never been fully explored. By means of immunohistochemistry, we show that regenerating muscle fibers from such patients consistently express NGF, as do myofibroblasts and mast cells. By contrast, rest fibers from dystrophic patients, as well as muscle fibers from healthy, control patients and even regenerative muscle fibers in polymyositis do not show NGF immunoreactivity. The paracrine effect of NGF on muscle regeneration, as well as its chemoattractant capacities for mast cells, may contribute to explaining why regenerating fibers most frequently occur in clusters and why mast cells are more numerous in dystrophic muscles. Moreover, being a mediator of wound healing and tissue fibrosis, NGF may contribute to long-term muscle regeneration impairment by tissue fibrosis in the muscular dystrophies.
Collapse
Affiliation(s)
- Paolo Toti
- Department of Human Pathology and Oncology, University of Siena, Via delle Scotte, 53100 Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Menderes A, Yilmaz M, Vayvada H, Ozer E, Barutçu A. Effects of nerve growth factor on the neurotization of denervated muscles. Ann Plast Surg 2002; 48:415-22. [PMID: 12068225 DOI: 10.1097/00000637-200204000-00013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Studies on surgical repair techniques of the peripheral nerve are still trying to improve the outcome. There are many studies on the effects of various neurotrophic factors on the transected peripheral nerve. Muscular neurotization, which is the direct implantation of the nerve to the target denervated skeletal muscle, is one of the techniques used when the primary repair of the peripheral nerves is not possible. The effects of nerve growth factor (NGF), which is one of the primary neurotrophic factors, on the reinnervation of denervated muscles by neurotization is investigated in this experimental study. The denervated soleus muscle was neurotized via peroneal nerve implantation (group 1), and NGF was administered to the neurotized muscle (group 2). All animals were evaluated at weeks 8, 10, and 12 using electromyography. Muscle contractility, muscle weight, and histological morphometric tests were performed at week 12. The experimental groups were compared with each other and normal control values. Electromyographically, group 2 (direct nerve implantation + NGF) demonstrated better reinnervation in all evaluations. The study of muscle weight showed that the muscle mass was 75% of the normal soleus muscle in group 1 and was 85% of the normal side in group 2 at the end of week 12. In group 1, the twitch force was 56% of the normal soleus muscle and was 71% in group 2. Tetanic force was 53% of the normal soleus muscle in group 1 and 68% in group 2. Histological morphometric studies revealed that there was a decrease in the density of the motor end plates in group 1, but there was no statistically significant difference between the normal soleus muscles and the NGF applied to group 2. The positive effects of NGF on the neurotization of denervated muscles seen in this study suggest that it may be useful for treating some difficult reconstructions caused by denervation.
Collapse
Affiliation(s)
- Adnan Menderes
- Department of Plastic and Reconstructive Surgery, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey
| | | | | | | | | |
Collapse
|
19
|
Astolfi A, Nanni P, Landuzzi L, Ricci C, Nicoletti G, Rossi I, Lollini PL, De Giovanni C. An anti-apoptotic role for NGF receptors in human rhabdomyosarcoma. Eur J Cancer 2001; 37:1719-25. [PMID: 11527701 DOI: 10.1016/s0959-8049(01)00190-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The expression and biological function of Nerve Growth Factor (NGF) receptors was studied in a panel of rhabdomyosarcoma cell lines derived from embryonal and alveolar histotype. All the cell lines expressed both the high affinity receptor TrkA and the low affinity receptor p75(NTR). Treatment with exogenous NGF did not considerably alter rhabdomyosarcoma cell growth or differentiation, but significantly inhibited spontaneous apoptosis as well as apoptosis, and induced by serum starvation or apoptosis induced by treatment with cycloheximide (CHX). Rhabdomyosarcoma cell lines expressed NGF and other neurotrophins and trace amounts of NGF protein were found in the supernatants of rhabdomyosarcoma cell cultures. Blocking the putative autocrine loop with an anti-NGF antibody resulted in an increase in apoptosis compared with control cultures. These data suggest that the simultaneous presence of both high and low affinity NGF receptors engaged by endogenous or exogenous NGF might contribute to the escape from apoptosis exhibited by the rhabdomyosarcoma cells.
Collapse
Affiliation(s)
- A Astolfi
- Department of Experimental Pathology, Section of Cancer Research, University of Bologna, viale Filopanti 22, I-40126, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Rende M, Brizi E, Conner J, Treves S, Censier K, Provenzano C, Taglialatela G, Sanna PP, Donato R. Nerve growth factor (NGF) influences differentiation and proliferation of myogenic cells in vitro via TrKA. Int J Dev Neurosci 2000; 18:869-85. [PMID: 11154856 DOI: 10.1016/s0736-5748(00)00041-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Classic studies have established that muscle cells exert trophic actions on neurons of the developing peripheral nervous system through the production of neurotrophins. For this reason neurotrophins are also known as 'target-derived factors'. During differentiation, muscle cells also express some neurotrophin receptors, such as the low-affinity p75 neurotrophin receptor, which binds all neurotrophins, and the high affinity tyrosine kinase receptor TrKA, nerve growth factor (NGF) transducing receptor. The functional roles of these receptors in muscle cells are still unclear and only fragmentary and controversial data are available regarding the responsiveness of muscle cells to NGF. The aim of the present study is to investigate the effects of NGF on cells of myogenic lineage. The rat myogenic cell line L6, primary cultures of adult human myoblasts, and the human rhabdomyosarcoma cell line TE-671 were used in this study. As expected, all the three cell types expressed NGF, p75 and TrKA. NGF was expressed by L6 and primary myoblasts following differentiation, but it was constitutively expressed at high levels in the TE-671 rhabdomyosarcoma cells. In L6 myoblasts, p75 receptor was expressed in myoblasts but not in myotubes early after plating; while some primary human myoblasts expressed it at all the time-points tested. Some fusiform cells of the TE-671 rhabdomyosarcoma cell line also expressed p75. TrKA was constitutively immunodetected in all the three cell lines, suggesting that these cells may respond to NGF. Addition of exogenous NGF increased the fusion rate of both primary and L6 myoblasts, as well as the proliferation of the slowly dividing primary myoblasts. Consistently, blocking the action of endogenously produced NGF with a specific neutralizing antibody decreased the percentage of fusion in both primary and L6 myoblasts. On the contrary, blocking the binding of NGF to p75 did not affect the percentage of fusion. Furthermore, neither exogenous NGF nor NGF- or p75-neutralizing antibodies appeared to affect the rhabdomyosarcoma cells, which have a high proliferation rate and do not fuse. Pharmacological inhibition of TrKA signal transduction with K252a (in the nM range) and tyrphostin AG879 (in the low microM range) resulted in a dramatic dose-dependent decrease in proliferation of all of the myogenic cell lines tested. Interestingly, this was especially evident in the rapidly dividing rhabdomyosarcoma cell line. The TrKA inhibitors also blocked fusion of L6 and primary myoblasts and induced morphological changes characterized by the flattening of the cells and a 'spider-like' rearrangement of the intermediate filaments in all three cell lines with some minor differences. A transfection study showed that p75-overexpressing L6 cells do not fuse and present changes in their morphology similar to the TrKA-inhibitors treated L6 cells. These data support the notion that NGF expression in skeletal muscle is not only associated with a classical target-derived neurotrophic function for peripheral nervous system neurons, but also with an autocrine action which affects the proliferation, fusion into myotubes, and cell morphology of developing myoblasts. The present data also suggest that these effects of NGF are mediated by TrKA receptors and that a sustained presence of NGF is needed for increase fusion into myotubes. Lastly, the dramatic anti-proliferative effect of TrKA inhibitors on myogenic cells, and especially on the TE-671 rhabdomyosarcoma cell line, suggests that pharmacological interference with NGF signal transduction could be effective in the control of these malignancies.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Carbazoles/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Division/drug effects
- Cell Division/physiology
- Dose-Response Relationship, Immunologic
- Enzyme Inhibitors/pharmacology
- In Vitro Techniques
- Indole Alkaloids
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Nerve Growth Factor/analysis
- Nerve Growth Factor/immunology
- Nerve Growth Factor/metabolism
- Neutralization Tests
- Rats
- Receptor, Nerve Growth Factor/analysis
- Receptor, Nerve Growth Factor/biosynthesis
- Receptor, Nerve Growth Factor/immunology
- Receptor, trkA/analysis
- Receptor, trkA/metabolism
- Rhabdomyosarcoma
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Stem Cells/chemistry
- Stem Cells/cytology
- Stem Cells/metabolism
- Tumor Cells, Cultured
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- M Rende
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia School of Medicine, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Phenotypic knockout of nerve growth factor in adult transgenic mice reveals severe deficits in basal forebrain cholinergic neurons, cell death in the spleen, and skeletal muscle dystrophy. J Neurosci 2000. [PMID: 10729339 DOI: 10.1523/jneurosci.20-07-02589.2000] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The disruption of the nerve growth factor (NGF) gene in transgenic mice leads to a lethal phenotype (Crowley et al., 1994) and hinders the study of NGF functions in the adult. In this study the phenotypic knockout of NGF in adult mice was achieved by expressing transgenic anti-NGF antibodies, under the control of the human cytomegalovirus promoter. In adult mice, antibody levels are 2000-fold higher than in newborns. Classical NGF targets, including sympathetic and sensory neurons, are severely affected. In the CNS, basal forebrain and hippocampal cholinergic neurons are not affected in the early postnatal period, whereas they are greatly reduced in the adult (55 and 62% reduction, respectively). Adult mice show a reduced ability in spatial learning behavioral tasks. Adult, but not neonatal, transgenic mice further show a new phenotype at the level of peripheral tissues, such as apoptosis in the spleen and dystrophy of skeletal muscles. The analysis of this novel comprehensive transgenic model settles the controversial issue regarding the NGF dependence of cholinergic neurons in adult animals and reveals new NGF functions in adult non-neuronal tissues. The results demonstrate that the decreased availability of NGF in the adult causes phenotypic effects via processes that are at least partially distinct from early developmental effects of NGF deprivation.
Collapse
|
22
|
Capsoni S, Ruberti F, Di Daniel E, Cattaneo A. Muscular dystrophy in adult and aged anti-NGF transgenic mice resembles an inclusion body myopathy. J Neurosci Res 2000; 59:553-60. [PMID: 10679795 DOI: 10.1002/(sici)1097-4547(20000215)59:4<553::aid-jnr11>3.0.co;2-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The role of nerve growth factor (NGF) and its receptors in the physiology of skeletal muscles has not been extensively studied in animal models. We describe the production of transgenic lines of mice expressing a neutralizing antibody against NGF (alphaD11) and the morphological and histochemical analysis of skeletal muscles from adult and aged anti-NGF mice. This study reveals that the chronic deprivation of NGF results in a decreased size of myofibers of dorsal and hindlimb muscles in adult but not in postnatal day (P)2 mice. In myofibers from adult anti-NGF mice, the presence of central nuclei, vacuolization of the cytoplasm, and inflammatory cell infiltration was observed. The immunohistochemical analysis of these muscular fibers revealed an upregulation of p75 expression, a decrease in adenosine triphosphatase (ATP)ase activity, and a subsarcolemmal Congo Red-positive staining. Immunostaining with an antibody against amyloid precursor protein showed an increased labeling of the cytoplasm of myofibers from adult and aged anti-NGF mice. These features are reminiscent of human myopathies, such as inclusion body myositis. We conclude that NGF deficits might be relevant for a class of human myopathies.
Collapse
Affiliation(s)
- S Capsoni
- Neuroscience Program, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | |
Collapse
|
23
|
Botchkareva NV, Botchkarev VA, Chen LH, Lindner G, Paus R. A role for p75 neurotrophin receptor in the control of hair follicle morphogenesis. Dev Biol 1999; 216:135-53. [PMID: 10588868 DOI: 10.1006/dbio.1999.9464] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During hair follicle (HF) morphogenesis, p75 neurotrophin receptor (p75NTR) reportedly is the first growth factor receptor found to be expressed by those fibroblasts that later develop into the dermal papilla (DP) of the HF. However, the functional role of p75NTR in HF morphogenesis is still unknown. Studying HF development in fetal and neonatal C57BL/6 murine back skin, we show that p75NTR-immunoreactivity (IR) is prominently expressed by DP fibroblasts as well as by skin nerves during the early steps of HF development. In contrast, p75NTR-IR disappears from the DP in the fully developed HF and it is expressed only in the epithelial outer root sheath of the HF. Compared to age-matched wild-type animals, p75NTR knockout (-/-) mice show significant acceleration of HF morphogenesis, and DP fibroblasts of p75NTR knockout mice show reduced proliferative activity in situ, indicating alterations in their transition from proliferation to differentiation. Although no significant differences in the expression of adhesion molecules (NCAM), selected morphogens (TGFbeta-2, HGF/SF, FGF-2, KGF), or their receptors (TGFbetaR-II, m-met, FGFR-1) were seen between DP of p75NTR knockout and wild-type mice, p75NTR mutants showed a prominent upregulation of FGFR-2, a high-affinity receptor for KGF, in both follicular DP and epithelium. Furthermore, the administration of anti-KGF neutralizing antibody significantly inhibited acceleration of HF morphogenesis in p75NTR knockout mice in vivo. These observations suggest that p75NTR plays an important role during HF morphogenesis, functioning as a receptor that negatively controls HF development, most likely via alterations in DP fibroblast proliferation/differentiation and via downregulation of KGF/FGFR-2 signaling in the HF.
Collapse
Affiliation(s)
- N V Botchkareva
- Department of Dermatology, Charité, Humboldt University Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
24
|
Rende M, Brizi E, Sorci G, Bianchi R, Provenzano C, Bruno R, Donato R. Regulation of the p75 neurotrophin receptor in a rat myogenic cell line (L6). THE HISTOCHEMICAL JOURNAL 1999; 31:589-601. [PMID: 10579628 DOI: 10.1023/a:1003851024732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurotrophins are expressed in muscle cells both during development and postnatally. Furthermore, during development muscle cells express high levels of the common p75 neurotrophin receptor, which binds all neurotrophins. Only fragmentary and controversial data are available regarding the responsiveness of muscle cells to neurotrophins and the importance of low-affinity p75 receptor in muscle development. The present study investigates in vitro the immunocytochemical expression of p75 in a rat myogenic cell line (L6) at various time points and in response to different coating substrates as a first step in elucidating the regulation of p75 in muscle. We found that in L6 myoblasts, p75 is expressed only at very early stages of maturation and its levels of expression are regulated by the nature of the coating substrates. p75 expression decreases in cells growing on substrates more suitable for myoblast fusion into myotubes. Time course analysis indicates a reverse correlation between myoblast fusion into myotubes and the levels of p75 expression. Myotubes were always p75 negative. Substrates not suitable for the fusion process induced a prolonged presence of p75 in myoblasts with an increase of their apoptosis. We conclude that expression of p75, at least in this in vitro condition, is regulated by the stages of myoblast differentiation and the nature of the coating substrates. According to the observed time- and substrate-related evidences, future studies should investigate in vivo both the regulation of p75 in the myoblast fusion and the effects and the importance of neurotrophins binding during myoblast differentiation.
Collapse
Affiliation(s)
- M Rende
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia School of Medicine, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Erck C, Meisinger C, Grothe C, Seidl K. Regulation of nerve growth factor and its low-affinity receptor (p75NTR) during myogenic differentiation. J Cell Physiol 1998; 176:22-31. [PMID: 9618141 DOI: 10.1002/(sici)1097-4652(199807)176:1<22::aid-jcp3>3.0.co;2-a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In our preceding report, we have shown that nerve growth factor (NGF) and its low-affinity receptor (p75NTR) are expressed in C2C12 myoblasts and downregulated during myogenic differentiation. Furthermore, NGF affects myogenic differentiation and cell growth via p75NTR and downregulation of p75NTR is essential for myogenic differentiation (Seidl et al., 1998). Here we show that NGF and p75NTR are regulated by mechanisms preceding terminal differentiation in myogenic cells. These mechanisms include cell-density phenomena such as cell-cell contact as well as signaling of basic fibroblast growth factor (FGF-2) and its receptor (FGFR1). Downregulation of NGF and p75NTR occurred as a consequence of increasing cell density, an important trigger for the onset of myogenic differentiation. FGF-2 and FGFR1 were shown to be present in C2C12 cells and exogenous FGF-2 induced NGF and p75NTR expression, implying that FGF/FGFR signaling is an upstream regulator of the NGF/p75NTR system. The fact that FGF-2 could suspend yet not abolish density-induced downregulation indicates that cell-cell contact counteracts the FGF effect and ultimately terminates NGF/p75NTR signaling. This evidence, together with the observation that p75NTR expression is suppressed in muscle progenitors, which constitutively express adenovirus E1A proteins and thus lack the competence of myogenic differentiation, underline the important role for the NGF/p75NTR system in the interplay of multiple factors and biological systems that balance myogenic differentiation at the appropriate spatial and temporal level.
Collapse
Affiliation(s)
- C Erck
- Department of Cell and Molecular Biology, Institute for Biochemistry and Biotechnology, University of Braunschweig, Germany
| | | | | | | |
Collapse
|
26
|
Baron P, Scarpini E, Pizzul S, Zotti F, Conti G, Pleasure D, Scarlato G. Immunocytochemical expression of human muscle cell p75 neurotrophin receptor is down-regulated by cyclic adenosine 3',5'-monophosphate. Neurosci Lett 1997; 234:79-82. [PMID: 9364502 DOI: 10.1016/s0304-3940(97)00640-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate whether the immunocytochemical expression of low affinity neurotrophin receptor (p75) in human muscle is modulated by increased levels of intracellular cyclic adenosine 3',5'-monophosphate (cAMP), human cultured myogenic cells were treated with cAMP analogues dibutyryl cAMP (dbcAMP 0.5-1 mM) and 8-bromo cAMP (1 mM) or the adenylate cyclase activator forskolin (10-100 microM). Cultures were processed for indirect immunofluorescence microscopy using an anti-human p75 mAb. The treatment of cultured muscle cells with cAMP analogues or forskolin for two days induced a decrease of immunoreactivity for p75 and a reduction of both myotube formation and morphological cell differentiation. Removal of cAMP derivatives from the medium resulted in a return of immunoreactive cells to the levels of untreated controls. These data indicate that adenylate cyclase is involved in the regulation of human muscle p75.
Collapse
Affiliation(s)
- P Baron
- Institute of Neurology, Dino Ferrari Center, University of Milan, IRCCS Ospedale Maggiore Policlinico, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Chambers RL, McDermott JC. Molecular basis of skeletal muscle regeneration. CANADIAN JOURNAL OF APPLIED PHYSIOLOGY = REVUE CANADIENNE DE PHYSIOLOGIE APPLIQUEE 1996; 21:155-84. [PMID: 8792022 DOI: 10.1139/h96-014] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Skeletal muscle regeneration is a vital process with important implications for various muscle myopathies and adaptations to physiological overload. Few of the molecular regulatory proteins controlling this process have so far been identified. Several growth factors have defined effects on myogenic precursor cells and appear to also be involved during regeneration. In addition, factors that may be released by cells of the immune system may activate satellite cells during regeneration. Many of these growth factors are associated with signalling cascades which transmit information to the nucleus. The nuclear "receptors" that receive the incoming signals are transcription factors that interact with DNA regulatory sequences in order to modulate gene expression. Of the nuclear factors isolated so far, the immediate-early genes are associated with muscle precursor cell proliferation. This review aims to synthesize the extensive research on myogenic differentiation and relate this to research concerning the molecular regulation of skeletal muscle regeneration.
Collapse
Affiliation(s)
- R L Chambers
- Department of Kinesiology, Faculty of Pure and Applied Science, York University, Toronto, ON
| | | |
Collapse
|