1
|
Decker KP, Sanjana F, Rizzi N, Kramer MK, Cerjanic AM, Johnson CL, Martens CR. Comparing single- and multi-post labeling delays for the measurements of resting cerebral and hippocampal blood flow for cerebrovascular testing in midlife adults. Front Physiol 2024; 15:1437973. [PMID: 39416381 PMCID: PMC11480070 DOI: 10.3389/fphys.2024.1437973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives To assess the reliability and validity of measuring resting cerebral blood flow (CBF) and hippocampal CBF using a single-post-labeling delay (PLD) and a multi-PLD pseudo-continuous arterial spin labeling (pCASL) protocol for cerebrovascular reactivity (CVR) testing. Methods 25 healthy, midlife adults (57 ± 4 years old) were imaged in a Siemens Prisma 3T magnetic resonance imaging (MRI) scanner. Resting CBF and hippocampal CBF were assessed using two pCASL protocols, our modified single-PLD protocol (pCASL-MOD) to accommodate the needs for CVR testing and the multi-PLD Human Connectome Project (HCP) Lifespan protocol to serve as the reference control (pCASL-HCP). During pCASL-MOD, CVR was calculated as the change in CBF from rest to hypercapnia (+9 mmHg increase in end-tidal partial pressure of carbon dioxide [PETCO2]) and then normalized for PETCO2. The reliability and validity in resting gray matter (GM) CBF, white matter (WM) CBF, and hippocampal CBF between pCASL-MOD and pCASL-HCP protocols were examined using correlation analyses, paired t-tests, and Bland Altman plots. Results The pCASL-MOD and pCASL-HCP protocols were significantly correlated for resting GM CBF [r = 0.72; F (1, 23) = 25.24, p < 0.0001], WM CBF [r = 0.57; F (1, 23) = 10.83, p = 0.003], and hippocampal CBF [r = 0.77; F (1, 23) = 32.65, p < 0.0001]. However, pCASL-MOD underestimated resting GM CBF (pCASL-MOD: 53.7 ± 11.1 v. pCASL-HCP: 69.1 ± 13.1 mL/100 g/min; p < 0.0001), WM CBF (pCASL-MOD: 32.4 ± 4.8 v. pCASL-HCP: 35.5 ± 6.9 mL/100 g/min; p = 0.01), and hippocampal CBF (pCASL-MOD: 50.5 ± 9.0 v. pCASL-HCP: 68.1 ± 12.5 mL/100 g/min; p < 0.0001). PETCO2 increased by 8.0 ± 0.7 mmHg to induce CVR (GM CBF: 4.8% ± 2.6%; WM CBF 2.9% ± 2.5%; and hippocampal CBF: 3.4% ± 3.8%). Conclusion Our single-PLD pCASL-MOD protocol reliably measured CBF and hippocampal CBF at rest given the significant correlation with the multi-PLD pCASL-HCP protocol. Despite the lower magnitude relative to pCASL-HCP, we recommend using our pCASL-MOD protocol for CVR testing in which an exact estimate of CBF is not required such as the assessment of relative change in CBF to hypercapnia.
Collapse
Affiliation(s)
- Kevin P. Decker
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Nick Rizzi
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Mary K. Kramer
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Alexander M. Cerjanic
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Curtis L. Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Christopher R. Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| |
Collapse
|
2
|
Haast RAM, Kashyap S, Ivanov D, Yousif MD, DeKraker J, Poser BA, Khan AR. Insights into hippocampal perfusion using high-resolution, multi-modal 7T MRI. Proc Natl Acad Sci U S A 2024; 121:e2310044121. [PMID: 38446857 PMCID: PMC10945835 DOI: 10.1073/pnas.2310044121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 03/08/2024] Open
Abstract
We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometric properties, macrovasculature, and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterizing hippocampal perfusion.
Collapse
Affiliation(s)
- Roy A. M. Haast
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
- Krembil Brain Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
| | - Mohamed D. Yousif
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| | - Jordan DeKraker
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QCH3A 0G4, Canada
| | - Benedikt A. Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
| | - Ali R. Khan
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| |
Collapse
|
3
|
Kashyap S, Oliveira ÍAF, Uludağ K. Feasibility of high-resolution perfusion imaging using arterial spin labeling MRI at 3 Tesla. Front Physiol 2024; 14:1271254. [PMID: 38235379 PMCID: PMC10791866 DOI: 10.3389/fphys.2023.1271254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Cerebral blood flow (CBF) is a critical physiological parameter of brain health, and it can be non-invasively measured with arterial spin labeling (ASL) MRI. In this study, we evaluated and optimized whole-brain, high-resolution ASL as an alternative to the low-resolution ASL employed in the routine assessment of CBF in both healthy participants and patients. Two high-resolution protocols (i.e., pCASL and FAIR-Q2TIPS (PASL) with 2 mm isotropic voxels) were compared to a default clinical pCASL protocol (3.4 × 3.4 × 4 mm 3), all of whom had an acquisition time of ≈ 5 min. We assessed the impact of high-resolution acquisition on reducing partial voluming and improving sensitivity to the perfusion signal, and evaluated the effectiveness of z-deblurring on the ASL data. We compared the quality of whole-brain ASL acquired using three available head coils with differing number of receive channels (i.e., 20, 32, and 64ch). We found that using higher coil counts (32 and 64ch coils as compared to 20ch) offers improved signal-to-noise ratio (SNR) and acceleration capabilities that are beneficial for ASL imaging at 3 Tesla (3 T). The inherent reduction in partial voluming effects with higher resolution acquisitions improves the resolving power of perfusion without impacting the sensitivity. In conclusion, our results suggest that high-resolution ASL (2 to 2.5 mm isotropic voxels) has the potential to become a new standard for perfusion imaging at 3 T and increase its adoption into clinical research and cognitive neuroscience applications.
Collapse
Affiliation(s)
- Sriranga Kashyap
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | | | - Kâmil Uludağ
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
4
|
Dogar MEA, Asim R, Azeem B. Comment on clinical applicability of arterial spin labeling magnetic resonance imaging in patients with possible idiopathic normal pressure hydrocephalus: A prospective preliminary study''. Clin Neurol Neurosurg 2023; 233:107936. [PMID: 37591036 DOI: 10.1016/j.clineuro.2023.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Mata-E-Alla Dogar
- Medicine Department, Shaheed Mohtarma Benazir Bhutto Medical College Liyari, Karachi, Pakistan.
| | - Rabia Asim
- Medicine Department, Shaheed Mohtarma Benazir Bhutto Medical College Liyari, Karachi, Pakistan.
| | - Bazil Azeem
- Medicine Department, Shaheed Mohtarma Benazir Bhutto Medical College Liyari, Karachi, Pakistan.
| |
Collapse
|
5
|
Wang A, Yuan Z, Liu X, Wang M, Yang J, Sha Q, Zheng J. Measurement-based intermediate volatility organic compound emission inventory from on-road vehicle exhaust in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119887. [PMID: 35932902 DOI: 10.1016/j.envpol.2022.119887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/19/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Intermediate volatility organic compounds (IVOCs) have great potential to form secondary organic aerosols (SOA) in the atmosphere. Thus, a high-resolution IVOC emission inventory is essential for the accurate simulation of SOA formation. This study developed the first nationwide on-road vehicular IVOC emission inventory in China based on localized measurement of the IVOC emission factors and volatility distributions for various vehicle types. The total vehicular IVOC emissions in China in 2019 were estimated to be 241.2 Gg. Heavy-duty trucks, light-duty trucks, and light-duty passenger vehicles contributed the most, accounting for 47.6%, 24.6%, and 16.9% of total vehicular IVOC emissions, respectively. Although much higher in number, gasoline vehicles contributed 15.0%, which was far less than the contribution of diesel vehicles. The two peaks in volatility bins B12-B13 and B16-B17 accounted for 42.2% and 23.7% of the total IVOC emissions, respectively. By gridding the emission inventory into a relatively high resolution of 0.1° × 0.1°, high-emission areas and hotspots were clearly identified. In general, eastern China had substantially higher vehicular IVOC emissions than western China. High-emission areas with emission intensity >10 Mg·grid-1 covered most of the North China Plain, Yangtze River Delta, and Pearl River Delta. The emission intensity over the downtown areas of Beijing and Shanghai exceeded 50 Mg·grid-1. In contrast, IVOC emissions over western China were relatively lower, with a network structure gathering around the traffic arteries serving inter-provincial transportation. This study underscored the importance of having a localized emission factor to better reflect the IVOC emission characteristics from Chinese vehicles and to improve the assessment of their environmental impacts.
Collapse
Affiliation(s)
- Anqi Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zibing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Xuehui Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Menglei Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jun Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Qing'e Sha
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
| | - Junyu Zheng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
6
|
Amemiya S, Takao H, Watanabe Y, Takei N, Ueyama T, Kato S, Miyawaki S, Koizumi S, Abe O, Saito N. Reliability and Sensitivity to Longitudinal CBF Changes in Steno-Occlusive Diseases: ASL Versus 123 I-IMP-SPECT. J Magn Reson Imaging 2022; 55:1723-1732. [PMID: 34780101 DOI: 10.1002/jmri.27996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Noninvasive cerebral blood flow (CBF) monitoring using arterial spin labeling (ASL) magnetic resonance imaging is useful for managing large cerebral artery steno-occlusive diseases. However, knowledge about its measurement characteristics in comparison with reference standard perfusion imaging is limited. PURPOSE To evaluate perfusion in a longitudinal manner in patients with steno-occlusive disease using ASL and compare with single-photon emission computed tomography (SPECT). STUDY TYPE Prospective. POPULATION Moyamoya (n = 10, eight females) and atherosclerotic diseases (n = 2, two males). FIELD STRENGTH/SEQUENCE 3.0 T; gradient-echo three-dimensional T1 -weighted and spin-echo ASL. ASSESSMENT Multi-delay ASL and [123 I]-iodoamphetamine SPECT CBF measurements were performed both before and within 9 days of anterior-circulation revascularization. Reliability and sensitivity to whole-brain voxel-wise CBF changes (ΔCBF) and their postlabeling delay (PLD) dependency with varied PLDs (in milliseconds) of 1000, 2333, and 3666 were examined. STATISTICAL TESTS Reliability and sensitivity to ΔCBF were examined using within-subject standard deviation (Sw) and intraclass correlation coefficients (ICCs). For statistical comparisons, standard deviation of longitudinal ΔCBF within the hemisphere contralateral to surgery, and the ratio between it and average ΔCBF within the ipsilateral regions of interest were subjected to paired t tests, respectively. P < 0.05 was considered statistically significant. RESULTS ASL test-retest time interval was 31 ± 18 days. Test-retest reliability was significantly lower for SPECT (0.16 ± 0.02) than ASL (0.13 ± 0.04). Sensitivity to postoperative changes was significantly higher for ASL (2.71 ± 2.79) than SPECT (0.27 ± 0.62). Test-retest reliability was significantly higher for a PLD of 2333 (0.13 ± 0.04) than 3666 (0.19 ± 0.05), and sensitivity to ΔCBF was significantly higher for PLDs of 1000 (2.53 ± 2.50) and 2333 than 3666 (0.79 ± 1.88). ICC maps also showed higher reliability for ASL than SPECT. DATA CONCLUSION Higher test-retest reliability led to better ASL sensitivity than SPECT for postoperative ΔCBF. ASL test-retest reliability and sensitivity to ΔCBF were higher with a PLD of 2333. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Naoyuki Takei
- MR Applications and Workflow, GE Healthcare, Tokyo, Japan
| | - Tsuyoshi Ueyama
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Seiji Kato
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Satoshi Koizumi
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Li X, Julin P, Li TQ. Limbic Perfusion Is Reduced in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Tomography 2021; 7:675-687. [PMID: 34842817 PMCID: PMC8628916 DOI: 10.3390/tomography7040056] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an illness characterized by a diverse range of debilitating symptoms including autonomic, immunologic, and cognitive dysfunction. Although neurological and cognitive aberrations have been consistently reported, relatively little is known regarding the regional cerebral blood flow (rCBF) in ME/CFS. In this study, we studied a cohort of 31 ME/CSF patients (average age: 42.8 ± 13.5 years) and 48 healthy controls (average age: 42.9 ± 12.0 years) using the pseudo-continuous arterial spin labeling (PCASL) technique on a whole-body clinical 3T MRI scanner. Besides routine clinical MRI, the protocol included a session of over 8 min-long rCBF measurement. The differences in the rCBF between the ME/CSF patients and healthy controls were statistically assessed with voxel-wise and AAL ROI-based two-sample t-tests. Linear regression analysis was also performed on the rCBF data by using the symptom severity score as the main regressor. In comparison with the healthy controls, the patient group showed significant hypoperfusion (uncorrected voxel wise p ≤ 0.001, FWE p ≤ 0.01) in several brain regions of the limbic system, including the anterior cingulate cortex, putamen, pallidum, and anterior ventral insular area. For the ME/CFS patients, the overall symptom severity score at rest was significantly associated with a reduced rCBF in the anterior cingulate cortex. The results of this study show that brain blood flow abnormalities in the limbic system may contribute to ME/CFS pathogenesis.
Collapse
Affiliation(s)
- Xia Li
- Institute of Information Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China;
| | - Per Julin
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-17177 Stockholm, Sweden;
| | - Tie-Qiang Li
- Institute of Information Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China;
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, S-17177 Stockholm, Sweden
- Department of Medical Radiation and Nuclear Medicine, C2-76, Karolinska University Hospital, Huddinge, S-14186 Stockholm, Sweden
| |
Collapse
|
8
|
Amemiya S, Watanabe Y, Takei N, Ueyama T, Miyawaki S, Koizumi S, Kato S, Takao H, Abe O, Saito N. Arterial Transit Time-Based Multidelay Combination Strategy Improves Arterial Spin Labeling Cerebral Blood Flow Measurement Accuracy in Severe Steno-Occlusive Diseases. J Magn Reson Imaging 2021; 55:178-187. [PMID: 34263988 DOI: 10.1002/jmri.27823] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although perfusion imaging plays a key role in the management of steno-occlusive diseases, the clinical usefulness of arterial spin labeling (ASL) is limited by technical issues. PURPOSE To examine the effect of arterial transit time (ATT) prolongation on cerebral blood flow (CBF) measurement accuracy and identify the best CBF measurement protocol for steno-occlusive diseases. STUDY TYPE Prospective. POPULATION Moyamoya (n = 10) and atherosclerotic diseases (n = 8). FIELD STRENGTH/SEQUENCE A 3.0T/3DT1 -weighted and ASL. ASSESSMENT Hadamard-encoded multidelay ASL scans with/without vessel suppression (VS) and single-delay ASL scans with long-label duration (LD) and long postlabeling delay (PLD), referred to as long-label long-delay (LLLD), were acquired. CBF measurement accuracy and its ATT dependency, measured as the correlation between the relative CBF measurement difference (ASL-single-photon emission computed tomography [SPECT]) and ATT, were compared among 1) Combo (incorporating multidelay and LLLD data based on ATT), 2) standard (LD/PLD = 1333/2333 msec), and 3) LLLD (LD/PLD = 4000/4000 msec) protocols, using whole-brain voxel-wise correlation with reference standard SPECT CBF. The effect of VS on CBF measurement accuracy was also assessed. STATISTICAL TESTS Pearson's correlation coefficient, repeated-measures analysis of variance, t-test. P< 0.05 was considered significant. RESULTS Pearson's correlation coefficients between ASL and SPECT CBF measurements were as follows: Combo = 0.55 ± 0.09; standard = 0.52 ± 0.12; LLLD = 0.41 ± 0.10. CBF measurement was least accurate in LLLD and most accurate in Combo. VS significantly improved overall CBF measurement accuracy in the standard protocol and in moyamoya patients for the Combo. ATT dependency analysis revealed that, compared with Combo, the standard and LLLD protocols showed significantly lower and negative and significantly higher and positive correlations, respectively (standard = -0.12 ± 0.04, Combo = -0.04 ± 0.03, LLLD = 0.17 ± 0.03). DATA CONCLUSION By using ATT-corrected CBF derived from LD/PLD = 1333/2333 msec as a base and by compensating underestimation in delayed regions using multidelay scans, the ATT-based Combo strategy improves CBF measurement accuracy compared with single-delay protocols in severe steno-occlusive diseases. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Naoyuki Takei
- MR Applications and Workflow, GE Healthcare, Tokyo, Japan
| | - Tsuyoshi Ueyama
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Satoshi Koizumi
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Seiji Kato
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Chappell MA, McConnell FAK, Golay X, Günther M, Hernandez-Tamames JA, van Osch MJ, Asllani I. Partial volume correction in arterial spin labeling perfusion MRI: A method to disentangle anatomy from physiology or an analysis step too far? Neuroimage 2021; 238:118236. [PMID: 34091034 DOI: 10.1016/j.neuroimage.2021.118236] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022] Open
Abstract
The mismatch in the spatial resolution of Arterial Spin Labeling (ASL) MRI perfusion images and the anatomy of functionally distinct tissues in the brain leads to a partial volume effect (PVE), which in turn confounds the estimation of perfusion into a specific tissue of interest such as gray or white matter. This confound occurs because the image voxels contain a mixture of tissues with disparate perfusion properties, leading to estimated perfusion values that reflect primarily the volume proportions of tissues in the voxel rather than the perfusion of any particular tissue of interest within that volume. It is already recognized that PVE influences studies of brain perfusion, and that its effect might be even more evident in studies where changes in perfusion are co-incident with alterations in brain structure, such as studies involving a comparison between an atrophic patient population vs control subjects, or studies comparing subjects over a wide range of ages. However, the application of PVE correction (PVEc) is currently limited and the employed methodologies remain inconsistent. In this article, we outline the influence of PVE in ASL measurements of perfusion, explain the main principles of PVEc, and provide a critique of the current state of the art for the use of such methods. Furthermore, we examine the current use of PVEc in perfusion studies and whether there is evidence to support its wider adoption. We conclude that there is sound theoretical motivation for the use of PVEc alongside conventional, 'uncorrected', images, and encourage such combined reporting. Methods for PVEc are now available within standard neuroimaging toolboxes, which makes our recommendation straightforward to implement. However, there is still more work to be done to establish the value of PVEc as well as the efficacy and robustness of existing PVEc methods.
Collapse
Affiliation(s)
- Michael A Chappell
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; Nottingham Biomedical Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK; Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | - Flora A Kennedy McConnell
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; Nottingham Biomedical Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Matthias Günther
- Fraunhofer MEVIS, Bremen, Germany; University Bremen, Bremen, Germany; mediri GmbH, Heidelberg, Germany
| | | | - Matthias J van Osch
- C.J. Gorter Center for High Field MRI, Radiology Department, Leiden University Medical Center, Leiden, the Netherlands
| | - Iris Asllani
- Clinical Imaging Sciences Centre, Department of Neuroscience, University of Sussex, UK; Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
10
|
Zhao MY, Fan AP, Chen DYT, Sokolska MJ, Guo J, Ishii Y, Shin DD, Khalighi MM, Holley D, Halbert K, Otte A, Williams B, Rostami T, Park JH, Shen B, Zaharchuk G. Cerebrovascular reactivity measurements using simultaneous 15O-water PET and ASL MRI: Impacts of arterial transit time, labeling efficiency, and hematocrit. Neuroimage 2021; 233:117955. [PMID: 33716155 PMCID: PMC8272558 DOI: 10.1016/j.neuroimage.2021.117955] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Cerebrovascular reactivity (CVR) reflects the capacity of the brain to meet changing physiological demands and can predict the risk of cerebrovascular diseases. CVR can be obtained by measuring the change in cerebral blood flow (CBF) during a brain stress test where CBF is altered by a vasodilator such as acetazolamide. Although the gold standard to quantify CBF is PET imaging, the procedure is invasive and inaccessible to most patients. Arterial spin labeling (ASL) is a non-invasive and quantitative MRI method to measure CBF, and a consensus guideline has been published for the clinical application of ASL. Despite single post labeling delay (PLD) pseudo-continuous ASL (PCASL) being the recommended ASL technique for CBF quantification, it is sensitive to variations to the arterial transit time (ATT) and labeling efficiency induced by the vasodilator in CVR studies. Multi-PLD ASL controls for the changes in ATT, and velocity selective ASL is in theory insensitive to both ATT and labeling efficiency. Here we investigate CVR using simultaneous 15O-water PET and ASL MRI data from 19 healthy subjects. CVR and CBF measured by the ASL techniques were compared using PET as the reference technique. The impacts of blood T1 and labeling efficiency on ASL were assessed using individual measurements of hematocrit and flow velocity data of the carotid and vertebral arteries measured using phase-contrast MRI. We found that multi-PLD PCASL is the ASL technique most consistent with PET for CVR quantification (group mean CVR of the whole brain = 42 ± 19% and 40 ± 18% respectively). Single-PLD ASL underestimated the CVR of the whole brain significantly by 15 ± 10% compared with PET (p<0.01, paired t-test). Changes in ATT pre- and post-acetazolamide was the principal factor affecting ASL-based CVR quantification. Variations in labeling efficiency and blood T1 had negligible effects.
Collapse
Affiliation(s)
- Moss Y Zhao
- Department of Radiology, Stanford University, Stanford, CA, United States.
| | - Audrey P Fan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA; Department of Neurology, University of California Davis, Davis, CA, USA
| | - David Yen-Ting Chen
- Department of Medical Imaging, Taipei Medical University - Shuan-Ho Hospital, New Taipei City, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Magdalena J Sokolska
- Medical Physics and Biomedical Engineering, University College London Hospitals, London, United Kingdom
| | - Jia Guo
- Department of Bioengineering, University of California Riverside, Riverside, CA, United States
| | - Yosuke Ishii
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Dawn Holley
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Kim Halbert
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Andrea Otte
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Brittney Williams
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Taghi Rostami
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Jun-Hyung Park
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Bin Shen
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
11
|
Wang Y, Nencka AS, Meier TB, Guskiewicz K, Mihalik JP, Alison Brooks M, Saykin AJ, Koch KM, Wu YC, Nelson LD, McAllister TW, Broglio SP, McCrea MA. Cerebral blood flow in acute concussion: preliminary ASL findings from the NCAA-DoD CARE consortium. Brain Imaging Behav 2020; 13:1375-1385. [PMID: 30159767 DOI: 10.1007/s11682-018-9946-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sport-related concussion (SRC) has become a major health problem, affecting millions of athletes each year. Despite the increasing occurrence and prevalence of SRC, its underlying mechanism and recovery course have yet to be fully elucidated. The National Collegiate Athletic Association-Department of Defense Grand Alliance: Concussion Assessment, Research and Education (CARE) Consortium is a large-scale, multisite study of the natural history of concussion across multiple sports. The Advanced Research Core (ARC) of CARE is focused on the advanced biomarker assessment of a reduced subject cohort. This paper reports findings from two ARC sites to evaluate cerebral blood flow (CBF) changes in acute SRC, as measured using advanced arterial spin labeling (ASL) magnetic resonance imaging (MRI). We compared relative CBF maps assessed in 24 concussed contact sport athletes obtained at 24-48 h after injury to those of a control group of 24 matched contact sport players. Significantly less CBF was detected in several brain regions in concussed athletes, while clinical assessments also indicated clinical symptom and performance impairments in SRC patients. Correlations were found between decreased CBF in acute SRC and clinical assessments, including Balance Error Scoring System total score and Immediate Post-Concussion Assessment and Cognitive Test memory composite and impulse control composite scores, as well as days from injury to asymptomatic. Although using different ASL MRI sequences, our preliminary results from two sites are consistent with previous reports and suggest that advanced ASL MRI methods might be useful for detecting acute neurobiological changes in acute SRC.
Collapse
Affiliation(s)
- Yang Wang
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Andrew S Nencka
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| | - Kevin Guskiewicz
- Department of Exercise and Sport Science, University of North Carolina, 250 East Franklin Street, Chapel Hill, NC, USA
| | - Jason P Mihalik
- Department of Exercise and Sport Science, University of North Carolina, 250 East Franklin Street, Chapel Hill, NC, USA
| | - M Alison Brooks
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, 750 Highland Avenue, Madison, WI, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Science, Indiana University School of Medicine, 340 West 10th Street, Indianapolis, IN, USA
| | - Kevin M Koch
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Science, Indiana University School of Medicine, 340 West 10th Street, Indianapolis, IN, USA
| | - Lindsay D Nelson
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, 340 West 10th Street, Indianapolis, IN, USA
| | - Steven P Broglio
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| |
Collapse
|
12
|
Mora Álvarez MG, Stobbe RW, Beaulieu C. High resolution continuous arterial spin labeling of human cerebral perfusion using a separate neck tagging RF coil. PLoS One 2019; 14:e0215998. [PMID: 31022257 PMCID: PMC6483248 DOI: 10.1371/journal.pone.0215998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
For standard clinical applications, ASL images are typically acquired with 4–8 mm thick slices and 3–4 mm in-plane resolution. However, in this paper we demonstrate that high-resolution continuous arterial spin labeling (CASL) perfusion images can be acquired in a clinically relevant scan time using current MRI technology. CASL was implemented with a separate neck coil for labeling the arterial blood on a 4.7T MRI using standard axial 2D GE-EPI. Typical-resolution to high-resolution (voxels of 95, 60, 45, 27, or 7 mm3) images were compared for qualitative and quantitative cerebral blood flow analysis (CBF) in nine healthy volunteers (ages: 24–32 years). The highest resolution (1.5x1.5x3 = 7 mm3) CASL implementation yielded perfusion images with improved cortex depiction and increased cortical CBF measurements (53 ± 8 ml/100g/min), consistent with reduced partial volume averaging. The 7 mm3 voxel images were acquired with 6 cm brain coverage in a clinically relevant scan of 6 minutes. Improved spatial resolution facilitates CBF measurement with reduced partial volume averaging and may be valuable for the detection of perfusion deficits in small lesions and perfusion measurement in small brain regions.
Collapse
Affiliation(s)
- María Guadalupe Mora Álvarez
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Wayne Stobbe
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
13
|
Havsteen I, Damm Nybing J, Christensen H, Christensen AF. Arterial spin labeling: a technical overview. Acta Radiol 2018; 59:1232-1238. [PMID: 29313361 DOI: 10.1177/0284185117752552] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging perfusion method based on changes in net-magnetization of blood water. The absence of contrast use and ionizing radiation, renders ASL valuable in hyper-acute settings as a monitoring tool for repeated dynamical measurements during and after intervention, and for patients with known co-morbidities. This text provides a short methodological introduction to ASL and contrasts it with traditional contrast-enhanced perfusion imaging. The review focused on sequence usefulness in the clinical setting of acute cerebral ischemia investigation.
Collapse
Affiliation(s)
- Inger Havsteen
- Department of Radiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Janus Damm Nybing
- Department of Radiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Hanne Christensen
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Anders F Christensen
- Department of Radiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
14
|
Havlicek M, Ivanov D, Roebroeck A, Uludağ K. Determining Excitatory and Inhibitory Neuronal Activity from Multimodal fMRI Data Using a Generative Hemodynamic Model. Front Neurosci 2017; 11:616. [PMID: 29249925 PMCID: PMC5715391 DOI: 10.3389/fnins.2017.00616] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Hemodynamic responses, in general, and the blood oxygenation level-dependent (BOLD) fMRI signal, in particular, provide an indirect measure of neuronal activity. There is strong evidence that the BOLD response correlates well with post-synaptic changes, induced by changes in the excitatory and inhibitory (E-I) balance between active neuronal populations. Typical BOLD responses exhibit transients, such as the early-overshoot and post-stimulus undershoot, that can be linked to transients in neuronal activity, but they can also result from vascular uncoupling between cerebral blood flow (CBF) and venous cerebral blood volume (venous CBV). Recently, we have proposed a novel generative hemodynamic model of the BOLD signal within the dynamic causal modeling framework, inspired by physiological observations, called P-DCM (Havlicek et al., 2015). We demonstrated the generative model's ability to more accurately model commonly observed neuronal and vascular transients in single regions but also effective connectivity between multiple brain areas (Havlicek et al., 2017b). In this paper, we additionally demonstrate the versatility of the generative model to jointly explain dynamic relationships between neuronal and hemodynamic physiological variables underlying the BOLD signal using multi-modal data. For this purpose, we utilized three distinct data-sets of experimentally induced responses in the primary visual areas measured in human, cat, and monkey brain, respectively: (1) CBF and BOLD responses; (2) CBF, total CBV, and BOLD responses (Jin and Kim, 2008); and (3) positive and negative neuronal and BOLD responses (Shmuel et al., 2006). By fitting the generative model to the three multi-modal experimental data-sets, we showed that the presence or absence of dynamic features in the BOLD signal is not an unambiguous indication of presence or absence of those features on the neuronal level. Nevertheless, the generative model that takes into account the dynamics of the physiological mechanisms underlying the BOLD response allowed dissociating neuronal from vascular transients and deducing excitatory and inhibitory neuronal activity time-courses from BOLD data alone and from multi-modal data.
Collapse
Affiliation(s)
- Martin Havlicek
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Kamil Uludağ
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Abstract
Combined PET/MR imaging scanners capable of acquiring simultaneously the complementary information provided by the 2 imaging modalities are now available for human use. After addressing the hardware challenges for integrating the 2 imaging modalities, most of the efforts in the field have focused on developing MR-based attenuation correction methods for neurologic and whole-body applications, implementing approaches for improving one modality by using the data provided by the other and exploring research and clinical applications that could benefit from the synergistic use of the multimodal data.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Room 2.301, Charlestown, MA 02129, USA.
| |
Collapse
|
16
|
Ivanov D, Gardumi A, Haast RA, Pfeuffer J, Poser BA, Uludağ K. Comparison of 3 T and 7 T ASL techniques for concurrent functional perfusion and BOLD studies. Neuroimage 2017; 156:363-376. [DOI: 10.1016/j.neuroimage.2017.05.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 02/04/2023] Open
|
17
|
Su Y, Vlassenko AG, Couture LE, Benzinger TL, Snyder AZ, Derdeyn CP, Raichle ME. Quantitative hemodynamic PET imaging using image-derived arterial input function and a PET/MR hybrid scanner. J Cereb Blood Flow Metab 2017; 37:1435-1446. [PMID: 27401805 PMCID: PMC5453463 DOI: 10.1177/0271678x16656200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) with 15O-tracers is commonly used to measure brain hemodynamic parameters such as cerebral blood flow, cerebral blood volume, and cerebral metabolic rate of oxygen. Conventionally, the absolute quantification of these parameters requires an arterial input function that is obtained invasively by sampling blood from an artery. In this work, we developed and validated an image-derived arterial input function technique that avoids the unreliable and burdensome arterial sampling procedure for full quantitative 15O-PET imaging. We then compared hemodynamic PET imaging performed on a PET/MR hybrid scanner against a conventional PET only scanner. We demonstrated the proposed imaging-based technique was able to generate brain hemodynamic parameter measurements in strong agreement with the traditional arterial sampling based approach. We also demonstrated that quantitative 15O-PET imaging can be successfully implemented on a PET/MR hybrid scanner.
Collapse
Affiliation(s)
- Yi Su
- 1 Mallinckrodt Institute of Radiology, Washington University School of Medicine, USA
| | - Andrei G Vlassenko
- 1 Mallinckrodt Institute of Radiology, Washington University School of Medicine, USA
| | - Lars E Couture
- 1 Mallinckrodt Institute of Radiology, Washington University School of Medicine, USA
| | - Tammie Ls Benzinger
- 1 Mallinckrodt Institute of Radiology, Washington University School of Medicine, USA.,2 Department Neurosurgery, Washington University School of Medicine, USA
| | - Abraham Z Snyder
- 1 Mallinckrodt Institute of Radiology, Washington University School of Medicine, USA
| | | | - Marcus E Raichle
- 1 Mallinckrodt Institute of Radiology, Washington University School of Medicine, USA.,4 Department of Neurology, Washington University School of Medicine, USA
| |
Collapse
|
18
|
A three-dimensional single-scan approach for the measurement of changes in cerebral blood volume, blood flow, and blood oxygenation-weighted signals during functional stimulation. Neuroimage 2017; 147:976-984. [DOI: 10.1016/j.neuroimage.2016.12.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/10/2016] [Accepted: 12/28/2016] [Indexed: 11/23/2022] Open
|
19
|
Kim KH, Choi SH, Park SH. Feasibility of Quantifying Arterial Cerebral Blood Volume Using Multiphase Alternate Ascending/Descending Directional Navigation (ALADDIN). PLoS One 2016; 11:e0156687. [PMID: 27257674 PMCID: PMC4892492 DOI: 10.1371/journal.pone.0156687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 05/18/2016] [Indexed: 11/18/2022] Open
Abstract
Arterial cerebral blood volume (aCBV) is associated with many physiologic and pathologic conditions. Recently, multiphase balanced steady state free precession (bSSFP) readout was introduced to measure labeled blood signals in the arterial compartment, based on the fact that signal difference between labeled and unlabeled blood decreases with the number of RF pulses that is affected by blood velocity. In this study, we evaluated the feasibility of a new 2D inter-slice bSSFP-based arterial spin labeling (ASL) technique termed, alternate ascending/descending directional navigation (ALADDIN), to quantify aCBV using multiphase acquisition in six healthy subjects. A new kinetic model considering bSSFP RF perturbations was proposed to describe the multiphase data and thus to quantify aCBV. Since the inter-slice time delay (TD) and gap affected the distribution of labeled blood spins in the arterial and tissue compartments, we performed the experiments with two TDs (0 and 500 ms) and two gaps (300% and 450% of slice thickness) to evaluate their roles in quantifying aCBV. Comparison studies using our technique and an existing method termed arterial volume using arterial spin tagging (AVAST) were also separately performed in five subjects. At 300% gap or 500-ms TD, significant tissue perfusion signals were demonstrated, while tissue perfusion signals were minimized and arterial signals were maximized at 450% gap and 0-ms TD. ALADDIN has an advantage of visualizing bi-directional flow effects (ascending/descending) in a single experiment. Labeling efficiency (α) of inter-slice blood flow effects could be measured in the superior sagittal sinus (SSS) (20.8±3.7%.) and was used for aCBV quantification. As a result of fitting to the proposed model, aCBV values in gray matter (1.4-2.3 mL/100 mL) were in good agreement with those from literature. Our technique showed high correlation with AVAST, especially when arterial signals were accentuated (i.e., when TD = 0 ms) (r = 0.53). The bi-directional perfusion imaging with multiphase ALADDIN approach can be an alternative to existing techniques for quantification of aCBV.
Collapse
Affiliation(s)
- Ki Hwan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung-Hong Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- * E-mail:
| |
Collapse
|
20
|
Fan AP, Jahanian H, Holdsworth SJ, Zaharchuk G. Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: A systematic review. J Cereb Blood Flow Metab 2016; 36:842-61. [PMID: 26945019 PMCID: PMC4853843 DOI: 10.1177/0271678x16636393] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/19/2016] [Accepted: 02/04/2016] [Indexed: 11/16/2022]
Abstract
Noninvasive imaging of cerebral blood flow provides critical information to understand normal brain physiology as well as to identify and manage patients with neurological disorders. To date, the reference standard for cerebral blood flow measurements is considered to be positron emission tomography using injection of the [(15)O]-water radiotracer. Although [(15)O]-water has been used to study brain perfusion under normal and pathological conditions, it is not widely used in clinical settings due to the need for an on-site cyclotron, the invasive nature of arterial blood sampling, and experimental complexity. As an alternative, arterial spin labeling is a promising magnetic resonance imaging technique that magnetically labels arterial blood as it flows into the brain to map cerebral blood flow. As arterial spin labeling becomes more widely adopted in research and clinical settings, efforts have sought to standardize the method and validate its cerebral blood flow values against positron emission tomography-based cerebral blood flow measurements. The purpose of this work is to critically review studies that performed both [(15)O]-water positron emission tomography and arterial spin labeling to measure brain perfusion, with the aim of better understanding the accuracy and reproducibility of arterial spin labeling relative to the positron emission tomography reference standard.
Collapse
Affiliation(s)
- Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Peng SP, Li YN, Liu J, Wang ZY, Zhang ZS, Zhou SK, Tao FX, Zhang ZX. Pulsed arterial spin labeling effectively and dynamically observes changes in cerebral blood flow after mild traumatic brain injury. Neural Regen Res 2016; 11:257-61. [PMID: 27073378 PMCID: PMC4810989 DOI: 10.4103/1673-5374.177733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cerebral blood flow is strongly associated with brain function, and is the main symptom and diagnostic basis for a variety of encephalopathies. However, changes in cerebral blood flow after mild traumatic brain injury remain poorly understood. This study sought to observe changes in cerebral blood flow in different regions after mild traumatic brain injury using pulsed arterial spin labeling. Our results demonstrate maximal cerebral blood flow in gray matter and minimal in the white matter of patients with mild traumatic brain injury. At the acute and subacute stages, cerebral blood flow was reduced in the occipital lobe, parietal lobe, central region, subcutaneous region, and frontal lobe. Cerebral blood flow was restored at the chronic stage. At the acute, subacute, and chronic stages, changes in cerebral blood flow were not apparent in the insula. Cerebral blood flow in the temporal lobe and limbic lobe diminished at the acute and subacute stages, but was restored at the chronic stage. These findings suggest that pulsed arterial spin labeling can precisely measure cerebral blood flow in various brain regions, and may play a reference role in evaluating a patient's condition and judging prognosis after traumatic brain injury.
Collapse
Affiliation(s)
- Shu-Ping Peng
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yi-Ning Li
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhi-Yuan Wang
- Hunan Cancer Hospital, Changsha, Hunan Province, China
| | - Zi-Shu Zhang
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shun-Ke Zhou
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Fang-Xu Tao
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhi-Xue Zhang
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
22
|
Hodkinson DJ, Veggeberg R, Wilcox SL, Scrivani S, Burstein R, Becerra L, Borsook D. Primary Somatosensory Cortices Contain Altered Patterns of Regional Cerebral Blood Flow in the Interictal Phase of Migraine. PLoS One 2015; 10:e0137971. [PMID: 26372461 PMCID: PMC4570777 DOI: 10.1371/journal.pone.0137971] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023] Open
Abstract
The regulation of cerebral blood flow (CBF) is a complex integrated process that is critical for supporting healthy brain function. Studies have demonstrated a high incidence of alterations in CBF in patients suffering from migraine with and without aura during different phases of attacks. However, the CBF data collected interictally has failed to show any distinguishing features or clues as to the underlying pathophysiology of the disease. In this study we used the magnetic resonance imaging (MRI) technique—arterial spin labeling (ASL)—to non-invasively and quantitatively measure regional CBF (rCBF) in a case-controlled study of interictal migraine. We examined both the regional and global CBF differences between the groups, and found a significant increase in rCBF in the primary somatosensory cortex (S1) of migraine patients. The CBF values in S1 were positively correlated with the headache attack frequency, but were unrelated to the duration of illness or age of the patients. Additionally, 82% of patients reported skin hypersensitivity (cutaneous allodynia) during migraine, suggesting atypical processing of somatosensory stimuli. Our results demonstrate the presence of a disease-specific functional deficit in a known region of the trigemino-cortical pathway, which may be driven by adaptive or maladaptive functional plasticity. These findings may in part explain the altered sensory experiences reported between migraine attacks.
Collapse
Affiliation(s)
- Duncan J. Hodkinson
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Rosanna Veggeberg
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Sophie L. Wilcox
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Steven Scrivani
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, MA, United States of America
| | - Rami Burstein
- Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Lino Becerra
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, United States of America
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
23
|
A neuroradiologist's guide to arterial spin labeling MRI in clinical practice. Neuroradiology 2015; 57:1181-202. [PMID: 26351201 PMCID: PMC4648972 DOI: 10.1007/s00234-015-1571-z] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023]
Abstract
Arterial spin labeling (ASL) is a non-invasive MRI technique to measure cerebral blood flow (CBF). This review provides a practical guide and overview of the clinical applications of ASL of the brain, as well its potential pitfalls. The technical and physiological background is also addressed. At present, main areas of interest are cerebrovascular disease, dementia and neuro-oncology. In cerebrovascular disease, ASL is of particular interest owing to its quantitative nature and its capability to determine cerebral arterial territories. In acute stroke, the source of the collateral blood supply in the penumbra may be visualised. In chronic cerebrovascular disease, the extent and severity of compromised cerebral perfusion can be visualised, which may be used to guide therapeutic or preventative intervention. ASL has potential for the detection and follow-up of arteriovenous malformations. In the workup of dementia patients, ASL is proposed as a diagnostic alternative to PET. It can easily be added to the routinely performed structural MRI examination. In patients with established Alzheimer’s disease and frontotemporal dementia, hypoperfusion patterns are seen that are similar to hypometabolism patterns seen with PET. Studies on ASL in brain tumour imaging indicate a high correlation between areas of increased CBF as measured with ASL and increased cerebral blood volume as measured with dynamic susceptibility contrast-enhanced perfusion imaging. Major advantages of ASL for brain tumour imaging are the fact that CBF measurements are not influenced by breakdown of the blood–brain barrier, as well as its quantitative nature, facilitating multicentre and longitudinal studies.
Collapse
|
24
|
Schmid S, Teeuwisse WM, Lu H, van Osch MJP. Time-efficient determination of spin compartments by time-encoded pCASL T2-relaxation-under-spin-tagging and its application in hemodynamic characterization of the cerebral border zones. Neuroimage 2015; 123:72-9. [PMID: 26297847 DOI: 10.1016/j.neuroimage.2015.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/31/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Information on water-transport across the blood-brain barrier can be determined from the T2 of the arterial spin labeling (ASL) signal. However, the current approach of using separate acquisitions of multiple inversion times is too time-consuming for clinical (research) applications. The aim of this study was to improve the time-efficiency of this method by combining it with time-encoded pseudo-continuous ASL (te-pCASL). Furthermore, the hemodynamic properties of the border zone regions in the brains of healthy, young volunteers were characterized as an example application. The use of te-pCASL instead of multi-TI pCASL significantly reduced the total scan duration, while providing a higher temporal resolution. A significantly lower cerebral blood flow (CBF) was found in the border zone regions compared with the central regions in both the posterior and the middle cerebral artery (MCA) flow territory. The arterial transit time (ATT) was almost two times longer in the border zone regions than in the central regions (p<0.05), with an average delay in ATT of 382ms in the posterior and 539ms in the MCA flow territory. When corrected for the ATT, the change in T2 over time was not significantly different for the border zones as compared to the central regions. In conclusion, te-pCASL-TRUST provided a time-efficient method to distinguish spin compartments based on their T2. The ATT in the border zone is significantly longer than in the central region. However, the exchange of the label from the arterial to the tissue compartment appears to be at a similar rate.
Collapse
Affiliation(s)
- Sophie Schmid
- C.J. Gorter Center for High Field MRI, Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Wouter M Teeuwisse
- C.J. Gorter Center for High Field MRI, Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University, Baltimore, United States.
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| |
Collapse
|
25
|
Fazlollahi A, Bourgeat P, Liang X, Meriaudeau F, Connelly A, Salvado O, Calamante F. Reproducibility of multiphase pseudo-continuous arterial spin labeling and the effect of post-processing analysis methods. Neuroimage 2015; 117:191-201. [PMID: 26026814 DOI: 10.1016/j.neuroimage.2015.05.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022] Open
Abstract
Arterial spin labeling (ASL) is an emerging MRI technique for non-invasive measurement of cerebral blood flow (CBF). Compared to invasive perfusion imaging modalities, ASL suffers from low sensitivity due to poor signal-to-noise ratio (SNR), susceptibility to motion artifacts and low spatial resolution, all of which limit its reliability. In this work, the effects of various state of the art image processing techniques for addressing these ASL limitations are investigated. A processing pipeline consisting of motion correction, ASL motion correction imprecision removal, temporal and spatial filtering, partial volume effect correction, and CBF quantification was developed and assessed. To further improve the SNR for pseudo-continuous ASL (PCASL) by accounting for errors in tagging efficiency, the data from multiphase (MP) acquisitions were analyzed using a novel weighted-averaging scheme. The performances of each step in terms of SNR and reproducibility were evaluated using test-retest ASL data acquired from 12 young healthy subjects. The proposed processing pipeline was shown to improve the within-subject coefficient of variation and regional reproducibility by 17% and 16%, respectively, compared to CBF maps computed following motion correction but without the other processing steps. The CBF measurements of MP-PCASL compared to PCASL had on average 23% and 10% higher SNR and reproducibility, respectively.
Collapse
Affiliation(s)
- Amir Fazlollahi
- CSIRO Digital Productivity Flagship, The Australian e-Health Research Centre, Herston, QLD, Australia; Le2I, University of Burgundy, Le Creusot, France.
| | - Pierrick Bourgeat
- CSIRO Digital Productivity Flagship, The Australian e-Health Research Centre, Herston, QLD, Australia
| | - Xiaoyun Liang
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | | | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Olivier Salvado
- CSIRO Digital Productivity Flagship, The Australian e-Health Research Centre, Herston, QLD, Australia
| | - Fernando Calamante
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
High accuracy of arterial spin labeling perfusion imaging in differentiation of pilomyxoid from pilocytic astrocytoma. Neuroradiology 2015; 57:527-33. [PMID: 25666232 DOI: 10.1007/s00234-015-1497-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/26/2015] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Pilomyxoid astrocytoma (PMA) is a relatively new tumor entity which has been added to the 2007 WHO Classification of tumors of the central nervous system. The goal of this study is to utilize arterial spin labeling (ASL) perfusion imaging to differentiate PMA from pilocytic astrocytoma (PA). METHODS Pulsed ASL and conventional MRI sequences of patients with PMA and PA in the past 5 years were retrospectively evaluated. Patients with history of radiation or treatment with anti-angiogenic drugs were excluded. RESULTS A total of 24 patients (9 PMA, 15 PA) were included. There were statistically significant differences between PMA and PA in mean tumor/gray matter (GM) cerebral blood flow (CBF) ratios (1.3 vs 0.4, p < 0.001) and maximum tumor/GM CBF ratio (2.3 vs 1, p < 0.001). Area under the receiver operating characteristic (ROC) curves for differentiation of PMA from PA was 0.91 using mean tumor CBF, 0.95 using mean tumor/GM CBF ratios, and 0.89 using maximum tumor/GM CBF. Using a threshold value of 0.91, the mean tumor/GM CBF ratio was able to diagnose PMA with 77 % sensitivity, 100 % specificity, and a threshold value of 0.7, provided 88 % sensitivity and 86 % specificity. There was no statistically significant difference between the two tumors in enhancement pattern (p = 0.33), internal architecture (p = 0.15), or apparent diffusion coefficient (ADC) values (p = 0.07). CONCLUSION ASL imaging has high accuracy in differentiating PMA from PA. The result of this study may have important applications in prognostication and treatment planning especially in patients with less accessible tumors such as hypothalamic-chiasmatic gliomas.
Collapse
|
27
|
Xu F, Liu P, Pekar JJ, Lu H. Does acute caffeine ingestion alter brain metabolism in young adults? Neuroimage 2015; 110:39-47. [PMID: 25644657 DOI: 10.1016/j.neuroimage.2015.01.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/16/2014] [Accepted: 01/26/2015] [Indexed: 12/23/2022] Open
Abstract
Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain's response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine's effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors.
Collapse
Affiliation(s)
- Feng Xu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University, 601 North Caroline Street, MD 21287, USA; F. M Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, USA
| | - Peiying Liu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University, 601 North Caroline Street, MD 21287, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - James J Pekar
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University, 601 North Caroline Street, MD 21287, USA; F. M Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, USA
| | - Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University, 601 North Caroline Street, MD 21287, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
28
|
Cheng Y, van Zijl PCM, Pekar JJ, Hua J. Three-dimensional acquisition of cerebral blood volume and flow responses during functional stimulation in a single scan. Neuroimage 2014; 103:533-541. [PMID: 25152092 PMCID: PMC4252776 DOI: 10.1016/j.neuroimage.2014.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022] Open
Abstract
In addition to the BOLD scan, quantitative functional MRI studies require measurement of both cerebral blood volume (CBV) and flow (CBF) dynamics. The ability to detect CBV and CBF responses in a single additional scan would shorten the total scan time and reduce temporal variations. Several approaches for simultaneous CBV and CBF measurement during functional MRI experiments have been proposed in two-dimensional (2D) mode covering one to three slices in one repetition time (TR). Here, we extended the principles from previous work and present a three-dimensional (3D) whole-brain MRI approach that combines the vascular-space-occupancy (VASO) and flow-sensitive alternating inversion recovery (FAIR) arterial spin labeling (ASL) techniques, allowing the measurement of CBV and CBF dynamics, respectively, in a single scan. 3D acquisitions are complicated for such a scan combination as the time to null blood signal during a steady state needs to be known. We estimated this using Bloch simulations and demonstrate that the resulting 3D acquisition can detect activation patterns and relative signal changes of quality comparable to that of the original separate scans. The same was found for temporal signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). This approach provides improved acquisition efficiency when both CBV and CBF responses need to be monitored during a functional task.
Collapse
Affiliation(s)
- Ying Cheng
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James J Pekar
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Amygdala functional connectivity is reduced after the cold pressor task. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2014; 13:501-18. [PMID: 23645370 DOI: 10.3758/s13415-013-0162-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The amygdala forms a crucial link between central pain and stress systems. Previous research indicates that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults' resting-state amygdala functional connectivity following a cold pressor versus a control task, with the stressor and control conditions being conducted on different days. During the period of peak cortisol response to acute stress (approximately 15-30 min after stressor onset), participants were asked to rest for 6 min with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex, and this occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (ACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of poststressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15-30 min after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback.
Collapse
|
30
|
Knutsson L, Lindgren E, Ahlgren A, van Osch MJP, Markenroth Bloch K, Surova Y, Ståhlberg F, van Westen D, Wirestam R. Reduction of arterial partial volume effects for improved absolute quantification of DSC-MRI perfusion estimates: comparison between tail scaling and prebolus administration. J Magn Reson Imaging 2014; 41:903-8. [PMID: 24664642 DOI: 10.1002/jmri.24621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/24/2014] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate and mutually compare the tail-scaling approach and the prebolus administration concept for reduction of arterial partial volume effects (PVEs), because reproducible absolute quantification of cerebral blood flow (CBF) by dynamic susceptibility contrast magnetic resonance imaging (MRI) is often hampered by PVEs in the arterial input function (AIF) registration. MATERIALS AND METHODS Twenty healthy volunteers were scanned in a test-retest study with 7-20 days between investigations to examine the quantitative values and the repeatability of CBF estimates obtained from the tail-scaling and the prebolus administration approaches. RESULTS Average grey matter CBF was 80 ± 18 mL/100 g/min (mean ± SD) using tail-scaling and 56 ± 18 mL/100 g/min using prebolus administration. The intraclass correlation coefficient was 0.52 for the tail-scaling approach and 0.86 for the prebolus administration concept. CONCLUSION Both correction methods resulted in considerably reduced arterial PVEs, leading to quantitative estimates of perfusion approaching those typically obtained by other perfusion modalities. The CBF estimates obtained using the prebolus administration concept showed superior repeatability. Potential sources of uncertainty in the tail-scaling approach include the use of venous concentration curves influenced by PVEs or by geometric distortions (ie, vessel pixel shifts) in the steady-state period.
Collapse
Affiliation(s)
- Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Donahue MJ, Rane S, Hussey E, Mason E, Pradhan S, Waddell KW, Ally BA. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe. J Cereb Blood Flow Metab 2014; 34:532-41. [PMID: 24398941 PMCID: PMC3948135 DOI: 10.1038/jcbfm.2013.231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/14/2013] [Accepted: 12/03/2013] [Indexed: 01/03/2023]
Abstract
Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission.
Collapse
Affiliation(s)
- Manus J Donahue
- 1] Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [2] Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [3] Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [4] Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Swati Rane
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Erin Hussey
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Emily Mason
- 1] Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [2] Department of Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Subechhya Pradhan
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kevin W Waddell
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Brandon A Ally
- 1] Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [2] Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
32
|
Tatewaki Y, Higano S, Taki Y, Thyreau B, Murata T, Mugikura S, Ito D, Takase K, Takahashi S. Regional reliability of quantitative signal targeting with alternating radiofrequency (STAR) labeling of arterial regions (QUASAR). J Neuroimaging 2014; 24:554-561. [PMID: 25370338 PMCID: PMC4282750 DOI: 10.1111/jon.12076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 06/03/2013] [Accepted: 06/13/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Quantitative signal targeting with alternating radiofrequency labeling of arterial regions (QUASAR) is a recent spin labeling technique that could improve the reliability of brain perfusion measurements. Although it is considered reliable for measuring gray matter as a whole, it has never been evaluated regionally. Here we assessed this regional reliability. METHODS Using a 3-Tesla Philips Achieva whole-body system, we scanned four times 10 healthy volunteers, in two sessions 2 weeks apart, to obtain QUASAR images. We computed perfusion images and ran a voxel-based analysis within all brain structures. We also calculated mean regional cerebral blood flow (rCBF) within regions of interest configured for each arterial territory distribution. RESULTS The mean CBF over whole gray matter was 37.74 with intraclass correlation coefficient (ICC) of .70. In white matter, it was 13.94 with an ICC of .30. Voxel-wise ICC and coefficient-of-variation maps showed relatively lower reliability in watershed areas and white matter especially in deeper white matter. The absolute mean rCBF values were consistent with the ones reported from PET, as was the relatively low variability in different feeding arteries. CONCLUSIONS Thus, QUASAR reliability for regional perfusion is high within gray matter, but uncertain within white matter.
Collapse
Affiliation(s)
- Yasuko Tatewaki
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shuichi Higano
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan.,Division of Medical Image Analysis, Department of Community Medical Megabank, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan.,Depatment of Nuclear Medicine & Radiology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Benjamin Thyreau
- Division of Developmental Cognitive Neuroscience Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Takaki Murata
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shunji Mugikura
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Daisuke Ito
- Division of Radiology, Tohoku University Hospital, Miyagi, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shoki Takahashi
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
33
|
Heijtel DFR, Mutsaerts HJMM, Bakker E, Schober P, Stevens MF, Petersen ET, van Berckel BNM, Majoie CBLM, Booij J, van Osch MJP, Vanbavel E, Boellaard R, Lammertsma AA, Nederveen AJ. Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with ¹⁵O H₂O positron emission tomography. Neuroimage 2014; 92:182-92. [PMID: 24531046 DOI: 10.1016/j.neuroimage.2014.02.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 11/18/2022] Open
Abstract
Measurements of the cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide useful information about cerebrovascular condition and regional metabolism. Pseudo-continuous arterial spin labeling (pCASL) is a promising non-invasive MRI technique to quantitatively measure the CBF, whereas additional hypercapnic pCASL measurements are currently showing great promise to quantitatively assess the CVR. However, the introduction of pCASL at a larger scale awaits further evaluation of the exact accuracy and precision compared to the gold standard. (15)O H₂O positron emission tomography (PET) is currently regarded as the most accurate and precise method to quantitatively measure both CBF and CVR, though it is one of the more invasive methods as well. In this study we therefore assessed the accuracy and precision of quantitative pCASL-based CBF and CVR measurements by performing a head-to-head comparison with (15)O H₂O PET, based on quantitative CBF measurements during baseline and hypercapnia. We demonstrate that pCASL CBF imaging is accurate during both baseline and hypercapnia with respect to (15)O H₂O PET with a comparable precision. These results pave the way for quantitative usage of pCASL MRI in both clinical and research settings.
Collapse
Affiliation(s)
- D F R Heijtel
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.
| | - H J M M Mutsaerts
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - E Bakker
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - P Schober
- Department of Anesthesiology, VU University Medical Center, Amsterdam, The Netherlands
| | - M F Stevens
- Department of Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| | - E T Petersen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B N M van Berckel
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - C B L M Majoie
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - J Booij
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - M J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - E Vanbavel
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - R Boellaard
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - A A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - A J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Qin Q, Huang AJ, Hua J, Desmond JE, Stevens RD, van Zijl PC. Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function. NMR IN BIOMEDICINE 2014; 27:116-28. [PMID: 24307572 PMCID: PMC3947417 DOI: 10.1002/nbm.3040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 05/12/2023]
Abstract
Measurement of the cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of both acquisition and quantitative analysis. In order to fit arterial spin labeling-based perfusion kinetic curves, an empirical three-parameter model which characterizes the effective impulse response function (IRF) is introduced, which allows the determination of CBF, the arterial transit time (ATT) and T(1,eff). The accuracy and precision of the proposed model were compared with those of more complicated models with four or five parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling images were acquired on a clinical 3-T scanner in 10 normal volunteers using a three-dimensional multi-shot gradient and spin echo scheme at multiple post-labeling delays to sample the kinetic curves. Voxel-wise fitting was performed using the three-parameter model and other models that contain two, four or five unknown parameters. For the two-parameter model, T(1,eff) values close to tissue and blood were assumed separately. Standard statistical analysis was conducted to compare these fitting models in various brain regions. The fitted results indicated that: (i) the estimated CBF values using the two-parameter model show appreciable dependence on the assumed T(1,eff) values; (ii) the proposed three-parameter model achieves the optimal balance between the goodness of fit and model complexity when compared among the models with explicit IRF fitting; (iii) both the two-parameter model using fixed blood T1 values for T(1,eff) and the three-parameter model provide reasonable fitting results. Using the proposed three-parameter model, the estimated CBF (46 ± 14 mL/100 g/min) and ATT (1.4 ± 0.3 s) values averaged from different brain regions are close to the literature reports; the estimated T(1,eff) values (1.9 ± 0.4 s) are higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial blood compartment.
Collapse
Affiliation(s)
- Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological
Science, Division of MR Research, The Johns Hopkins University School of Medicine,
Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy
Krieger Institute, Baltimore, MD, USA
| | - Alan J. Huang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy
Krieger Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University,
Baltimore, MD, USA
| | - Jun Hua
- The Russell H. Morgan Department of Radiology and Radiological
Science, Division of MR Research, The Johns Hopkins University School of Medicine,
Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy
Krieger Institute, Baltimore, MD, USA
| | - John E. Desmond
- Department of Neurology and Neurosurgery, The Johns Hopkins
University, Baltimore, MD, USA
| | - Robert D. Stevens
- The Russell H. Morgan Department of Radiology and Radiological
Science, Division of MR Research, The Johns Hopkins University School of Medicine,
Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy
Krieger Institute, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, The Johns Hopkins
University, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, The Johns
Hopkins University, Baltimore, MD, USA
| | - Peter C.M. van Zijl
- The Russell H. Morgan Department of Radiology and Radiological
Science, Division of MR Research, The Johns Hopkins University School of Medicine,
Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy
Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
35
|
Rakheja R, Chandarana H, Ponzo F, Seltzer AL, Beltran LS, Geppert C, Friedman KP. Fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: current status, future aspects. PET Clin 2013; 9:237-52. [PMID: 25030285 DOI: 10.1016/j.cpet.2013.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Simultaneous positron emission tomography (PET)/magnetic resonance (MR) imaging is a promising novel technology for oncology diagnosis and staging and neurologic and cardiac applications. Our institution's current research protocol results in a total imaging time of approximately 45 to 70 minutes with simultaneous PET/MR imaging, making this a feasible total body imaging protocol. Further development of MR-based attenuation correction will improve PET quantification. Quantitatively accurate multiparametric PET/MR data sets will likely improve diagnosis of disease and help guide and monitor the therapies for individualized patient care.
Collapse
Affiliation(s)
- Rajan Rakheja
- Department of Nuclear Medicine/Radiology, Royal University Hospital, Saskatoon, Saskatchewan, Canada.
| | - Hersh Chandarana
- Department of Radiology, New York University School of Medicine, 550 First Avenue, New York, NY, USA
| | - Fabio Ponzo
- Department of Radiology, New York University School of Medicine, 550 First Avenue, New York, NY, USA
| | - Alexandra L Seltzer
- Department of Radiology, New York University School of Medicine, 550 First Avenue, New York, NY, USA
| | - Luis S Beltran
- Department of Radiology, New York University School of Medicine, 550 First Avenue, New York, NY, USA
| | | | - Kent P Friedman
- Department of Radiology, New York University School of Medicine, 550 First Avenue, New York, NY, USA
| |
Collapse
|
36
|
Knutsson L, Lindgren E, Ahlgren A, van Osch MJP, Bloch KM, Surova Y, Ståhlberg F, van Westen D, Wirestam R. Dynamic susceptibility contrast MRI with a prebolus contrast agent administration design for improved absolute quantification of perfusion. Magn Reson Med 2013; 72:996-1006. [PMID: 24285621 DOI: 10.1002/mrm.25006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 11/11/2022]
Abstract
PURPOSE Arterial partial-volume effects (PVEs) often hamper reproducible absolute quantification of cerebral blood flow (CBF) and cerebral blood volume (CBV) obtained by dynamic susceptibility contrast MRI (DSC-MRI). The aim of this study was to examine whether arterial PVEs in DSC-MRI data can be minimized by rescaling the arterial input function (AIF) using a sagittal-sinus venous output function obtained following a prebolus administration of a low dose of contrast agent. METHODS The study was carried out as a test-retest experiment in 20 healthy volunteers to examine the repeatability of the CBF and CBV estimates. All subjects were scanned twice with 7-20 days between investigations. RESULTS DSC-MRI returned an overestimated average whole-brain CBF of 220 ± 44 mL/100 g/min (mean ± SD) before correction and 44 ± 15 mL/100 g/min when applying the prebolus design, averaged over all scans. Average whole-brain CBV was 20 ± 2.0 mL/100 g before correction and 4.0 ± 1.0 mL/100 g after prebolus correction. CONCLUSION Quantitative estimates of CBF and CBV, obtained with the proposed prebolus DSC-MRI technique, approached those typically obtained by other perfusion modalities. The CBF and CBV estimates showed good repeatability.
Collapse
Affiliation(s)
- Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zheng G, Zhang LJ, Cao Y, Pan Z, Qi RF, Ni L, Shi D, Fan X, Lu GM. Transjugular intrahepatic portosystemic shunt induced short- and long-term cerebral blood flow variations in cirrhotic patients: an arterial spin labeling MRI study. Metab Brain Dis 2013; 28:463-71. [PMID: 23564221 DOI: 10.1007/s11011-013-9400-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/10/2013] [Indexed: 01/02/2023]
Abstract
Short- and long-term effects of transjugular intrahepatic portosystemic shunt (TIPS) on cerebral blood flow (CBF) in patients with cirrhosis are still unclear. The purpose of this longitudinal study was to explore CBF alteration patterns in cirrhotic patients after TIPS. Thirteen cirrhotic patients (7 male, 6 female, mean age 50.0 ± 9.3 years) underwent arterial-spin labeling (ASL) MRI 1-9 days (median 1 days) before TIPS. Follow-up MR examinations were performed about 1 week (median 6 days), 3 months (n = 6), 6-9 months (n = 5) and 12-18 months (n = 5) after TIPS. CBF, ammonia level, Child-Pugh score, number connection test type A (NCT-A) and digit symbol test (DST) scores were converted into relative values by dividing by his/her pre-TIPS values, and then, compared via one-way analysis of variance (ANOVA). Correlations between the pre- and post-TIPS changes of relative CBF (rCBF) and the changes of relative ammonia (rAmmonia), Child-Pugh (rChild-Pugh), and NCT-A/DST (rNCT-A/rDST) scores were calculated by crossing subjects. Compared with the pre-TIPS level, the global rCBF slightly increased by 10.9 % about 1 week later, then rapidly decreased by 14.2 % 3 months later, and flatly decreased by 17.2 % in 6-9 months and 18.0 % in 12-18 months following TIPS. The changes of 3-month rDST score were slightly correlated with 3-month rCBF rather than 1-week rCBF, (P < 0.1, FDR-corrected) No difference was found between the pre- and post-TIPS rAmmonia levels, rChild-Pugh and rNCT-A/rDST scores (Post-hoc P > 0.05). CBF measured at different time points after TIPS insertion showed different patterns, indicating varying longitudinal effects of TIPS on CBF. A sharp decline of rCBF was found in the 1 week to 3 months period after insertion, indicating that high event rate of hepatic encephalopathy might relate with the unadaptable CBF in patients undergoing TIPS insertion.
Collapse
Affiliation(s)
- Gang Zheng
- College of civil aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zheng G, Zhang LJ, Zhong J, Wang Z, Qi R, Shi D, Lu GM. Cerebral blood flow measured by arterial-spin labeling MRI: a useful biomarker for characterization of minimal hepatic encephalopathy in patients with cirrhosis. Eur J Radiol 2013; 82:1981-8. [PMID: 23849331 DOI: 10.1016/j.ejrad.2013.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 12/15/2022]
Abstract
PURPOSE To investigate the role of arterial-spin labeling (ASL) MRI to non-invasively characterize the patterns of cerebral blood flow (CBF) changes in cirrhotic patients and to assess the potential of ASL MRI to characterize minimal hepatic encephalopathy (MHE). MATERIALS AND METHODS This study was approved by the local ethics committee, and written informed consent was obtained from all participants. Thirty six cirrhosis patients without overt hepatic encephalopathy (16 MHE patients and 20 non hepatic encephalopathy (non-HE) patients) and 25 controls underwent ASL MRI, and CBF was measured for each subject. One-way ANOCOVA test with age and gender as covariences was used to compare CBF difference among three groups, and post hoc analysis was performed between each two groups. Region-based correlation analysis was applied between Child-Pugh score, venous blood ammonia level, neuropsychological tests and CBF values in cirrhosis patients. Receiver operator characteristic (ROC) analysis was used for assessing CBF measurements in ASL MRI to differentiate MHE from non-HE patients. RESULTS The gray matter CBF of MHE patients (71.09 ± 11.88 mL min(-1)100g(-1)) was significantly higher than that of non-HE patients (55.28 ± 12.30 mL min(-1)100g(-1), P<0.01) and controls (52.09 ± 9.27 mL min(-1)100g(-1), P<0.001). Voxel-wise ANOCOVA results showed that CBFs were significantly different among three groups in multiple gray matter areas (P<0.05, Bonferroni corrected). Post hoc comparisons showed that CBF of these brain regions was increased in MHE patients compared with controls and non-HE patients (P<0.05, Bonferroni corrected). CBF of the right putamen was of the highest sensitivity (93.8%) and moderate specificity (75.0%) for characterization of MHE when using the cutoff value of 50.57 mL min(-1)100g(-1). CBFs in the bilateral median cingulate gyri, left supramarginal gyrus, right angular gyrus, right heschl gyrus and right superior temporal gyrus have both sensitivity and specificity of approximately 80% for the diagnosis of MHE. CONCLUSION Higher CBF was found in many brain regions in cirrhotic patients than controls and gradually increased with the progress of disease. CBF measured with ASL MRI can be a useful marker for differentiating MHE from non-HE patients.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, 210002, China; College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Noninvasive estimation of the arterial input function in positron emission tomography imaging of cerebral blood flow. J Cereb Blood Flow Metab 2013; 33:115-21. [PMID: 23072748 PMCID: PMC3597366 DOI: 10.1038/jcbfm.2012.143] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Positron emission tomography (PET) with (15)O-labeled water can provide reliable measurement of cerebral blood flow (CBF). Quantification of CBF requires knowledge of the arterial input function (AIF), which is usually provided by arterial blood sampling. However, arterial sampling is invasive. Moreover, the blood generally is sampled at the wrist, which does not perfectly represent the AIF of the brain, because of the effects of delay and dispersion. We developed and validated a new noninvasive method to obtain the AIF directly by PET imaging of the internal carotid artery in a region of interest (ROI) defined by coregistered high-resolution magnetic resonance angiography. An ROI centered at the petrous portion of the internal carotid artery was defined, and the AIF was estimated simultaneously with whole brain blood flow. The image-derived AIF (IDAIF) method was validated against conventional arterial sampling. The IDAIF generated highly reproducible CBF estimations, generally in good agreement with the conventional technique.
Collapse
|
40
|
Abstract
PET and MRI provide complementary information in the study of the human brain. Simultaneous PET/MRI data acquisition allows the spatial and temporal correlation of the measured signals, creating opportunities impossible to realize using stand-alone instruments. This paper reviews the methodologic improvements and potential neurologic and psychiatric applications of this novel technology. We first present methods for improving the performance and information content of each modality by using the information provided by the other technique. On the PET side, we discuss methods that use the simultaneously acquired MRI data to improve the PET data quantification. On the MRI side, we present how improved PET quantification can be used to validate several MRI techniques. Finally, we describe promising research, translational, and clinical applications that can benefit from these advanced tools.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
41
|
Zheng G, Zhang LJ, Wang Z, Qi RF, Shi D, Wang L, Fan X, Lu GM. Changes in cerebral blood flow after transjugular intrahepatic portosystemic shunt can help predict the development of hepatic encephalopathy: an arterial spin labeling MR study. Eur J Radiol 2012; 81:3851-6. [PMID: 22832118 DOI: 10.1016/j.ejrad.2012.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 06/30/2012] [Accepted: 07/02/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral blood flow (CBF) changes after transjugular intrahepatic portosystemic shunt (TIPS) are still unclear. Our aim is to assess the TIPS-induced CBF changes and their potential clinical significance using the arterial spin labeling (ASL) perfusion magnetic resonance imaging. MATERIALS AND METHODS Nine cirrhotic patients underwent ASL 1-8 days before and 4-7 days after TIPS. CBF was calculated at each voxel and mean CBF values were computed in the whole brain, gray matter and white matter. Changes of CBFs before and after TIPS were compared by paired t-test. RESULTS Voxel-wise results showed CBF diffusely increased in patients after TIPS, but no region with significant decrease in CBF was found, nor was any significant mean CBF difference detected in the whole brain, gray matter and white matter. Six patients out of nine showed a global CBF increase of 9-39%; one patient presented a global CBF decrease of 6%; another two showed a global CBF decrease of 16% and 31% respectively. Follow-up studies showed that the two patients with greatly decreased global CBF suffered from multiple episodes of overt hepatic encephalopathy (OHE) after TIPS and one died of OHE. CONCLUSIONS CBF derived from noninvasive ASL MRI could be used as a useful biomarker to predict the development of OHE through consecutively tracking CBF changes in patients with inserted TIPS. Increased CBFs in many cortical regions could be common effects of the TIPS procedure, while decreased global CBF following TIPS might indicate the development of OHE.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Peng H, Levin CS. Study of PET intrinsic spatial resolution and contrast recovery improvement for PET/MRI systems. Phys Med Biol 2012; 57:N101-15. [PMID: 22481596 DOI: 10.1088/0031-9155/57/9/n101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This paper studied PET intrinsic spatial resolution and contrast recovery improvement for PET/MRI dual modality systems. A Monte Carlo simulation tool was developed to study positron diffusion in tissues with and without a magnetic field for six commonly used isotopes ((18)F, (11)C, (13)N, (15)O, (68)Ga and (82)Rb). A convolution process was implemented to investigate PET intrinsic spatial resolution, taking into account three factors: positron diffusion range, collinear photon annihilation and finite detector element width. The resolution improvement was studied quantitatively as a function of magnetic field strength for three PET system configurations (whole-body, brain-dedicated and small-animal PET). When the magnetic field strength increases up to 10 T, the system spatial resolution in directions orthogonal to the field for (15)O, (68)Ga and (82)Rb is comparable to that of (18)F without the magnetic field. Beyond 10 T, no significant improvement of spatial resolution was observed. In addition, the modulation transfer function was studied to predict the intrinsic contrast recovery improvement for several existing and promising PET/MRI configurations.
Collapse
Affiliation(s)
- Hao Peng
- Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
43
|
Hua J, Qin Q, Pekar JJ, van Zijl PCM. Measurement of absolute arterial cerebral blood volume in human brain without using a contrast agent. NMR IN BIOMEDICINE 2011; 24:1313-25. [PMID: 21608057 PMCID: PMC3192228 DOI: 10.1002/nbm.1693] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/26/2010] [Accepted: 01/19/2011] [Indexed: 05/26/2023]
Abstract
Arterial cerebral blood volume (CBV(a) ) is a vital indicator of tissue perfusion and vascular reactivity. We extended the recently developed inflow vascular-space-occupancy (iVASO) MRI technique, which uses spatially selective inversion to suppress the signal from blood flowing into a slice, with a control scan to measure absolute CBV(a) using cerebrospinal fluid (CSF) for signal normalization. Images were acquired at multiple blood nulling times to account for the heterogeneity of arterial transit times across the brain, from which both CBV(a) and arterial transit times were quantified. Arteriolar CBV(a) was determined separately by incorporating velocity-dependent bipolar crusher gradients. Gray matter (GM) CBV(a) values (n=11) were 2.04 ± 0.27 and 0.76 ± 0.17 ml blood/100 ml tissue without and with crusher gradients (b=1.8 s/mm(2) ), respectively. Arterial transit times were 671 ± 43 and 785 ± 69 ms, respectively. The arterial origin of the signal was validated by measuring its T(2) , which was within the arterial range. The proposed approach does not require exogenous contrast agent administration, and provides a non-invasive alternative to existing blood volume techniques for mapping absolute CBV(a) in studies of brain physiology and neurovascular diseases.
Collapse
Affiliation(s)
- Jun Hua
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD USA
| | - James J. Pekar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD USA
| | - Peter C. M. van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD USA
| |
Collapse
|
44
|
Newsome MR, Scheibel RS, Chu Z, Hunter JV, Li X, Wilde EA, Lu H, Wang ZJ, Lin X, Steinberg JL, Vasquez AC, Cook L, Levin HS. The relationship of resting cerebral blood flow and brain activation during a social cognition task in adolescents with chronic moderate to severe traumatic brain injury: a preliminary investigation. Int J Dev Neurosci 2011; 30:255-66. [PMID: 22120754 DOI: 10.1016/j.ijdevneu.2011.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/21/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022] Open
Abstract
Alterations in cerebrovascular function are evident acutely in moderate to severe traumatic brain injury (TBI), although less is known about their chronic effects. Adolescent and adult patients with moderate to severe TBI have been reported to demonstrate diffuse activation throughout the brain during functional magnetic resonance imaging (fMRI). Because fMRI is a measure related to blood flow, it is possible that any deficits in blood flow may alter activation. An arterial spin labeling (ASL) perfusion sequence was performed on seven adolescents with chronic moderate to severe TBI and seven typically developing (TD) adolescents during the same session in which they had performed a social cognition task during fMRI. In the TD group, prefrontal CBF was positively related to prefrontal activation and negatively related to non-prefrontal, posterior, brain activation. This relationship was not seen in the TBI group, who demonstrated a greater positive relationship between prefrontal CBF and non-prefrontal activation than the TD group. An analysis of CBF data independent of fMRI showed reduced CBF in the right non-prefrontal region (p<.055) in the TBI group. To understand any role reduced CBF may play in diffuse extra-activation, we then related the right non-prefrontal CBF to activation. CBF in the right non-prefrontal region in the TD group was positively associated with prefrontal activation, suggesting an interactive role of non-prefrontal and prefrontal blood flow throughout the right hemisphere in healthy brains. However, the TBI group demonstrated a positive association with activation constrained to the right non-prefrontal region. These data suggest a relationship between impaired non-prefrontal CBF and the presence of non-prefrontal extra-activation, where the region with more limited blood flow is associated with activation limited to that region. In a secondary analysis, pathology associated with hyperintensities on T2-weighted FLAIR imaging over the whole brain was related to whole brain activation, revealing a negative relationship between lesion volume and frontal activation, and a positive relationship between lesion volume and posterior activation. These preliminary data, albeit collected with small sample sizes, suggest that reduced non-prefrontal CBF, and possibly pathological tissue associated with T2-hyperintensities, may provide contributions to the diffuse, primarily posterior extra-activation observed in adolescents following moderate to severe TBI.
Collapse
Affiliation(s)
- Mary R Newsome
- Traumatic Brain Injury Center of Excellence, Michael E. DeBakey VA Medical Center, Houston, TX, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hua J, Stevens RD, Huang AJ, Pekar JJ, van Zijl PCM. Physiological origin for the BOLD poststimulus undershoot in human brain: vascular compliance versus oxygen metabolism. J Cereb Blood Flow Metab 2011; 31:1599-611. [PMID: 21468090 PMCID: PMC3137471 DOI: 10.1038/jcbfm.2011.35] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The poststimulus blood oxygenation level-dependent (BOLD) undershoot has been attributed to two main plausible origins: delayed vascular compliance based on delayed cerebral blood volume (CBV) recovery and a sustained increased oxygen metabolism after stimulus cessation. To investigate these contributions, multimodal functional magnetic resonance imaging was employed to monitor responses of BOLD, cerebral blood flow (CBF), total CBV, and arterial CBV (CBV(a)) in human visual cortex after brief breath hold and visual stimulation. In visual experiments, after stimulus cessation, CBV(a) was restored to baseline in 7.9±3.4 seconds, and CBF and CBV in 14.8±5.0 seconds and 16.1±5.8 seconds, respectively, all significantly faster than BOLD signal recovery after undershoot (28.1±5.5 seconds). During the BOLD undershoot, postarterial CBV (CBV(pa), capillaries and venules) was slightly elevated (2.4±1.8%), and cerebral metabolic rate of oxygen (CMRO(2)) was above baseline (10.6±7.4%). Following breath hold, however, CBF, CBV, CBV(a) and BOLD signals all returned to baseline in ∼20 seconds. No significant BOLD undershoot, and residual CBV(pa) dilation were observed, and CMRO(2) did not substantially differ from baseline. These data suggest that both delayed CBV(pa) recovery and enduring increased oxidative metabolism impact the BOLD undershoot. Using a biophysical model, their relative contributions were estimated to be 19.7±15.9% and 78.7±18.6%, respectively.
Collapse
Affiliation(s)
- Jun Hua
- Russell H Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
46
|
Liu P, Uh J, Lu H. Determination of spin compartment in arterial spin labeling MRI. Magn Reson Med 2011; 65:120-7. [PMID: 20740655 DOI: 10.1002/mrm.22601] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A major difference between arterial-spin-labeling MRI and gold-standard radiotracer blood flow methods is that the compartment localization of the labeled spins in the arterial-spin-labeling image is often ambiguous, which may affect the quantification of cerebral blood flow. In this study, we aim to probe whether the spins are located in the vascular system or tissue by using T2 of the arterial-spin-labeling signal as a marker. We combined two recently developed techniques, pseudo-continuous arterial spin labeling and T2-Relaxation-Under-Spin-Tagging, to determine the T2 of the labeled spins at multiple postlabeling delay times. Our data suggest that the labeled spins first showed the T2 of arterial blood followed by gradually approaching and stabilizing at the tissue T2. The T2 values did not decrease further toward the venous T2. By fitting the experimental data to a two-compartment model, we estimated gray matter cerebral blood flow, arterial transit time, and tissue transit time to be 74.0 ± 10.7 mL/100g/min (mean ± SD, N = 10), 938 ± 156 msec, and 1901 ± 181 msec, respectively. The arterial blood volume was calculated to be 1.18 ± 0.21 mL/100 g. A postlabeling delay time of 2 s is sufficient to allow the spins to completely enter the tissue space for gray matter but not for white matter.
Collapse
Affiliation(s)
- Peiying Liu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
47
|
Chappell MA, Groves AR, MacIntosh BJ, Donahue MJ, Jezzard P, Woolrich MW. Partial volume correction of multiple inversion time arterial spin labeling MRI data. Magn Reson Med 2011; 65:1173-83. [PMID: 21337417 DOI: 10.1002/mrm.22641] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/09/2010] [Accepted: 08/26/2010] [Indexed: 12/21/2022]
Abstract
The accuracy of cerebral blood flow (CBF) estimates from arterial spin labeling (ASL) is affected by the presence of both gray matter (GM) and white matter within any voxel. Recently a partial volume (PV) correction method for ASL has been demonstrated (Asllani et al. Magn Reson Med 2008; 60:1362-1371), where PV estimates were used with a local linear regression to separate the GM and white matter ASL signal. Here a new PV correction method for multi-inversion time ASL is proposed that exploits PV estimates within a spatially regularized kinetic curve model analysis. The proposed method exploits both PV estimates and the different kinetics of the ASL signal arising from GM and white matter. The new correction method is shown, on both simulated and real data, to provide correction of GM CBF comparable to a linear regression approach, whilst preserving greater spatial detail in the CBF image. On real data corrected GM CBF values were found to be largely independent of GM PV, implying that the correction had been successful. Increases of mean GM CBF after correction of 69-80% were observed.
Collapse
Affiliation(s)
- M A Chappell
- Oxford Centre for Functional MRI of Brain, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
48
|
Bonekamp D, Degaonkar M, Barker PB. Quantitative cerebral blood flow in dynamic susceptibility contrast MRI using total cerebral flow from phase contrast magnetic resonance angiography. Magn Reson Med 2011; 66:57-66. [PMID: 21287594 DOI: 10.1002/mrm.22776] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/12/2010] [Accepted: 11/24/2010] [Indexed: 11/10/2022]
Abstract
Dynamic susceptibility contrast magnetic resonance imaging during bolus injection of gadolinium contrast agent is commonly used to investigate cerebral hemodynamics. The large majority of clinical applications of dynamic susceptibility contrast magnetic resonance imaging to date have reported relative cerebral blood flow values because of dependence of the result on the accuracy of determining the arterial input function, the robustness of the singular value decomposition algorithm, and others. We propose a calibration approach that directly measures the total (i.e., whole brain) cerebral blood flow in individual subjects using phase contrast magnetic resonance angiography. The method was applied to data from 11 patients with intracranial pathology. The sum of squares variance about the mean (uncorrected: white matter = 105.6, gray matter = 472.2; corrected: white matter = 34.1, gray matter = 99.8) after correction was significantly lower for white matter (P = 0.045) and for gray matter (P = 0.011). However, the mean gray and white matter cerebral blood flow in the contralateral hemisphere were not significantly altered by the correction. The proposed phase contrast magnetic resonance angiography calibration technique appears to be one of the most direct correction schemes available for dynamic susceptibility contrast magnetic resonance imaging cerebral blood flow values and can be performed rapidly, requiring only a few minutes of additional scan time.
Collapse
Affiliation(s)
- David Bonekamp
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | | | | |
Collapse
|
49
|
Wang Y, Saykin AJ, Pfeuffer J, Lin C, Mosier KM, Shen L, Kim S, Hutchins GD. Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T. Neuroimage 2010; 54:1188-95. [PMID: 20800097 DOI: 10.1016/j.neuroimage.2010.08.043] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/28/2010] [Accepted: 08/19/2010] [Indexed: 12/14/2022] Open
Abstract
Arterial spin labeling (ASL) is a promising non-invasive magnetic resonance imaging (MRI) technique for measuring regional cerebral blood flow (rCBF) or perfusion in vivo. To evaluate the feasibility of ASL as a biomarker for clinical trials, it is important to examine test-retest reproducibility. We investigated both inter- and intra-session reproducibility of perfusion MRI using a pulsed ASL (PASL) sequence PICORE Q2TIPS with an echo-planar imaging (EPI) readout. Structural MRI regions of interest (ROIs) were extracted individually by automated parcellation and segmentation methods using FreeSurfer. These cortical and subcortical ROIs were used to assess regional perfusion stability. Our results indicated regional variability in grey matter rCBF. Although rCBF measurements were characterized by intersubject variation, our results also indicated relatively less within-subject variability estimated as within-subject standard deviation (SD(W)) (intersession SD(W): 2.0 to 8.8; intrasession SD(W): 2.8 to 9.6) and acceptable reliabilities as measured using intraclass correlation coefficient (ICC) (intersession ICC: 0.68 to 0.94; intrasession ICC: 0.66 to 0.95) for regional MRI perfusion measurements using the PICORE Q2TIPS technique. Overall, our findings suggest that PASL is a technique with good within and between session reproducibility. Further reproducibility studies in target populations relevant for specific clinical trials of neurovascular related agents will be important and the present results provide a framework for such assessments.
Collapse
Affiliation(s)
- Yang Wang
- IU Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Chappell MA, MacIntosh BJ, Donahue MJ, Günther M, Jezzard P, Woolrich MW. Separation of macrovascular signal in multi-inversion time arterial spin labelling MRI. Magn Reson Med 2010; 63:1357-65. [PMID: 20432306 DOI: 10.1002/mrm.22320] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Arterial spin labeling (ASL) provides a noninvasive method to measure brain perfusion and is becoming an increasingly viable alternative to more invasive MR methods due to improvements in acquisition, such as the use of a three-dimensional GRASE readout. A potential source of error in ASL measurements is signal arising from intravascular blood that is destined for more distal tissue. This is typically suppressed using diffusion gradients in many ASL sequences. However, several problems exist with this approach, such as the choice of cutoff velocity and gradient direction and incompatibility with certain readout modules. An alternative approach is to explicitly model the intravascular signal. This study exploits this approach by using multi-inversion time ASL data with a recently developed model-fitting method. The method employed permits the intravascular contribution to be discarded in voxels where there is no support in the data for its inclusion, thereby addressing the issue of overfitting. It is shown by comparing data with and without flow suppression, and by comparing the intravascular contribution in GRASE ASL data to MR angiographic images, that the model-fitting approach can provide a viable alternative to flow suppression in ASL where suppression is either not feasible or not desirable.
Collapse
Affiliation(s)
- Michael A Chappell
- Centre for Functional MRI of the Brain, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK.
| | | | | | | | | | | |
Collapse
|