1
|
Sangüesa G, Batlle M, Muñoz-Moreno E, Soria G, Alcarraz A, Rubies C, Sitjà-Roqueta L, Solana E, Martínez-Heras E, Meza-Ramos A, Amaro S, Llufriu S, Mont L, Guasch E. Intense long-term training impairs brain health compared with moderate exercise: Experimental evidence and mechanisms. Ann N Y Acad Sci 2022; 1518:282-298. [PMID: 36256544 PMCID: PMC10092505 DOI: 10.1111/nyas.14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The consequences of extremely intense long-term exercise for brain health remain unknown. We studied the effects of strenuous exercise on brain structure and function, its dose-response relationship, and mechanisms in a rat model of endurance training. Five-week-old male Wistar rats were assigned to moderate (MOD) or intense (INT) exercise or a sedentary (SED) group for 16 weeks. MOD rats showed the highest motivation and learning capacity in operant conditioning experiments; SED and INT presented similar results. In vivo MRI demonstrated enhanced global and regional connectivity efficiency and clustering as well as a higher cerebral blood flow (CBF) in MOD but not INT rats compared with SED. In the cortex, downregulation of oxidative phosphorylation complex IV and AMPK activation denoted mitochondrial dysfunction in INT rats. An imbalance in cortical antioxidant capacity was found between MOD and INT rats. The MOD group showed the lowest hippocampal brain-derived neurotrophic factor levels. The mRNA and protein levels of inflammatory markers were similar in all groups. In conclusion, strenuous long-term exercise yields a lesser improvement in learning ability than moderate exercise. Blunting of MOD-induced improvements in CBF and connectivity efficiency, accompanied by impaired mitochondrial energetics and, possibly, transient local oxidative stress, may underlie the findings in intensively trained rats.
Collapse
Affiliation(s)
- Gemma Sangüesa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red - Cardiovascular (CIBERCV), Madrid, Spain
| | - Montserrat Batlle
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red - Cardiovascular (CIBERCV), Madrid, Spain
| | - Emma Muñoz-Moreno
- Experimental 7T MRI Unit, Magnetic Resonance Imaging Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Guadalupe Soria
- Experimental 7T MRI Unit, Magnetic Resonance Imaging Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Laboratory of Surgical Neuroanatomy, Faculty of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Anna Alcarraz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cira Rubies
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Laia Sitjà-Roqueta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Department of Biomedical Sciences, Institute of Neurosciences, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Elisabeth Solana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Eloy Martínez-Heras
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Aline Meza-Ramos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico.,Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sergi Amaro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Comprehensive Stroke Center, Institute of Neurosciences, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sara Llufriu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Lluís Mont
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red - Cardiovascular (CIBERCV), Madrid, Spain.,Cardiovascular Institute, Clínic de Barcelona, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Eduard Guasch
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red - Cardiovascular (CIBERCV), Madrid, Spain.,Cardiovascular Institute, Clínic de Barcelona, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Departament de Medicina, Facultat de Medicina seu Casanova, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Li M, Kitamura A, Beverley J, Koudelka J, Duncombe J, Lennen R, Jansen MA, Marshall I, Platt B, Wiegand UK, Carare RO, Kalaria RN, Iliff JJ, Horsburgh K. Impaired Glymphatic Function and Pulsation Alterations in a Mouse Model of Vascular Cognitive Impairment. Front Aging Neurosci 2022; 13:788519. [PMID: 35095472 PMCID: PMC8793139 DOI: 10.3389/fnagi.2021.788519] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Large vessel disease and carotid stenosis are key mechanisms contributing to vascular cognitive impairment (VCI) and dementia. Our previous work, and that of others, using rodent models, demonstrated that bilateral common carotid stenosis (BCAS) leads to cognitive impairment via gradual deterioration of the neuro-glial-vascular unit and accumulation of amyloid-β (Aβ) protein. Since brain-wide drainage pathways (glymphatic) for waste clearance, including Aβ removal, have been implicated in the pathophysiology of VCI via glial mechanisms, we hypothesized that glymphatic function would be impaired in a BCAS model and exacerbated in the presence of Aβ. Male wild-type and Tg-SwDI (model of microvascular amyloid) mice were subjected to BCAS or sham surgery which led to a reduction in cerebral perfusion and impaired spatial learning acquisition and cognitive flexibility. After 3 months survival, glymphatic function was evaluated by cerebrospinal fluid (CSF) fluorescent tracer influx. We demonstrated that BCAS caused a marked regional reduction of CSF tracer influx in the dorsolateral cortex and CA1-DG molecular layer. In parallel to these changes increased reactive astrogliosis was observed post-BCAS. To further investigate the mechanisms that may lead to these changes, we measured the pulsation of cortical vessels. BCAS impaired vascular pulsation in pial arteries in WT and Tg-SwDI mice. Our findings show that BCAS influences VCI and that this is paralleled by impaired glymphatic drainage and reduced vascular pulsation. We propose that these additional targets need to be considered when treating VCI.
Collapse
Affiliation(s)
- Mosi Li
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Akihiro Kitamura
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Department of Neurology, Shiga University of Medical Science, Otsu, Japan
| | - Joshua Beverley
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Juraj Koudelka
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jessica Duncombe
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Lennen
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Maurits A Jansen
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bettina Platt
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Ulrich K Wiegand
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jeffrey J Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Celestine M, Nadkarni NA, Garin CM, Bougacha S, Dhenain M. Sammba-MRI: A Library for Processing SmAll-MaMmal BrAin MRI Data in Python. Front Neuroinform 2020; 14:24. [PMID: 32547380 PMCID: PMC7270712 DOI: 10.3389/fninf.2020.00024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/23/2020] [Indexed: 11/23/2022] Open
Abstract
Small-mammal neuroimaging offers incredible opportunities to investigate structural and functional aspects of the brain. Many tools have been developed in the last decade to analyse small animal data, but current softwares are less mature than the available tools that process human brain data. The Python package Sammba-MRI (SmAll-MaMmal BrAin MRI in Python; http://sammba-mri.github.io) allows flexible and efficient use of existing methods and enables fluent scriptable analysis workflows, from raw data conversion to multimodal processing.
Collapse
Affiliation(s)
- Marina Celestine
- UMR9199 Laboratory of Neurodegenerative Diseases, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France.,MIRCen, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France
| | - Nachiket A Nadkarni
- UMR9199 Laboratory of Neurodegenerative Diseases, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France.,MIRCen, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France
| | - Clément M Garin
- UMR9199 Laboratory of Neurodegenerative Diseases, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France.,MIRCen, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France
| | - Salma Bougacha
- UMR9199 Laboratory of Neurodegenerative Diseases, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France.,MIRCen, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France.,UMR-S U1237 Physiopathologie et imagerie des troubles Neurologiques (PhIND), INSERM, Université de Caen-Normandie, GIP Cyceron, Caen, France.,Normandie Université, UNICAEN, PSL Research University, EPHE, Inserm, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Marc Dhenain
- UMR9199 Laboratory of Neurodegenerative Diseases, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France.,MIRCen, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France
| |
Collapse
|
4
|
Gottschalk M. Look-Locker FAIR TrueFISP for arterial spin labelling on mouse at 9.4 T. NMR IN BIOMEDICINE 2020; 33:e4191. [PMID: 31829485 DOI: 10.1002/nbm.4191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Pulsed arterial spin labelling remains a non-invasive and highly used method for the study of rodent cerebral blood flow (CBF). Flow-sensitive alternating inversion recovery (FAIR) is one of the most commonly used MR-sequences for this purpose and exists with many different strategies to record the images. This study investigates Look-Locker (LL) TrueFISP readout for FAIR as an alternative to the standard EPI readout, which is provided by the manufacturer. The aim was to show the improved image quality using TrueFISP and to verify the reproducibility of the determination of the cerebral blood flow values. The measurement of many inversion points also allowed to investigate the influence of the correct blood relaxation rate on the fit of the CBF data. For the LL-FAIR TrueFISP an in-house written method was created. The method was tested on a group of C57BL/6 mice at the field strength of 9.4 T. The results show CBF maps with less distortion than for EPI and the values found are in good agreement with the literature. A comparison of the CBF values found with EPI and LL-TrueFISP shows very small differences, most being not significant. In conclusion, the method presented gives equivalent CBF maps in comparison to standard FAIR-EPI. Both methods have the same measurement time. TrueFISP has the advantage to EPI of producing undistorted images over larger areas of the mouse brain. It is advisable to check the value of the blood relaxation rate by measurement or to estimate it as a fitting parameter.
Collapse
|
5
|
Bertalan G, Boehm-Sturm P, Schreyer S, Morr AS, Steiner B, Tzschätzsch H, Braun J, Guo J, Sack I. The influence of body temperature on tissue stiffness, blood perfusion, and water diffusion in the mouse brain. Acta Biomater 2019; 96:412-420. [PMID: 31247381 DOI: 10.1016/j.actbio.2019.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/28/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022]
Abstract
While hypothermia of the brain is used to reduce neuronal damage in patients with conditions such as traumatic brain injury or stroke, little is known about how temperature affects the biophysical properties of in vivo brain tissue. Therefore, we measured shear wave speed (SWS), apparent diffusion coefficient (ADC), and cerebral blood flow (CBF) in the mouse brain at different body temperatures to investigate the relationship between temperature and tissue stiffness, water diffusion, and blood perfusion in the living brain. Multifrequency magnetic resonance elastography (MRE), diffusion-weighted imaging (DWI), and arterial spin labeling (ASL) were performed in seven mice while increasing and recording body temperature from hypothermia (28-30 °C) to normothermia (36-38 °C). SWS, ADC, and CBF were analyzed in regions of whole brain, cortex, hippocampus, and diencephalon. Our results show that SWS decreases while ADC and CBF increase from hypothermia to normothermia (whole brain SWS: -6.2%, ADC: +34.0%, CBF: +80.2%; cortex SWS: -10.1%, ADC: +30.9%, CBF: +82.4%; all p > 0.05). We found a significant inverse correlation between SWS and both ADC and CBF in all analyzed regions except diencephalon (whole brain SWS-ADC: r = -0.8, p < 0.005; SWS-CBF: r = -0.84, p < 0.005; cortex SWS-ADC: r = -0.74, p < 0.05; SWS-CBF: r = -0.65, p < 0.05). These results show that in vivo brain stiffness is inversely correlated with temperature, extracellular water mobility, and microvascular blood flow. Regional differences indicate that cortical areas are more markedly affected by hypothermia than central regions such as diencephalon. Temperature should be considered as a confounder in elastographic measurements, especially in preclinical settings. STATEMENT OF SIGNIFICANCE: Hibernating mammals lower their body temperature and metabolic activity. A hypothermic state can also be induced for medical purposes to reduce the risk of neural damage in patients with neurological disease or injury. However, little is known how physical soft-tissue properties of the in-vivo brain such as water diffusion, blood perfusion or mechanical parameters correlate with each other when temperature changes. Our study demonstrates for the first time that those quantitative imaging markers are tightly linked to changes in body temperature. While water diffusion and blood perfusion are reduced during hypothermia, brain stiffness significantly increases, suggesting that multiparametric quantitative MRI should be used for the noninvasive assessment of brain metabolic activity.
Collapse
|
6
|
Rots ML, de Borst GJ, van der Toorn A, Moll FL, Pennekamp CWA, Dijkhuizen RM, Bleys RLAW. Effect of bilateral carotid occlusion on cerebral hemodynamics and perivascular innervation: An experimental rat model. J Comp Neurol 2019; 527:2263-2272. [PMID: 30840325 PMCID: PMC6767706 DOI: 10.1002/cne.24672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
We aimed to investigate the effect of chronic cerebral hypoperfusion on cerebral hemodynamics and perivascular nerve density in a rat model. Bilateral common carotid artery (CCA) ligation (n = 24) or sham‐operation (n = 24) was performed with a 1‐week interval. A subgroup (ligated n = 6; sham‐operated n = 3) underwent magnetic resonance imaging (MRI) before the procedures and 2 and 4 weeks after the second procedure. After termination, carotids were harvested for assessment of complete ligation and nerve density in cerebral arteries that were stained for the general neural marker PGP 9.5 and sympathetic marker TH by computerized image analysis. Five rats were excluded because of incomplete ligation. MRI‐based tortuosity of the posterior communicating artery (Pcom), first part of the posterior cerebral artery (P1) and basilar artery was observed in the ligated group, as well as an increased volume (p = 0.05) and relative signal intensity in the basilar artery (p = 0.04; sham‐group unchanged). Immunohistochemical analysis revealed that compared to sham‐operated rats, ligated rats had increased diameters of all intracircular segments and the extracircular part of the internal carotid artery (p < 0.05). Ligated rats showed a higher general nerve density compared to controls in P1 (10%, IQR:8.7–10.5 vs. 6.6%, IQR:5.5–7.4, p = 0.003) and Pcom segments (6.4%, IQR:5.8–6.5 vs. 3.2%, IQR:2.4–4.3, p = 0.003) and higher sympathetic nerve density in Pcom segments (3.7%, IQR:2.8–4.8 vs. 1.7%, IQR:1.3–2.2, p = 0.02). Bilateral CCA occlusion resulted in redistribution of blood flow to posteriorly located cerebral arteries with remarkable changes in morphology and perivascular nerve density, suggesting a functional role for perivascular nerves in cerebral autoregulation.
Collapse
Affiliation(s)
- M L Rots
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - G J de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - A van der Toorn
- Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - F L Moll
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - C W A Pennekamp
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Anatomy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R M Dijkhuizen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R L A W Bleys
- Department of Anatomy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Buck J, Larkin JR, Simard MA, Khrapitchev AA, Chappell MA, Sibson NR. Sensitivity of Multiphase Pseudocontinuous Arterial Spin Labelling (MP pCASL) Magnetic Resonance Imaging for Measuring Brain and Tumour Blood Flow in Mice. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:4580919. [PMID: 30532663 PMCID: PMC6247770 DOI: 10.1155/2018/4580919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/28/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022]
Abstract
Brain and tumour blood flow can be measured noninvasively using arterial spin labelling (ASL) magnetic resonance imaging (MRI), but reliable quantification in mouse models remains difficult. Pseudocontinuous ASL (pCASL) is recommended as the clinical standard for ASL and can be improved using multiphase labelling (MP pCASL). The aim of this study was to optimise and validate MP pCASL MRI for cerebral blood flow (CBF) measurement in mice and to assess its sensitivity to tumour perfusion. Following optimization of the MP pCASL sequence, CBF data were compared with gold-standard autoradiography, showing close agreement. Subsequently, MP pCASL data were acquired at weekly intervals in models of primary and secondary brain tumours, and tumour microvessel density was determined histologically. MP pCASL measurements in a secondary brain tumour model revealed a significant reduction in blood flow at day 35 after induction, despite a higher density of blood vessels. Tumour core regions also showed reduced blood flow compared with the tumour rim. Similarly, significant reductions in CBF were found in a model of glioma 28 days after tumour induction, together with an increased density of blood vessels. These findings indicate that MP pCASL MRI provides accurate and robust measurements of cerebral blood flow in naïve mice and is sensitive to changes in tumour perfusion.
Collapse
Affiliation(s)
- Jessica Buck
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| | - James R. Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| | - Manon A. Simard
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| | - Alexandre A. Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| | - Michael A. Chappell
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, Oxford, UK
| | - Nicola R. Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| |
Collapse
|
8
|
Knutsen RH, Beeman SC, Broekelmann TJ, Liu D, Tsang KM, Kovacs A, Ye L, Danback JR, Watson A, Wardlaw A, Wagenseil JE, Garbow JR, Shoykhet M, Kozel BA. Minoxidil improves vascular compliance, restores cerebral blood flow, and alters extracellular matrix gene expression in a model of chronic vascular stiffness. Am J Physiol Heart Circ Physiol 2018; 315:H18-H32. [PMID: 29498532 PMCID: PMC6087770 DOI: 10.1152/ajpheart.00683.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 01/27/2023]
Abstract
Increased vascular stiffness correlates with a higher risk of cardiovascular complications in aging adults. Elastin (ELN) insufficiency, as observed in patients with Williams-Beuren syndrome or with familial supravalvular aortic stenosis, also increases vascular stiffness and leads to arterial narrowing. We used Eln+/- mice to test the hypothesis that pathologically increased vascular stiffness with concomitant arterial narrowing leads to decreased blood flow to end organs such as the brain. We also hypothesized that drugs that remodel arteries and increase lumen diameter would improve flow. To test these hypotheses, we compared carotid blood flow using ultrasound and cerebral blood flow using MRI-based arterial spin labeling in wild-type (WT) and Eln+/- mice. We then studied how minoxidil, an ATP-sensitive K+ channel opener and vasodilator, affects vessel mechanics, blood flow, and gene expression. Both carotid and cerebral blood flows were lower in Eln+/- mice than in WT mice. Treatment of Eln+/- mice with minoxidil lowered blood pressure and reduced functional arterial stiffness to WT levels. Minoxidil also improved arterial diameter and restored carotid and cerebral blood flows in Eln+/- mice. The beneficial effects persisted for weeks after drug removal. RNA-Seq analysis revealed differential expression of 127 extracellular matrix-related genes among the treatment groups. These results indicate that ELN insufficiency impairs end-organ perfusion, which may contribute to the increased cardiovascular risk. Minoxidil, despite lowering blood pressure, improves end-organ perfusion. Changes in matrix gene expression and persistence of treatment effects after drug withdrawal suggest arterial remodeling. Such remodeling may benefit patients with genetic or age-dependent ELN insufficiency. NEW & NOTEWORTHY Our work with a model of chronic vascular stiffness, the elastin ( Eln)+/- mouse, shows reduced brain perfusion as measured by carotid ultrasound and MRI arterial spin labeling. Vessel caliber, functional stiffness, and blood flow improved with minoxidil. The ATP-sensitive K+ channel opener increased Eln gene expression and altered 126 other matrix-associated genes.
Collapse
Affiliation(s)
- Russell H Knutsen
- National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
- Department of Cell Biology and Physiology, Washington University School of Medicine , St. Louis, Missouri
| | - Scott C Beeman
- Department of Radiology, Washington University School of Medicine , St. Louis, Missouri
| | - Thomas J Broekelmann
- Department of Cell Biology and Physiology, Washington University School of Medicine , St. Louis, Missouri
| | - Delong Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Kit Man Tsang
- National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Attila Kovacs
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri
| | - Li Ye
- Department of Pediatrics, Washington University School of Medicine , St. Louis, Missouri
| | - Joshua R Danback
- Department of Pediatrics, Washington University School of Medicine , St. Louis, Missouri
| | - Anderson Watson
- National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Amanda Wardlaw
- National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Jessica E Wagenseil
- Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri; Department of Pediatrics, Children's National Medical Center, Washington, D.C
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine , St. Louis, Missouri
| | - Michael Shoykhet
- Department of Pediatrics, Washington University School of Medicine , St. Louis, Missouri
- Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri; Department of Pediatrics, Children's National Medical Center, Washington, D.C
| | - Beth A Kozel
- National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
- Department of Pediatrics, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|
9
|
Vallatos A, Gilmour L, Chalmers AJ, Holmes WM. Multiple boli arterial spin labeling for high signal-to-noise rodent brain perfusion imaging. Magn Reson Med 2017; 79:1020-1030. [PMID: 28516482 DOI: 10.1002/mrm.26706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/18/2017] [Accepted: 03/19/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE A systematic method is proposed for optimizing a promising preclinical arterial spin labeling (ASL) sequence based on the use of a train of adiabatic radiofrequency pulses labeling successive boli of blood water. METHODS The sequence optimization is performed and evaluated using brain imaging experiments in mice and in rats. It involves the investigation of several parameters, ranging from the number of adiabatic pulses and labeling duration to the properties of the adiabatic hyperbolic secant pulses (ie, amplitude and frequency modulation). RESULTS Species-dependent parameters are identified, allowing for robust fast optimization protocols to be introduced. The resulting optimized multiple boli ASL (mbASL) sequence provides with significantly higher average signal-to-noise ratios (SNR) per voxel volume than currently encountered in ASL studies (278 mm-3 in mice and 172 mm-3 in rats). Comparing with the commonly used flow-sensitive alternating inversion recovery technique (FAIR), mbASL-to-FAIR SNR ratios reach 203% for mice and 725% for rats. CONCLUSION When properly optimized, mbASL can offer a robust, high SNR ASL alternative for rodent brain perfusion studies Magn Reson Med 79:1020-1030, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Antoine Vallatos
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Lesley Gilmour
- Wolfson Wohl Translational Cancer Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anthony J Chalmers
- Wolfson Wohl Translational Cancer Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - William M Holmes
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Duncombe J, Lennen RJ, Jansen MA, Marshall I, Wardlaw JM, Horsburgh K. Ageing causes prominent neurovascular dysfunction associated with loss of astrocytic contacts and gliosis. Neuropathol Appl Neurobiol 2017; 43:477-491. [PMID: 28039950 DOI: 10.1111/nan.12375] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/23/2016] [Accepted: 12/31/2016] [Indexed: 01/20/2023]
Abstract
AIMS Normal neurovascular coupling, mediated by the fine interplay and communication of cells within the neurovascular unit, is critical for maintaining normal brain activity and cognitive function. This study investigated whether, with advancing age there is disruption of neurovascular coupling and specific cellular components of the neurovascular unit, and whether the effects of increasing amyloid (a key feature of Alzheimer's disease) would exacerbate these changes. METHODS Wild-type mice, in which amyloid deposition is absent, were compared to transgenic amyloid precursor protein (APP) littermates (TgSwDI) which develop age-dependent increases in amyloid. Baseline cerebral blood flow and responses to whisker stimulation were measured. Components of the neurovascular unit (astrocytes, end-feet, pericytes, microglia) were measured by immunohistochemistry. RESULTS Neurovascular coupling was progressively impaired with increasing age (starting at 12 months) but was not further altered in TgSwDI mice. Aged mice showed reduced vascular pericyte coverage relative to young but this was not related to neurovascular function. Aged mice displayed significant reductions in astrocytic end-feet expression of aquaporin-4 on blood vessels compared to young mice, and a prominent increase in microglial proliferation which correlated with neurovascular function. CONCLUSIONS Strategies aimed to restore the loss of astrocytic end feet contact and reduce gliosis may improve neurovascular coupling.
Collapse
Affiliation(s)
- J Duncombe
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - R J Lennen
- BHF/Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - M A Jansen
- BHF/Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - I Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - J M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - K Horsburgh
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Hong X, To XV, Teh I, Soh JR, Chuang KH. Evaluation of EPI distortion correction methods for quantitative MRI of the brain at high magnetic field. Magn Reson Imaging 2015; 33:1098-1105. [PMID: 26117700 DOI: 10.1016/j.mri.2015.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
High field MRI has been applied to high-resolution structural and functional imaging of the brain. Echo planar imaging (EPI) is an ultrafast acquisition technique widely used in diffusion imaging, functional MRI and perfusion imaging. However, it suffers from geometric and intensity distortions caused by static magnetic field inhomogeneity, which is worse at higher field strengths. Such susceptibility artifacts are particularly severe in relation to the small size of the mouse brain. In this study we compared different distortion correction methods, including nonlinear registration, field map-based, and reversed phase-encoding-based approaches, on quantitative imaging of T1 and perfusion in the mouse brain acquired by spin-echo EPI with inversion recovery and pseudo-continuous arterial spin labeling, respectively, at 7 T. Our results showed that the 3D reversed phase-encoding correction outperformed other methods in terms of geometric fidelity, and that conventional field map-based correction could be improved by combination with affine transformation to reduce the bias in the field map. Both methods improved quantification with smaller fitting error and regional variation. These approaches offer robust correction of EPI distortions at high field strengths and hence could lead to more accurate co-registration and quantification of imaging biomarkers in both clinical and preclinical applications.
Collapse
Affiliation(s)
- Xin Hong
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium Agency for Science Technology and Research, 11 Biopolis Way, #01-02 Helios Building, Singapore, 138667
| | - Xuan Vinh To
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium Agency for Science Technology and Research, 11 Biopolis Way, #01-02 Helios Building, Singapore, 138667
| | - Irvin Teh
- Clinical Imaging Research Centre, National University of Singapore, 14 Medical Drive, #B1-01, Singapore, 117599
| | - Jian Rui Soh
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium Agency for Science Technology and Research, 11 Biopolis Way, #01-02 Helios Building, Singapore, 138667
| | - Kai-Hsiang Chuang
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium Agency for Science Technology and Research, 11 Biopolis Way, #01-02 Helios Building, Singapore, 138667; Clinical Imaging Research Centre, National University of Singapore, 14 Medical Drive, #B1-01, Singapore, 117599; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD9, 2 Medical Drive #04-01, Singapore, 117597.
| |
Collapse
|
12
|
Gao Y, Goodnough CL, Erokwu BO, Farr GW, Darrah R, Lu L, Dell KM, Yu X, Flask CA. Arterial spin labeling-fast imaging with steady-state free precession (ASL-FISP): a rapid and quantitative perfusion technique for high-field MRI. NMR IN BIOMEDICINE 2014; 27:996-1004. [PMID: 24891124 PMCID: PMC4110188 DOI: 10.1002/nbm.3143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 05/03/2023]
Abstract
Arterial spin labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either echo-planar imaging (EPI) or true fast imaging with steady-state free precession (true FISP) readouts, which are prone to off-resonance artifacts on high-field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high-field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 s. In this initial implementation, a flow-sensitive alternating inversion recovery (FAIR) ASL preparation was combined with a rapid, centrically encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 and 9.4 T (249 ± 38 and 241 ± 17 mL/min/100 g, respectively). The utility of this method was further demonstrated in the detection of significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high-field MRI scanners with minimal image artifacts.
Collapse
Affiliation(s)
- Ying Gao
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Candida L. Goodnough
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | | | - George W. Farr
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
- Aeromics, LLC, Cleveland, OH 44106
| | - Rebecca Darrah
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH 44106
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Lan Lu
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106
| | - Katherine M. Dell
- CWRU Center for the Study of Kidney Disease and Biology, MetroHealth Campus, Case Western Reserve University, Cleveland, OH 44109
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106
| | - Xin Yu
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Chris A. Flask
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
13
|
Pin-Barre C, Laurin J, Felix MS, Pertici V, Kober F, Marqueste T, Matarazzo V, Muscatelli-Bossy F, Temprado JJ, Brisswalter J, Decherchi P. Acute neuromuscular adaptation at the spinal level following middle cerebral artery occlusion-reperfusion in the rat. PLoS One 2014; 9:e89953. [PMID: 24587147 PMCID: PMC3938604 DOI: 10.1371/journal.pone.0089953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/24/2014] [Indexed: 11/18/2022] Open
Abstract
The purpose of the study was to highlight the acute motor reflex adaptation and to deepen functional deficits following a middle cerebral artery occlusion-reperfusion (MCAO-r). Thirty-six Sprague-Dawley rats were included in this study. The middle cerebral artery occlusion (MCAO; 120 min) was performed on 16 rats studied at 1 and 7 days, respectively (MCAO-D1 and MCAO-D7, n = 8 for each group). The other animals were divided into 3 groups: SHAM-D1 (n = 6), SHAM-D7 (n = 6) and Control (n = 8). Rats performed 4 behavioral tests (the elevated body swing test, the beam balance test, the ladder-climbing test and the forelimb grip force) before the surgery and daily after MCAO-r. H-reflex on triceps brachii was measured before and after isometric exercise. Infarction size and cerebral edema were respectively assessed by histological (Cresyl violet) and MRI measurements at the same time points than H-reflex recordings. Animals with cerebral ischemia showed persistent functional deficits during the first week post-MCAO-r. H-reflex was not decreased in response to isometric exercise one day after the cerebral ischemia contrary to the other groups. The motor reflex regulation was recovered 7 days post-MCAO-r. This result reflects an acute sensorimotor adaptation at the spinal level after MCAO-r.
Collapse
Affiliation(s)
- Caroline Pin-Barre
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
- Université de Nice Sophia-Antipolis et Université du Sud Toulon-Var, Motricité Humaine Éducation Sport Santé, Nice, France
| | - Jérôme Laurin
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
- * E-mail:
| | - Marie-Solenne Felix
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
| | - Vincent Pertici
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
| | - Frank Kober
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Faculté de Médecine Timone, Marseille, France
| | - Tanguy Marqueste
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
| | - Valery Matarazzo
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurobiologie de la Méditerranée, Marseille, France
| | - Françoise Muscatelli-Bossy
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurobiologie de la Méditerranée, Marseille, France
| | - Jean-Jacques Temprado
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
| | - Jeanick Brisswalter
- Université de Nice Sophia-Antipolis et Université du Sud Toulon-Var, Motricité Humaine Éducation Sport Santé, Nice, France
| | - Patrick Decherchi
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
| |
Collapse
|
14
|
Rajendran R, Lew SK, Yong CX, Tan J, Wang DJJ, Chuang KH. Quantitative mouse renal perfusion using arterial spin labeling. NMR IN BIOMEDICINE 2013; 26:1225-1232. [PMID: 23592238 DOI: 10.1002/nbm.2939] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 12/30/2012] [Accepted: 02/08/2013] [Indexed: 06/02/2023]
Abstract
Information on renal perfusion is essential for the diagnosis and prognosis of kidney function. Quantification using gadolinium chelates is limited as a result of filtration through renal glomeruli and safety concerns in patients with kidney dysfunction. Arterial spin labeling MRI is a noninvasive technique for perfusion quantification that has been applied to humans and animals. However, because of the low sensitivity and vulnerability to motion and susceptibility artifacts, its application to mice has been challenging. In this article, mouse renal perfusion was studied using flow-sensitive alternating inversion recovery at 7 T. Good perfusion image quality was obtained with spin-echo echo-planar imaging after controlling for respiratory, susceptibility and fat artifacts by triggering, high-order shimming and water excitation, respectively. High perfusion was obtained in the renal cortex relative to the medulla, and signal was absent in scans carried out post mortem. Cortical perfusion increased from 397 ± 36 (mean ± standard deviation) to 476 ± 73 mL/100 g/min after switching from 100% oxygen to carbogen with 95% oxygen and 5% carbon dioxide. The perfusion in the medulla was 2.5 times lower than that in the cortex and changed from 166 ± 41 mL/100 g/min under oxygen to 203 ± 40 mL/100 g/min under carbogen. T1 decreased in both the cortex (from 1570 ± 164 to 1377 ± 72 ms, p < 0.05) and medulla (from 1788 ± 107 to 1573 ± 144 ms, p < 0.05) under carbogen relative to 100% oxygen. The results showed the potential of the use of ASL for perfusion quantification in mice and in models of renal diseases.
Collapse
Affiliation(s)
- Reshmi Rajendran
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | | | | | | | | | | |
Collapse
|
15
|
Kampf T, Helluy X, Gutjahr FT, Winter P, Meyer CB, Jakob PM, Bauer WR, Ziener CH. Myocardial perfusion quantification using the T
1
-based FAIR-ASL method: The influence of heart anatomy, cardiopulmonary blood flow and look-locker readout. Magn Reson Med 2013; 71:1784-97. [DOI: 10.1002/mrm.24843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 05/07/2013] [Accepted: 05/22/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Thomas Kampf
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Xavier Helluy
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Fabian T. Gutjahr
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Patrick Winter
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Cord B. Meyer
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Peter M. Jakob
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Wolfgang R. Bauer
- Universität Würzburg, Medizinische Klinik und Poliklinik I; Oberdürrbacher Straße 6 Würzburg Germany
| | - Christian H. Ziener
- German Cancer Research Center DKFZ; Im Neuenheimer Feld 280 Heidelberg Germany
| |
Collapse
|
16
|
Abstract
RATIONALE The spatial distribution of blood flow in the hearts of genetically modified mice is a phenotype of interest because derangements in blood flow may precede detectable changes in organ function. However, quantifying the regional distribution of blood flow within organs of mice is challenging because of the small organ volume and the high resolution required to observe spatial differences in flow. Traditional microsphere methods in which the numbers of microspheres per region are indirectly estimated from radioactive counts or extracted fluorescence have been limited to larger organs for 2 reasons; to ensure statistical confidence in the measured flow per region and to be able to physically dissect the organ to acquire spatial information. OBJECTIVE To develop methods to quantify and statistically compare the spatial distribution of blood flow within organs of mice. METHODS AND RESULTS We developed and validated statistical methods to compare blood flow between regions and with the same regions over time using 15-µm fluorescent microspheres. We then tested this approach by injecting fluorescent microspheres into isolated perfused mice hearts, determining the spatial location of every microsphere in the hearts, and then visualizing regional flow patterns. We demonstrated application of these statistical and visualizing methods in a coronary artery ligation model in mice. CONCLUSIONS These new methods provide tools to investigate the spatial and temporal changes in blood flow within organs of mice at a much higher spatial resolution than currently available by other methods.
Collapse
Affiliation(s)
- Melissa A Krueger
- Division of Pulmonary and Critical Care Medicine, Box 356522, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
17
|
Capron T, Troalen T, Cozzone PJ, Bernard M, Kober F. Cine-ASL: a steady-pulsed arterial spin labeling method for myocardial perfusion mapping in mice. Part II. Theoretical model and sensitivity optimization. Magn Reson Med 2012; 70:1399-408. [PMID: 23281063 DOI: 10.1002/mrm.24588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/17/2012] [Accepted: 11/14/2012] [Indexed: 12/21/2022]
Abstract
In small rodent myocardial perfusion studies, the most widely used method is based on Look-Locker measurements of the magnetization recovery after FAIR preparation, which bears limitations regarding acquisition efficiency due to the pulsed arterial spin labeling nature of the sequence. To improve efficiency, this two-article set proposes a new steady-pulsed arterial spin labeling scheme using a cine readout incorporating one tagging pulse per heart cycle. In this part, we derive a theoretical description of the magnetization time evolution in such a scheme. The combination of steady-pulsed labeling and cine readout drives tissue magnetization into a stationary regime that explicitly depends on perfusion. In comparison with dedicated experiments on the mouse heart, the model is discussed and validated for perfusion quantification. The model predicts that in this regime, signal is independent of irregular dynamics occurring during acquisition, such as heart rate variations or arterial input function. Optimization of the sequence offers the possibility to increase the signal to noise ratio by efficient signal averaging. The sensitivity of this new method is shown to be more than three times larger than previously used techniques.
Collapse
Affiliation(s)
- Thibaut Capron
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR CNRS N°7339, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | | | | | | | | |
Collapse
|
18
|
Nasrallah FA, Lee ELQ, Chuang KH. Optimization of flow-sensitive alternating inversion recovery (FAIR) for perfusion functional MRI of rodent brain. NMR IN BIOMEDICINE 2012; 25:1209-1216. [PMID: 22451418 DOI: 10.1002/nbm.2790] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 12/02/2011] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow-sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain.
Collapse
Affiliation(s)
- Fatima A Nasrallah
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | | | | |
Collapse
|
19
|
Abstract
Perfusion MRI is a tool to assess the spatial distribution of microvascular blood flow. Arterial spin labeling (ASL) is shown here to be advantageous for quantification of cerebral microvascular blood flow (CBF) in rodents. This technique is today ready for assessment of a variety of murine models of human pathology including those associated with diffuse microvascular dysfunction. This chapter provides an introduction to the principles of CBF measurements by MRI along with a short overview over applications in which these measurements were found useful. The basics of commonly employed specific arterial spin-labeling techniques are described and theory is outlined in order to give the reader the ability to set up adequate post-processing tools. Three typical MR protocols for pulsed ASL on two different MRI systems are described in detail along with all necessary sequence parameters and technical requirements. The importance of the different parameters entering theory is discussed. Particular steps for animal preparation and maintenance during the experiment are given, since CBF regulation is sensitive to a number of experimental physiological parameters and influenced mainly by anesthesia and body temperature.
Collapse
|
20
|
Poisnel G, Hérard AS, El Tannir El Tayara N, Bourrin E, Volk A, Kober F, Delatour B, Delzescaux T, Debeir T, Rooney T, Benavides J, Hantraye P, Dhenain M. Increased regional cerebral glucose uptake in an APP/PS1 model of Alzheimer's disease. Neurobiol Aging 2011; 33:1995-2005. [PMID: 22079157 DOI: 10.1016/j.neurobiolaging.2011.09.026] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD), the most common age-related neurodegenerative disorder, is characterized by the invariant cerebral accumulation of β-amyloid peptide. This event occurs early in the disease process. In humans, [18F]-fluoro-2-deoxy-D-glucose ([18F]-FDG) positron emission tomography (PET) is largely used to follow-up in vivo cerebral glucose utilization (CGU) and brain metabolism modifications associated with the Alzheimer's disease pathology. Here, [18F]-FDG positron emission tomography was used to study age-related changes of cerebral glucose utilization under resting conditions in 3-, 6-, and 12-month-old APP(SweLon)/PS1(M146L), a mouse model of amyloidosis. We showed an age-dependent increase of glucose uptake in several brain regions of APP/PS1 mice but not in control animals and a higher [18F]-FDG uptake in the cortex and the hippocampus of 12-month-old APP/PS1 mice as compared with age-matched control mice. We then developed a method of 3-D microscopic autoradiography to evaluate glucose uptake at the level of amyloid plaques and showed an increased glucose uptake close to the plaques rather than in amyloid-free cerebral tissues. These data suggest a macroscopic and microscopic reorganization of glucose uptake in relation to cerebral amyloidosis.
Collapse
Affiliation(s)
- Géraldine Poisnel
- Therapeutic Strategic Unit Aging, Alzheimer/Parkinson/Stroke, Chilly-Mazarin, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Duhamel G, Callot V, Tachrount M, Alsop DC, Cozzone PJ. Pseudo-continuous arterial spin labeling at very high magnetic field (11.75 T) for high-resolution mouse brain perfusion imaging. Magn Reson Med 2011; 67:1225-36. [DOI: 10.1002/mrm.23096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/10/2011] [Accepted: 06/21/2011] [Indexed: 12/27/2022]
|
22
|
Oosterlinck WW, Dresselaers T, Geldhof V, Van Santvoort A, Robberecht W, Herijgers P, Himmelreich U. Response of mouse brain perfusion to hypo- and hyperventilation measured by arterial spin labeling. Magn Reson Med 2011; 66:802-11. [DOI: 10.1002/mrm.23060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 04/06/2011] [Accepted: 05/25/2011] [Indexed: 11/10/2022]
|
23
|
Zheng B, Lee PTH, Golay X. High-sensitivity cerebral perfusion mapping in mice by kbGRASE-FAIR at 9.4 T. NMR IN BIOMEDICINE 2010; 23:1061-1070. [PMID: 20665907 DOI: 10.1002/nbm.1533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The combination of flow-sensitive alternating inversion recovery (FAIR) and single-shot k-space-banded gradient- and spin-echo (kbGRASE) is proposed here to measure perfusion in the mouse brain with high sensitivity and stability. Signal-to-noise ratio (SNR) analysis showed that kbGRASE-FAIR boosts image and temporal SNRs by 2.01 ± 0.08 and 2.50 ± 0.07 times, respectively, when compared with standard single-shot echo planar imaging (EPI)-FAIR implemented in our experimental systems, although the practically achievable spatial resolution was slightly reduced. The effects of varying physiological parameters on the precision and reproducibility of cerebral blood flow (CBF) measurements were studied following changes in anesthesia regime, capnia and body temperature. The functional MRI time courses with kbGRASE-FAIR showed a more stable response to 5% CO(2) than did those with EPI-FAIR. The results establish kbGRASE-FAIR as a practical and robust protocol for quantitative CBF measurements in mice at 9.4 T.
Collapse
Affiliation(s)
- Bingwen Zheng
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Biopolis, Singapore.
| | | | | |
Collapse
|
24
|
Characterizing the origin of the arterial spin labelling signal in MRI using a multiecho acquisition approach. J Cereb Blood Flow Metab 2009; 29:1836-45. [PMID: 19654586 DOI: 10.1038/jcbfm.2009.99] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arterial spin labelling (ASL) can noninvasively isolate the MR signal from arterial blood water that has flowed into the brain. In gray matter, the labelled bolus is dispersed within three main compartments during image acquisition: the intravascular compartment; intracellular tissue space; and the extracellular tissue space. Changes in the relative volumes of the extracellular and intracellular tissue space are thought to occur in many pathologic conditions such as stroke and brain tumors. Accurate measurement of the distribution of the ASL signal within these three compartments will yield better understanding of the time course of blood delivery and exchange, and may have particular application in animal models of disease to investigate the relationship between the source of the ASL signal and pathology. In this study, we sample the transverse relaxation of the ASL perfusion weighted and control images acquired with and without vascular crusher gradients at a range of postlabelling delays and tagging durations, to estimate the tricompartmental distribution of labelled water in the rat cortex. Our results provide evidence for rapid exchange of labelled blood water into the intracellular space relative to the transit time through the vascular bed, and provide a more solid foundation for cerebral blood flow quantification using ASL techniques.
Collapse
|
25
|
Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 2009; 36 Suppl 1:S56-68. [PMID: 19194703 DOI: 10.1007/s00259-009-1078-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Combined PET/MRI allows for multi-parametric imaging and reveals one or more functional processes simultaneously along with high-resolution morphology. Especially in small-animal research, where high soft tissue contrast is required, and the scan time as well as radiation dose are critical factors, the combination of PET and MRI would be beneficial compared with PET/CT. DEVELOPMENT In the mid-1990's, several research groups used different approaches to integrate PET detectors into high-field MRI. First, systems were based on optical fibres guiding the scintillation light to the PMT's, which reside outside the fringe magnetic field. Recent advances in gamma ray detector technology, which were initiated mainly by the advent of avalanche photodiodes (APD's) as well as the routine availability of fast scintillation materials like lutetium oxyorthosilicate (LSO), paved the way towards the development of fully magnetic-field-insensitive high-performance PET detectors. TECHNOLOGY Current animal PET/MR technologies are reviewed and pitfalls when engineering a full integration of a PET and a high-field MRI are discussed. Compact PET detectors can be integrated in small-bore, high-field MRI tomographs. Detailed performance evaluations have shown that the mutual interference between the two imaging systems could be minimized. The performance of all major MR applications, ranging from T1- or T2-weighted imaging up to echo-planar imaging (EPI) for functional MRI (fMRI) or magnetic resonance spectroscopy (MRS), could be maintained, even when the PET insert was built into the MRI and acquiring PET data simultaneously. Similarly, the PET system performance was not influenced by the static magnetic field or applied MRI sequences. APPLICATIONS Initial biomedical research applications range from the combination of functional information from PET with the anatomical information from the MRI to multi-functional imaging combining metabollic PET and MRI data. DISCUSSION Compared to other multi-modality approaches PET/MR offers a multitude of complementary function and anatomical information. The ability to obtain simultaneous PET and MRI data with this new imaging modality could have tremendous impact on small animal imaging research.
Collapse
|
26
|
Faure A, Verret L, Bozon B, El Tannir El Tayara N, Ly M, Kober F, Dhenain M, Rampon C, Delatour B. Impaired neurogenesis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer's disease. Neurobiol Aging 2009; 32:407-18. [PMID: 19398247 DOI: 10.1016/j.neurobiolaging.2009.03.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 12/18/2022]
Abstract
Amyloid-β peptide species accumulating in the brain of patients with Alzheimer's disease are assumed to have a neurotoxic action and hence to be key actors in the physiopathology of this neurodegenerative disease. We have studied a new mouse mutant (APPxPS1-Ki) line developing both early-onset brain amyloid-β deposition and, in contrast to most of transgenic models, subsequent neuronal loss. In 6-month-old mice, we observed cell layer atrophies in the hippocampus, together with a dramatic decrease in neurogenesis and a reduced brain blood perfusion as measured in vivo by magnetic resonance imaging. In these mice, neurological impairments and spatial hippocampal dependent memory deficits were also substantiated and worsened with aging. We described here a phenotype of APPxPS1-Ki mice that summarizes several neuroanatomical alterations and functional deficits evocative of the human pathology. Such a transgenic model that displays strong face validity might be highly beneficial to future research on AD physiopathogeny and therapeutics.
Collapse
Affiliation(s)
- A Faure
- CNRS, Lab NAMC, UMR8620, Université Paris Sud, 91405, Orsay, France.
| | | | | | | | | | | | | | | | | |
Collapse
|