1
|
Witherspoon VJ, Komlosh ME, Benjamini D, Özarslan E, Lavrik N, Basser PJ. Novel pore size-controlled, susceptibility matched, 3D-printed MRI phantoms. Magn Reson Med 2024; 91:2431-2442. [PMID: 38368618 DOI: 10.1002/mrm.30029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE We report the design concept and fabrication of MRI phantoms, containing blocks of aligned microcapillaires that can be stacked into larger arrays to construct diameter distribution phantoms or fractured, to create a "powder-averaged" emulsion of randomly oriented blocks for vetting or calibrating advanced MRI methods, that is, diffusion tensor imaging, AxCaliber MRI, MAP-MRI, and multiple pulsed field gradient or double diffusion-encoded microstructure imaging methods. The goal was to create a susceptibility-matched microscopically anisotropic but macroscopically isotropic phantom with a ground truth diameter that could be used to vet advanced diffusion methods for diameter determination in fibrous tissues. METHODS Two-photon polymerization, a novel three-dimensional printing method is used to fabricate blocks of capillaries. Double diffusion encoding methods were employed and analyzed to estimate the expected MRI diameter. RESULTS Susceptibility-matched microcapillary blocks or modules that can be assembled into large-scale MRI phantoms have been fabricated and measured using advanced diffusion methods, resulting in microscopic anisotropy and random orientation. CONCLUSION This phantom can vet and calibrate various advanced MRI methods and multiple pulsed field gradient or diffusion-encoded microstructure imaging methods. We demonstrated that two double diffusion encoding methods underestimated the ground truth diameter.
Collapse
Affiliation(s)
- Velencia J Witherspoon
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Michal E Komlosh
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services of Health Sciences, Bethesda, Maryland, USA
| | - Dan Benjamini
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Evren Özarslan
- Spin Nord AB, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Nickolay Lavrik
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Magdoom KN, Avram AV, Witzel TE, Huang SY, Basser PJ. Water Diffusion in the Live Human Brain is Gaussian at the Mesoscale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588939. [PMID: 38645264 PMCID: PMC11030434 DOI: 10.1101/2024.04.10.588939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Imaging the live human brain at the mesoscopic scale is a desideratum in basic and clinical neurosciences. Despite the promise of diffusion MRI, the lack of an accurate model relating the measured signal and the associated microstructure has hampered its success. The widely used diffusion tensor MRI (DTI) model assumes an anisotropic Gaussian diffusion process in each voxel, but lacks the ability to capture intravoxel heterogeneity. This study explores the extension of the DTI model to mesoscopic length scales by use of the diffusion tensor distribution (DTD) model, which assumes a Gaussian diffusion process in each subvoxel. DTD MRI has shown promise in addressing some limitations of DTI, particularly in distinguishing among different types of brain cancers and elucidating multiple fiber populations within a voxel. However, its validity in live brain tissue has never been established. Here, multiple diffusion-encoded (MDE) data were acquired in the living human brain using a 3 Tesla MRI scanner with large diffusion weighting factors. Two different diffusion times (Δ = 37, 74 ms) were employed, with other scanning parameters fixed to assess signal decay differences. In vivo diffusion-weighted signals in gray and white matter were nearly identical at the two diffusion times. Fitting the signals to the DTD model yielded indistinguishable results, except in the cerebrospinal fluid (CSF)-filled voxels likely due to pulsatile flow. Overall, the study supports the time invariance of water diffusion at the mesoscopic scale in live brain parenchyma, extending the validity of the anisotropic Gaussian diffusion model in clinical brain imaging.
Collapse
|
3
|
Abstract
Quasi-diffusion imaging (QDI) is a novel quantitative diffusion magnetic resonance imaging (dMRI) technique that enables high quality tissue microstructural imaging in a clinically feasible acquisition time. QDI is derived from a special case of the continuous time random walk (CTRW) model of diffusion dynamics and assumes water diffusion is locally Gaussian within tissue microstructure. By assuming a Gaussian scaling relationship between temporal (α) and spatial (β) fractional exponents, the dMRI signal attenuation is expressed according to a diffusion coefficient, D (in mm2 s−1), and a fractional exponent, α. Here we investigate the mathematical properties of the QDI signal and its interpretation within the quasi-diffusion model. Firstly, the QDI equation is derived and its power law behaviour described. Secondly, we derive a probability distribution of underlying Fickian diffusion coefficients via the inverse Laplace transform. We then describe the functional form of the quasi-diffusion propagator, and apply this to dMRI of the human brain to perform mean apparent propagator imaging. QDI is currently unique in tissue microstructural imaging as it provides a simple form for the inverse Laplace transform and diffusion propagator directly from its representation of the dMRI signal. This study shows the potential of QDI as a promising new model-based dMRI technique with significant scope for further development.
Collapse
|
4
|
Afzali M, Pieciak T, Newman S, Garyfallidis E, Özarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods 2021; 347:108951. [PMID: 33017644 PMCID: PMC7762827 DOI: 10.1016/j.jneumeth.2020.108951] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Diffusion MRI is a non-invasive technique to study brain microstructure. Differences in the microstructural properties of tissue, including size and anisotropy, can be represented in the signal if the appropriate method of acquisition is used. However, to depict the underlying properties, special care must be taken when designing the acquisition protocol as any changes in the procedure might impact on quantitative measurements. This work reviews state-of-the-art methods for studying brain microstructure using diffusion MRI and their sensitivity to microstructural differences and various experimental factors. Microstructural properties of the tissue at a micrometer scale can be linked to the diffusion signal at a millimeter-scale using modeling. In this paper, we first give an introduction to diffusion MRI and different encoding schemes. Then, signal representation-based methods and multi-compartment models are explained briefly. The sensitivity of the diffusion MRI signal to the microstructural components and the effects of curvedness of axonal trajectories on the diffusion signal are reviewed. Factors that impact on the quality (accuracy and precision) of derived metrics are then reviewed, including the impact of random noise, and variations in the acquisition parameters (i.e., number of sampled signals, b-value and number of acquisition shells). Finally, yet importantly, typical approaches to deal with experimental factors are depicted, including unbiased measures and harmonization. We conclude the review with some future directions and recommendations on this topic.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Eleftherios Garyfallidis
- Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
5
|
Anaby D, Morozov D, Seroussi I, Hametner S, Sochen N, Cohen Y. Single- and double-Diffusion encoding MRI for studying ex vivo apparent axon diameter distribution in spinal cord white matter. NMR IN BIOMEDICINE 2019; 32:e4170. [PMID: 31573745 DOI: 10.1002/nbm.4170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Mapping average axon diameter (AAD) and axon diameter distribution (ADD) in neuronal tissues non-invasively is a challenging task that may have a tremendous effect on our understanding of the normal and diseased central nervous system (CNS). Water diffusion is used to probe microstructure in neuronal tissues, however, the different water populations and barriers that are present in these tissues turn this into a complex task. Therefore, it is not surprising that recently we have witnessed a burst in the development of new approaches and models that attempt to obtain, non-invasively, detailed microstructural information in the CNS. In this work, we aim at challenging and comparing the microstructural information obtained from single diffusion encoding (SDE) with double diffusion encoding (DDE) MRI. We first applied SDE and DDE MR spectroscopy (MRS) on microcapillary phantoms and then applied SDE and DDE MRI on an ex vivo porcine spinal cord (SC), using similar experimental conditions. The obtained diffusion MRI data were fitted by the same theoretical model, assuming that the signal in every voxel can be approximated as the superposition of a Gaussian-diffusing component and a series of restricted components having infinite cylindrical geometries. The diffusion MRI results were then compared with histological findings. We found a good agreement between the fittings and the experimental data in white matter (WM) voxels of the SC in both diffusion MRI methods. The microstructural information and apparent AADs extracted from SDE MRI were found to be similar or somewhat larger than those extracted from DDE MRI especially when the diffusion time was set to 40 ms. The apparent ADDs extracted from SDE and DDE MRI show reasonable agreement but somewhat weaker correspondence was observed between the diffusion MRI results and histology. The apparent subtle differences between the microstructural information obtained from SDE and DDE MRI are briefly discussed.
Collapse
Affiliation(s)
- Debbie Anaby
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Darya Morozov
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Seroussi
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Simon Hametner
- Neuroimmunology Department, Center of Brain Research, Medical University of Vienna, Vienna, Austria
| | - Nir Sochen
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Alexander DC, Dyrby TB, Nilsson M, Zhang H. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR IN BIOMEDICINE 2019; 32:e3841. [PMID: 29193413 DOI: 10.1002/nbm.3841] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/09/2017] [Accepted: 09/11/2017] [Indexed: 05/22/2023]
Abstract
This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term.
Collapse
Affiliation(s)
- Daniel C Alexander
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Markus Nilsson
- Clinical Sciences Lund, Department of Radiology, Lund University, Lund, Sweden
| | - Hui Zhang
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| |
Collapse
|
7
|
Vellmer S, Edelhoff D, Suter D, Maximov II. Anisotropic diffusion phantoms based on microcapillaries. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 279:1-10. [PMID: 28410460 DOI: 10.1016/j.jmr.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
Diffusion MRI is an efficient and widely used technique for the investigation of tissue structure and organisation in vivo. Multiple phenomenological and biophysical diffusion models are intensively exploited for the analysis of the diffusion experiments. However, the verification of the applied diffusion models remains challenging. In order to provide a "gold standard" and to assess the accuracy of the derived parameters and the limitations of the diffusion models, anisotropic diffusion phantoms with well known architecture are demanded. In the present work we built four anisotropic diffusion phantoms consisting of hollow microcapillaries with very small inner diameters of 5, 10 and 20μm and outer diameters of 90 and 150μm. For testing the suitability of these phantoms, we performed diffusion measurements on all of them and evaluated the resulting data with a set of popular diffusion models, such as diffusion tensor and diffusion kurtosis imaging, a two compartment model with intra- and extra-capillary water spaces using bi-exponential fitting, and time-dependent diffusion coefficients in Mitra's limit. The perspectives and limitations of these diffusion phantoms are presented and discussed.
Collapse
Affiliation(s)
| | - Daniel Edelhoff
- Experimental Physics III, TU Dortmund University, Dortmund, Germany
| | - Dieter Suter
- Experimental Physics III, TU Dortmund University, Dortmund, Germany
| | - Ivan I Maximov
- Experimental Physics III, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
8
|
Cohen Y, Anaby D, Morozov D. Diffusion MRI of the spinal cord: from structural studies to pathology. NMR IN BIOMEDICINE 2017; 30:e3592. [PMID: 27598689 DOI: 10.1002/nbm.3592] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 05/27/2023]
Abstract
Diffusion MRI is extensively used to study brain microarchitecture and pathologies, and water diffusion appears highly anisotropic in the white matter (WM) of the spinal cord (SC). Despite these facts, the use of diffusion MRI to study the SC, which has increased in recent years, is much less common than that in the brain. In the present review, after a brief outline of early studies of diffusion MRI (DWI) and diffusion tensor MRI (DTI) of the SC, we provide a short survey on DTI and on diffusion MRI methods beyond the tensor that have been used to study SC microstructure and pathologies. After introducing the porous view of WM and describing the q-space approach and q-space diffusion MRI (QSI), we describe other methodologies that can be applied to study the SC. Selected applications of the use of DTI, QSI, and other more advanced diffusion MRI methods to study SC microstructure and pathologies are presented, with some emphasis on the use of less conventional diffusion methodologies. Because of length constraints, we concentrate on structural studies and on a few selected pathologies. Examples of the use of diffusion MRI to study dysmyelination, demyelination as in experimental autoimmune encephalomyelitis and multiple sclerosis, amyotrophic lateral sclerosis, and traumatic SC injury are presented. We conclude with a brief summary and a discussion of challenges and future directions for diffusion MRI of the SC. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoram Cohen
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Debbie Anaby
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Darya Morozov
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Brusini L, Obertino S, Galazzo IB, Zucchelli M, Krueger G, Granziera C, Menegaz G. Ensemble average propagator-based detection of microstructural alterations after stroke. Int J Comput Assist Radiol Surg 2016; 11:1585-97. [DOI: 10.1007/s11548-016-1442-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/02/2016] [Indexed: 11/28/2022]
|
10
|
SUZUKI Y, HORI M, KAMIYA K, FUKUNAGA I, AOKI S, VAN CAUTEREN M. Estimation of the Mean Axon Diameter and Intra-axonal Space Volume Fraction of the Human Corpus Callosum: Diffusion q-space Imaging with Low q-values. Magn Reson Med Sci 2016; 15:83-93. [DOI: 10.2463/mrms.2014-0141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yuriko SUZUKI
- Philips Electronics Japan, Ltd., Healthcare
- Department of Radiology, Graduate School of Medicine, Juntendo University
| | - Masaaki HORI
- Department of Radiology, Graduate School of Medicine, Juntendo University
| | - Kouhei KAMIYA
- Department of Radiology, Graduate School of Medicine, The University of Tokyo
| | - Issei FUKUNAGA
- Department of Radiology, Graduate School of Medicine, Juntendo University
| | - Shigeki AOKI
- Department of Radiology, Graduate School of Medicine, Juntendo University
| | | |
Collapse
|
11
|
Duane GS, Wang Y, Walters BR, Kim JK. A pulse sequence optimization method for assessment of nucleus size in q-space analysis of idealized cells. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 238:115-125. [PMID: 24334098 DOI: 10.1016/j.jmr.2013.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/14/2013] [Accepted: 10/17/2013] [Indexed: 06/03/2023]
Abstract
To adjust pulse sequences that produce diffusion-weighted MRI signals for increased sensitivity to nucleus size, the impulse-propagator method in q-space is applied to a spherical geometry that would describe each member of a collection of cells and their nuclei, with several possible representations of the extracellular space. The method is extended to allow propagation between nucleus, cytoplasm, and extracellular space through semi-permeable membranes, using an approximate adjustment of intra-compartment propagators. Diffraction patterns are first calculated for the three compartments separately, for PGSE and OGSE pulse sequences, and verified by comparison with Monte Carlo simulations. The detailed patterns from the separate compartments determine the q value for maximum contrast in the total signal between large and small nuclei, an optimization that is not accurate in a Gaussian Phase Distribution (GPD) approximation. Then diffraction patterns are calculated for the case of linked compartments with semi-permeable membranes. The treatment of permeability adequately estimates pulse-sequence parameters for maximum contrast in calculated signal as nucleus size varies.
Collapse
Affiliation(s)
- Gregory S Duane
- Thunder Bay Regional Research Institute, 290 Munro St., Thunder Bay, ON P7A 7T1, Canada; Department of Physics, Lakehead University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; Dept. of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80309-0311, United States.
| | - Yanwei Wang
- Thunder Bay Regional Research Institute, 290 Munro St., Thunder Bay, ON P7A 7T1, Canada
| | - Blake R Walters
- Thunder Bay Regional Research Institute, 290 Munro St., Thunder Bay, ON P7A 7T1, Canada
| | - Jae K Kim
- Thunder Bay Regional Research Institute, 290 Munro St., Thunder Bay, ON P7A 7T1, Canada; Department of Physics, Lakehead University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
12
|
Ronen I, Budde M, Ercan E, Annese J, Techawiboonwong A, Webb A. Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histology. Brain Struct Funct 2013; 219:1773-85. [PMID: 23794120 DOI: 10.1007/s00429-013-0600-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
Diffusion-weighted magnetic resonance spectroscopy of brain metabolites offers unique access to compartment-specific microstructural information on neural tissue. Here, we investigated in detail the diffusion characteristics of the neuronal/axonal markers N-acetylaspartate + N-acetyl aspartyl glutamate (tNAA) in a small region of the human corpus callosum at 7 T. The diffusion-weighted spectroscopy data were analyzed by fitting to a model in which information about cross-callosal tract orientation within the spectroscopy volume, obtained from diffusion tensor imaging data, was incorporated. We estimated the microscopic misalignment of axons (σ φ = 18.6° ± 3.0°) in excellent agreement with independent histological results (σ φ = 18.1° ± 4.6°) obtained from microscopic analysis of axonal orientations in the body of the corpus callosum from post-mortem human brain slices. We also robustly quantified the diffusion coefficient of tNAA (0.51 ± 0.06 × 10(-3) mm(2)/s) in axonal cytoplasm, unbiased by the tract curvature. This work supports the notion that microscopic axonal misalignment is a dominant microstructural property in white matter tracts and has a strong impact on the evaluation of tissue microstructure using diffusion information, and should therefore be taken into consideration in the evaluation of white matter microstructure. Additionally, this study enabled robust and unbiased assessment of the cytosolic diffusion coefficient of tNAA, a potential biomarker for axonopathy and neuronal degeneration.
Collapse
Affiliation(s)
- Itamar Ronen
- C.J. Gorter Center for High Field MRI Research, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands,
| | | | | | | | | | | |
Collapse
|
13
|
Komlosh ME, Özarslan E, Lizak MJ, Horkayne-Szakaly I, Freidlin RZ, Horkay F, Basser PJ. Mapping average axon diameters in porcine spinal cord white matter and rat corpus callosum using d-PFG MRI. Neuroimage 2013; 78:210-6. [PMID: 23583426 DOI: 10.1016/j.neuroimage.2013.03.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/11/2013] [Accepted: 03/28/2013] [Indexed: 11/15/2022] Open
Abstract
Knowledge of microstructural features of nerve fascicles, such as their axon diameter, is crucial for understanding normal function in the central and peripheral nervous systems as well as assessing changes due to pathologies. In this study double-pulsed field gradient (d-PFG) filtered MRI was used to map the average axon diameter (AAD) in porcine spinal cord, which was then compared to AADs measured with optical microscopy of the same specimen, as a way to further validate this new MRI method. A novel 3D d-PFG acquisition scheme was used to obtain AADs in each voxel of a coronal slice of rat brain corpus callosum. AAD measurements were also acquired using optical microscopy performed on histological sections and validated using a glass capillary array phantom.
Collapse
Affiliation(s)
- M E Komlosh
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ronen I, Ercan E, Webb A. Axonal and glial microstructural information obtained with diffusion-weighted magnetic resonance spectroscopy at 7T. Front Integr Neurosci 2013; 7:13. [PMID: 23493316 PMCID: PMC3595513 DOI: 10.3389/fnint.2013.00013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/27/2013] [Indexed: 11/23/2022] Open
Abstract
Diffusion-weighted magnetic resonance spectroscopy (DWS) offers unique access to compartment-specific microstructural information on tissue, and potentially sensitive detection of compartment-specific changes in disease. The specificity of DWS is, however, offset by its relative low sensitivity, intrinsic to all MRS-based methods, and further exacerbated by the signal loss due to the diffusion weighting and long echo times. In this work we first provide an experimental example for the type of compartment-specific information that can be obtained with DWS from a small volume of interest (VOI) in brain white matter. We then propose and discuss a strategy for the analysis of DWS data, which includes the use of models of diffusion in compartments with simple geometries. We conclude with a broader discussion of the potential role of DWS in the characterization of tissue microstructure and the complementarity of DWS with less-specific but more sensitive microstructural tools such as diffusion tensor imaging.
Collapse
Affiliation(s)
- Itamar Ronen
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical CenterLeiden, Netherlands
| | | | | |
Collapse
|
15
|
The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 26:345-70. [PMID: 23443883 PMCID: PMC3728433 DOI: 10.1007/s10334-013-0371-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 12/27/2022]
Abstract
Biophysical models that describe the outcome of white matter diffusion MRI experiments have various degrees of complexity. While the simplest models assume equal-sized and parallel axons, more elaborate ones may include distributions of axon diameters and axonal orientation dispersions. These microstructural features can be inferred from diffusion-weighted signal attenuation curves by solving an inverse problem, validated in several Monte Carlo simulation studies. Model development has been paralleled by microscopy studies of the microstructure of excised and fixed nerves, confirming that axon diameter estimates from diffusion measurements agree with those from microscopy. However, results obtained in vivo are less conclusive. For example, the amount of slowly diffusing water is lower than expected, and the diffusion-encoded signal is apparently insensitive to diffusion time variations, contrary to what may be expected. Recent understandings of the resolution limit in diffusion MRI, the rate of water exchange, and the presence of microscopic axonal undulation and axonal orientation dispersions may, however, explain such apparent contradictions. Knowledge of the effects of biophysical mechanisms on water diffusion in tissue can be used to predict the outcome of diffusion tensor imaging (DTI) and of diffusion kurtosis imaging (DKI) studies. Alterations of DTI or DKI parameters found in studies of pathologies such as ischemic stroke can thus be compared with those predicted by modelling. Observations in agreement with the predictions strengthen the credibility of biophysical models; those in disagreement could provide clues of how to improve them. DKI is particularly suited for this purpose; it is performed using higher b-values than DTI, and thus carries more information about the tissue microstructure. The purpose of this review is to provide an update on the current understanding of how various properties of the tissue microstructure and the rate of water exchange between microenvironments are reflected in diffusion MRI measurements. We focus on the use of biophysical models for extracting tissue-specific parameters from data obtained with single PGSE sequences on clinical MRI scanners, but results obtained with animal MRI scanners are also considered. While modelling of white matter is the central theme, experiments on model systems that highlight important aspects of the biophysical models are also reviewed.
Collapse
|
16
|
Benjamini D, Katz Y, Nevo U. A proposed 2D framework for estimation of pore size distribution by double pulsed field gradient NMR. J Chem Phys 2012; 137:224201. [DOI: 10.1063/1.4769792] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Powell SK, Momot KI. Langevin dynamics modeling of the water diffusion tensor in partially aligned collagen networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031917. [PMID: 23030954 DOI: 10.1103/physreve.86.031917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/12/2012] [Indexed: 06/01/2023]
Abstract
In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θ(MA)), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0° to 90°. The corresponding diffusion ellipsoids are prolate for θ<θ(MA), spherical for θ≈θ(MA), and oblate for θ>θ(MA). Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.
Collapse
Affiliation(s)
- Sean K Powell
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | | |
Collapse
|
18
|
Shemesh N, Westin CF, Cohen Y. Magnetic resonance imaging by synergistic diffusion-diffraction patterns. PHYSICAL REVIEW LETTERS 2012; 108:058103. [PMID: 22400966 DOI: 10.1103/physrevlett.108.058103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Indexed: 05/31/2023]
Abstract
Inferring on the geometry of an object from its frequency spectrum is highly appealing since the object could then be imaged noninvasively or from a distance (as famously put by Kac, "can one hear the shape of a drum?"). In nuclear magnetic resonance of porous systems, the shape of the drum is represented by the pore density function that bears all the information on the collective pore microstructure. So far, conventional magnetic resonance imaging (MRI) could only detect the pore autocorrelation function, which inherently obscures fine details on the pore structure. Here, for the first time, we report on a unique imaging mechanism arising from synergistic diffusion-diffractions that directly yields the pore density function. This mechanism offers substantially higher spatial resolution compared to conventional MRI while retaining all fine details on the collective pore morphology. Thus, using these unique synergistic diffusion-diffractions, the "shape of the drum" can be inferred.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | | | | |
Collapse
|
19
|
Siow B, Drobnjak I, Chatterjee A, Lythgoe MF, Alexander DC. Estimation of pore size in a microstructure phantom using the optimised gradient waveform diffusion weighted NMR sequence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 214:51-60. [PMID: 22116034 DOI: 10.1016/j.jmr.2011.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/21/2011] [Accepted: 10/04/2011] [Indexed: 05/31/2023]
Abstract
There has been increasing interest in nuclear magnetic resonance (NMR) techniques that are sensitive to diffusion of molecules containing NMR visible nuclei for the estimation of microstructure parameters. A microstructure parameter of particular interest is pore radius distribution. A recent in silico study optimised the shape of the gradient waveform in diffusion weighted spin-echo experiments for estimating pore size. The study demonstrated that optimised gradient waveform (GEN) protocols improve pore radius estimates compared to optimised pulse gradient spin-echo (PGSE) protocols, particularly at shorter length scales. This study assesses the feasibility of implementing GEN protocols on a small bore 9.4 T scanner and verifies their additional sensitivity to pore radius. We implement GEN and PGSE protocols optimised for pore radii of 1, 2.5, 5, 7.5, 10 μm and constrained to maximum gradient strengths of 40, 80, 200 mT m(-1). We construct microstructure phantoms, which have a single pore radius for each phantom, using microcapillary fibres. The measured signal shows good agreement with simulated signal, strongly indicating that the GEN waveforms can be implemented on a 9.4 T system. We also demonstrate that GEN protocols provide improved sensitivity to the smaller pore radii when compared to optimised PGSE protocols, particularly at the lower gradient amplitudes investigated in this study. Our results suggest that this improved sensitivity of GEN protocols would be reflected in clinical scenarios.
Collapse
Affiliation(s)
- Bernard Siow
- Centre for Medical Image Computing, Department of Computer Science, University College London (UCL), Gower Street, London WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|
20
|
Shemesh N, Cohen Y. Overcoming apparent susceptibility-induced anisotropy (aSIA) by bipolar double-pulsed-field-gradient NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 212:362-369. [PMID: 21871826 DOI: 10.1016/j.jmr.2011.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/15/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
Double-Pulsed-Field-Gradient (d-PFG) MR is emerging as a powerful new means for obtaining unique microstructural information in opaque porous systems that cannot be obtained by conventional single-PFG (s-PFG) methods. The angular d-PFG MR methodology is particularly important since it can utilize the effects of microscopic anisotropy (μA) and compartment shape anisotropy (csA) in the E(ψ) profile at the different t(m) regimes to provide detailed information on compartment size and eccentricity. An underlying assumption is that the PFGs that are imparted to weigh diffusion are the only gradients present; however, in realistic systems and especially where there are randomly oriented anisotropic pores, susceptibility effects may induce strong internal gradients. In this study, the effects of such internal gradients on E(ψ) plots obtained from angular d-PFG MR and on microstructural information that can be obtained from s-PFG and d-PFG MR were investigated. First, it was found that internal gradients induce a bias in the s-PFG MR results, thus creating an anisotropy that is not related to microstructure, termed apparent-Susceptibility-Induced-Anisotropy (aSIA). We then show that aSIA effects are also manifest in different ways in the angular d-PFG MR experiment in controlled phantoms and in realistic systems such as quartz sand, emulsions, and biological systems. The effects of aSIA in some cases completely masked the effects of μA and csA; however, we subsequently show that by introducing bipolar gradients to the d-PFG MR (bp-d-PFG), the effects of aSIA can be largely suppressed, restoring the E(ψ) plots that are expected from the theory along with the microstructural information that it conveys. We conclude that when specimens are characterized by strong internal gradients, the novel information on μA and csA that is manifest in the E(ψ) plots can indeed be inferred when bp-d-PFG MR is used, i.e. when bipolar gradients are applied.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | | |
Collapse
|
21
|
Wang L, Zhu Y, Li H, Liu W, Magnin IE. Multiscale modeling and simulation of the cardiac fiber architecture for DMRI. IEEE Trans Biomed Eng 2011; 59:16-9. [PMID: 21878402 DOI: 10.1109/tbme.2011.2166265] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiac fiber architecture plays an important role in the study of mechanical and electrical properties of the wall of the human heart, but still remains to be elucidated. This paper proposes to investigate, in a multiscale manner, how the arrangement patterns and morphological heterogeneity of cardiac myocytes influence the fibers orientation. To this end, different virtual cardiac fiber structures are modeled, and diffusion tensor imaging at multiple scales are simulated using the Monte Carlo method. The results show that the proposed modeling and simulation allow us to quantitatively describe the variation of the measured tissue properties (fiber orientation and fractional anisotropy) as a function of the observation scale.
Collapse
Affiliation(s)
- Lihui Wang
- Harbin Institute of Technology, Harbin 150001, China.
| | | | | | | | | |
Collapse
|
22
|
Ozarslan E, Shemesh N, Koay CG, Cohen Y, Basser PJ. NMR characterization of general compartment size distributions. NEW JOURNAL OF PHYSICS 2011; 13:15010. [PMID: 21709780 PMCID: PMC3120057 DOI: 10.1088/1367-2630/13/1/015010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The influence of molecular diffusion on the nuclear magnetic resonance (NMR) signal can be exploited to estimate compartment size distributions in heterogeneous specimens. Theoretical relationships between the NMR signal intensity at long diffusion times and the moments of a general distribution of isolated pores with characteristic shapes (planar, cylindrical or spherical) are established. A numerical method based on expressing a general diffusion-attenuated NMR signal profile in a series of complete orthogonal basis functions is introduced and subsequently employed to estimate the moments of the compartment size distribution. The results on simulated and real data obtained from controlled water-filled microcapillaries demonstrate the power of the approach to create contrast based not only on the mean of the compartment size but also its variance. The technique can be employed to address a variety of problems such as characterizing distributions of droplet sizes in emulsions and of apparent axon diameters in nerve fascicles.
Collapse
Affiliation(s)
- Evren Ozarslan
- Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, 13 South Drive, Bethesda, Maryland, 20892, USA
| | | | | | | | | |
Collapse
|
23
|
Komlosh ME, Özarslan E, Lizak MJ, Horkay F, Schram V, Shemesh N, Cohen Y, Basser PJ. Pore diameter mapping using double pulsed-field gradient MRI and its validation using a novel glass capillary array phantom. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 208:128-35. [PMID: 21084204 PMCID: PMC3021618 DOI: 10.1016/j.jmr.2010.10.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 05/08/2023]
Abstract
Double pulsed-field gradient (d-PFG) MRI can provide quantitative maps of microstructural quantities and features within porous media and tissues. We propose and describe a novel MRI phantom, consisting of wafers of highly ordered glass capillary arrays (GCA), and its use to validate and calibrate a d-PFG MRI method to measure and map the local pore diameter. Specifically, we employ d-PFG Spin-Echo Filtered MRI in conjunction with a recently introduced theoretical framework, to estimate a mean pore diameter in each voxel within the imaging volume. This simulation scheme accounts for all diffusion and imaging gradients within the diffusion weighted MRI (DWI) sequence, and admits the violation of the short gradient pulse approximation. These diameter maps agree well with pore sizes measured using both optical microscopy and single PFG diffusion diffraction NMR spectroscopy using the same phantom. Pixel-by-pixel analysis shows that the local pore diameter can be mapped precisely and accurately within a specimen using d-PFG MRI.
Collapse
Affiliation(s)
- Michal E Komlosh
- Section on Tissue Biophysics and Biomimetics, Program on Pediatric Imaging and Tissue Sciences, NICHD, NIH, Bethesda, MD 20892-5772, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Shemesh N, Ozarslan E, Adiri T, Basser PJ, Cohen Y. Noninvasive bipolar double-pulsed-field-gradient NMR reveals signatures for pore size and shape in polydisperse, randomly oriented, inhomogeneous porous media. J Chem Phys 2010; 133:044705. [PMID: 20687674 DOI: 10.1063/1.3454131] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Noninvasive characterization of pore size and shape in opaque porous media is a formidable challenge. NMR diffusion-diffraction patterns were found to be exceptionally useful for obtaining such morphological features, but only when pores are monodisperse and coherently placed. When locally anisotropic pores are randomly oriented, conventional diffusion NMR methods fail. Here, we present a simple, direct, and general approach to obtain both compartment size and shape even in such settings and even when pores are characterized by internal field gradients. Using controlled porous media, we show that the bipolar-double-pulsed-field-gradient (bp-d-PFG) methodology yields diffusion-diffraction patterns from which pore size can be directly obtained. Moreover, we show that pore shape, which cannot be obtained by conventional methods, can be directly inferred from the modulation of the signal in angular bp-d-PFG experiments. This new methodology significantly broadens the types of porous media that can be studied using noninvasive diffusion-diffraction NMR.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
25
|
Momot KI. Diffusion tensor of water in model articular cartilage. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:81-91. [DOI: 10.1007/s00249-010-0629-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/08/2010] [Accepted: 09/09/2010] [Indexed: 11/29/2022]
|
26
|
Shemesh N, Özarslan E, Komlosh ME, Basser PJ, Cohen Y. From single-pulsed field gradient to double-pulsed field gradient MR: gleaning new microstructural information and developing new forms of contrast in MRI. NMR IN BIOMEDICINE 2010; 23:757-80. [PMID: 20690130 PMCID: PMC3139994 DOI: 10.1002/nbm.1550] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
One of the hallmarks of diffusion NMR and MRI is its ability to utilize restricted diffusion to probe compartments much smaller than the excited volume or the MRI voxel, respectively, and to extract microstructural information from them. Single-pulsed field gradient (s-PFG) MR methodologies have been employed with great success to probe microstructures in various disciplines, ranging from chemistry to neuroscience. However, s-PFG MR also suffers from inherent shortcomings, especially when specimens are characterized by orientation or size distributions: in such cases, the microstructural information available from s-PFG experiments is limited or lost. Double-pulsed field gradient (d-PFG) MR methodology, an extension of s-PFG MR, has attracted attention owing to recent theoretical studies predicting that it can overcome certain inherent limitations of s-PFG MR. In this review, we survey the microstructural features that can be obtained from conventional s-PFG methods in the different q regimes, and highlight its limitations. The experimental aspects of d-PFG methodology are then presented, together with an overview of its theoretical underpinnings and a general framework for relating the MR signal decay and material microstructure, affording new microstructural parameters. We then discuss recent studies that have validated the theory using phantoms in which the ground truth is well known a priori, a crucial step prior to the application of d-PFG methodology in neuronal tissue. The experimental findings are in excellent agreement with the theoretical predictions and reveal, inter alia, zero-crossings of the signal decay, robustness towards size distributions and angular dependences of the signal decay from which accurate microstructural parameters, such as compartment size and even shape, can be extracted. Finally, we show some initial findings in d-PFG MR imaging. This review lays the foundation for future studies, in which accurate and novel microstructural information could be extracted from complex biological specimens, eventually leading to new forms of contrast in MRI.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel
| | - Evren Özarslan
- Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Michal E Komlosh
- Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter J Basser
- Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel
- Corresponding author: Prof. Yoram Cohen, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel, , Tel/fax- 972 3 6407232/972 3 6407469
| |
Collapse
|
27
|
Shemesh N, Ozarslan E, Adiri T, Basser PJ, Cohen Y. Noninvasive bipolar double-pulsed-field-gradient NMR reveals signatures for pore size and shape in polydisperse, randomly oriented, inhomogeneous porous media. J Chem Phys 2010. [PMID: 20687674 DOI: 10.1063/1.345431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Noninvasive characterization of pore size and shape in opaque porous media is a formidable challenge. NMR diffusion-diffraction patterns were found to be exceptionally useful for obtaining such morphological features, but only when pores are monodisperse and coherently placed. When locally anisotropic pores are randomly oriented, conventional diffusion NMR methods fail. Here, we present a simple, direct, and general approach to obtain both compartment size and shape even in such settings and even when pores are characterized by internal field gradients. Using controlled porous media, we show that the bipolar-double-pulsed-field-gradient (bp-d-PFG) methodology yields diffusion-diffraction patterns from which pore size can be directly obtained. Moreover, we show that pore shape, which cannot be obtained by conventional methods, can be directly inferred from the modulation of the signal in angular bp-d-PFG experiments. This new methodology significantly broadens the types of porous media that can be studied using noninvasive diffusion-diffraction NMR.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
28
|
Shemesh N, Ozarslan E, Basser PJ, Cohen Y. Detecting diffusion-diffraction patterns in size distribution phantoms using double-pulsed field gradient NMR: Theory and experiments. J Chem Phys 2010; 132:034703. [PMID: 20095748 DOI: 10.1063/1.3285299] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NMR observable nuclei undergoing restricted diffusion within confining pores are important reporters for microstructural features of porous media including, inter-alia, biological tissues, emulsions and rocks. Diffusion NMR, and especially the single-pulsed field gradient (s-PFG) methodology, is one of the most important noninvasive tools for studying such opaque samples, enabling extraction of important microstructural information from diffusion-diffraction phenomena. However, when the pores are not monodisperse and are characterized by a size distribution, the diffusion-diffraction patterns disappear from the signal decay, and the relevant microstructural information is mostly lost. A recent theoretical study predicted that the diffusion-diffraction patterns in double-PFG (d-PFG) experiments have unique characteristics, such as zero-crossings, that make them more robust with respect to size distributions. In this study, we theoretically compared the signal decay arising from diffusion in isolated cylindrical pores characterized by lognormal size distributions in both s-PFG and d-PFG methodologies using a recently presented general framework for treating diffusion in NMR experiments. We showed the gradual loss of diffusion-diffraction patterns in broadening size distributions in s-PFG and the robustness of the zero-crossings in d-PFG even for very large standard deviations of the size distribution. We then performed s-PFG and d-PFG experiments on well-controlled size distribution phantoms in which the ground-truth is well-known a priori. We showed that the microstructural information, as manifested in the diffusion-diffraction patterns, is lost in the s-PFG experiments, whereas in d-PFG experiments the zero-crossings of the signal persist from which relevant microstructural information can be extracted. This study provides a proof of concept that d-PFG may be useful in obtaining important microstructural features in samples characterized by size distributions.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69778, Israel
| | | | | | | |
Collapse
|
29
|
Shemesh N, Özarslan E, Bar-Shir A, Basser PJ, Cohen Y. Observation of restricted diffusion in the presence of a free diffusion compartment: single- and double-PFG experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 200:214-25. [PMID: 19656697 PMCID: PMC2749951 DOI: 10.1016/j.jmr.2009.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 05/10/2023]
Abstract
Theoretical and experimental studies of restricted diffusion have been conducted for decades using single pulsed field gradient (s-PFG) diffusion experiments. In homogenous samples, the diffusion-diffraction phenomenon arising from a single population of diffusing species has been observed experimentally and predicted theoretically. In this study, we introduce a composite bi-compartmental model which superposes restricted diffusion in microcapillaries with free diffusion in an unconfined compartment, leading to fast and slow diffusing components in the NMR signal decay. Although simplified (no exchange), the superposed diffusion modes in this model may exhibit features seen in more complex porous materials and biological tissues. We find that at low q-values the freely diffusing component masks the restricted diffusion component, and that prolongation of the diffusion time shifts the transition from free to restricted profiles to lower q-values. The effect of increasing the volume fraction of freely diffusing water was also studied; we find that the transition in the signal decay from the free mode to the restricted mode occurs at higher q-values when the volume fraction of the freely diffusing water is increased. These findings were then applied to a phantom consisting of crossing fibers, which demonstrated the same qualitative trends in the signal decay. The angular d-PGSE experiment, which has been recently shown to be able to measure small compartmental dimensions even at low q-values, revealed that microscopic anisotropy is lost at low q-values where the fast diffusing component is prominent. Our findings may be of importance in studying realistic systems which exhibit compartmentation.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel
| | - Evren Özarslan
- Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Amnon Bar-Shir
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel
| | - Peter J Basser
- Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel
- Corresponding author: Prof. Yoram Cohen, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel, , Tel/fax- 972 3 6407232 / 972 3 6407469
| |
Collapse
|
30
|
Shemesh N, Ozarslan E, Basser PJ, Cohen Y. Measuring small compartmental dimensions with low-q angular double-PGSE NMR: The effect of experimental parameters on signal decay. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 198:15-23. [PMID: 19186086 DOI: 10.1016/j.jmr.2009.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/01/2009] [Accepted: 01/06/2009] [Indexed: 05/16/2023]
Abstract
In confined geometries, the MR signal attenuation obtained from single pulsed gradient spin echo (s-PGSE) experiments reflects the dimension of the compartment, and in some cases, its geometry. However, to measure compartment size, high q-values must be applied, requiring high gradient strengths and/or long pulse durations and diffusion times. The angular double PGSE (d-PGSE) experiment has been proposed as a means to extract dimensions of confined geometries using low q-values. In one realization of the d-PGSE experiment, the first gradient pair is fixed along the x-axis, and the orientation of the second gradient pair is varied in the X-Y plane. Such a measurement is sensitive to microscopic anisotropy induced by the boundaries of the restricting compartment, and allows extraction of the compartment dimension. In this study, we have juxtaposed angular d-PGSE experiments and simulations to extract sizes from well-characterized NMR phantoms consisting of water filled microcapillaries. We are able to accurately extract sizes of small compartments (5mum) using the angular d-PGSE experiment even when the short gradient pulse (SGP) approximation is violated and over a range of mixing and diffusion times. We conclude that the angular d-PGSE experiment may fill an important niche in characterizing compartment sizes in which restricted diffusion occurs.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | | | | | | |
Collapse
|
31
|
Erythrocyte orientational and cell volume effects on NMR q-space analysis: simulations of restricted diffusion. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:139-48. [PMID: 19399492 DOI: 10.1007/s00249-009-0456-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/26/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
Pulsed field-gradient spin echo nuclear magnetic resonance spectroscopy of water diffusing in erythrocytes leads to diffusion interference and diffraction effects, which are visualised in q-space plots of signal intensity versus the magnitude of the spatial wave-number vector q. Interpretation of the features of these q-space plots has been aided by Monte Carlo random walk simulations of diffusion in lattices of virtual erythrocytes. Here, the effect of varying the orientation of the cells with respect to the direction in which diffusion is measured, on the appearance of q-space plots, was investigated, together with the effect of changing the cell volume. We show that these changes are reflected in the appearance of the plots in a way that is diagnostic of the microscopic geometry of the sample.
Collapse
|
32
|
Ozarslan E, Shemesh N, Basser PJ. A general framework to quantify the effect of restricted diffusion on the NMR signal with applications to double pulsed field gradient NMR experiments. J Chem Phys 2009; 130:104702. [PMID: 19292544 PMCID: PMC2736571 DOI: 10.1063/1.3082078] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/27/2009] [Indexed: 11/14/2022] Open
Abstract
Based on a description introduced by Robertson, Grebenkov recently introduced a powerful formalism to represent the diffusion-attenuated NMR signal for simple pore geometries such as slabs, cylinders, and spheres analytically. In this work, we extend this multiple correlation function formalism by allowing for possible variations in the direction of the magnetic field gradient waveform. This extension is necessary, for example, to incorporate the effects of imaging gradients in diffusion-weighted NMR imaging scans and in characterizing anisotropy at different length scales via double pulsed field gradient (PFG) experiments. In cylindrical and spherical pores, respectively, two- and three-dimensional vector operators are employed whose form is deduced from Grebenkov's results via elementary operator algebra for the case of cylinders and the Wigner-Eckart theorem for the case of spheres. The theory was validated by comparison with known findings and with experimental double-PFG data obtained from water-filled microcapillaries.
Collapse
Affiliation(s)
- Evren Ozarslan
- Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, 13 South Drive, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
33
|
Shemesh N, Cohen Y. The effect of experimental parameters on the signal decay in double-PGSE experiments: negative diffractions and enhancement of structural information. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 195:153-161. [PMID: 18845460 DOI: 10.1016/j.jmr.2008.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/31/2008] [Accepted: 09/04/2008] [Indexed: 05/26/2023]
Abstract
Double pulsed gradient spin echo (d-PGSE) experiment has been recently suggested for detecting microscopic anisotropy in macroscopically isotropic samples. This sequence is complex and has many variables, including, intra alia, combinations of directions and amplitudes of the pulsed gradients, diffusion times in each of the encoding periods and the mixing time period. The effect of these experimental parameters of the d-PGSE sequence was studied in an array of water filled microcapillaries of micron diameters. We found that negative diffractions occur, as indeed predicted by recently published simulations. We also found differential effects of prolongation of the mixing time between collinear and orthogonal d-PGSE experiments. The d-PGSE experiment in the collinear direction perpendicular to the long axis of the cylinder exhibited a marked dependence on the mixing time, while the orthogonal d-PGSE experiment exhibited no such dependence at all. Interestingly, one of the most important predictions by the simulations was that the d-PGSE sequence could potentially discriminate between compartments of different sizes better than the single PGSE (s-PGSE) and it seems that our experimental results indeed corroborate these predictions.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | |
Collapse
|