1
|
Seyyedsalehi MS, Rossi M, Hadji M, Rashidian H, Marzban M, Parpinel M, Fiori F, Naghibzadeh-Tahami A, Hannun YA, Luberto C, Zendehdel K, Boffetta P. Dietary Choline and Betaine Intake and Risk of Colorectal Cancer in an Iranian Population. Cancers (Basel) 2023; 15:2557. [PMID: 37174024 PMCID: PMC10177422 DOI: 10.3390/cancers15092557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is increasing in low- and middle-income countries, likely due to changing lifestyle habits, including diet. We aimed to investigate the relationship between dietary betaine, choline, and choline-containing compounds and CRC risk. METHODS We analyzed data from a case-control study, including 865 CRC cases and 3206 controls from Iran. Detailed information was collected by trained interviewers using validated questionnaires. The intake of free choline, phosphocholine (Pcho), glycerophosphocholine (GPC), phosphatidylcholine (PtdCho), and sphingomyelin (SM), as well as of betaine was estimated from food frequency questionnaires and categorized into quartiles. The odds ratios (OR) and 95% confidence intervals (CI) of CRC for choline and betaine quartiles were calculated using multivariate logistic regression by adjusting for potential confounders. RESULTS We observed excess risk of CRC in the highest versus lowest intake of total choline (OR = 1.23, 95% CI 1.13, 1.33), GPC (OR = 1.13, 95% CI 1.00, 1.27), and SM (OR = 1.14, 95% CI 1.01, 1.28). The intake of betaine exerted an inverse association with CRC risk (OR = 0.91, 95% CI 0.83, 0.99). There was no association between free choline, Pcho, PtdCho, and CRC. Analyses stratified by gender showed an elevated OR of CRC in men for SM intake OR = 1.20, 95% CI 1.03, 1.40) and a significantly decreased CRC risk in women for betaine intake (OR = 0.84, 95% CI 0.73, 0.97). CONCLUSION Dietary modifications leading to an increase in betaine sources and managing the use of animal products as references for SM or other choline types might contribute to decreasing the risk of CRC.
Collapse
Affiliation(s)
- Monireh Sadat Seyyedsalehi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
| | - Marta Rossi
- The Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maryam Hadji
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, 33521 Tampere, Finland
| | - Hamideh Rashidian
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
| | - Maryam Marzban
- Department of Human Genetics, McGill University, Montreal, QC 3640, Canada
| | - Maria Parpinel
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Federica Fiori
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Ahmad Naghibzadeh-Tahami
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman 7619833477, Iran
- Health Foresight and Innovation Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman 7619833477, Iran
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University, New York, NY 11794, USA
- Department of Medicine, Stony Brook University, New York, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University, New York, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
- Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
- Stony Brook Cancer Center, Stony Brook University, New York, NY 11794, USA
| |
Collapse
|
2
|
García-Molina P, Sola-Leyva A, Luque-Navarro PM, Laso A, Ríos-Marco P, Ríos A, Lanari D, Torretta A, Parisini E, López-Cara LC, Marco C, Carrasco-Jiménez MP. Anticancer Activity of the Choline Kinase Inhibitor PL48 Is Due to Selective Disruption of Choline Metabolism and Transport Systems in Cancer Cell Lines. Pharmaceutics 2022; 14:pharmaceutics14020426. [PMID: 35214160 PMCID: PMC8876215 DOI: 10.3390/pharmaceutics14020426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
A large number of different types of cancer have been shown to be associated with an abnormal metabolism of phosphatidylcholine (PC), the main component of eukaryotic cell membranes. Indeed, the overexpression of choline kinase α1 (ChoKα1), the enzyme that catalyses the bioconversion of choline to phosphocholine (PCho), has been found to associate with cell proliferation, oncogenic transformation and carcinogenesis. Hence, ChoKα1 has been described as a possible cancer therapeutic target. Moreover, the choline transporter CTL1 has been shown to be highly expressed in several tumour cell lines. In the present work, we evaluate the antiproliferative effect of PL48, a rationally designed inhibitor of ChoKα1, in MCF7 and HepG2 cell lines. In addition, we illustrate that the predominant mechanism of cellular choline uptake in these cells is mediated by the CTL1 choline transporter. A possible correlation between the inhibition of both choline uptake and ChoKα1 activity and cell proliferation in cancer cell lines is also highlighted. We conclude that the efficacy of this inhibitor on cell proliferation in both cell lines is closely correlated with its capability to block choline uptake and ChoKα1 activity, making both proteins potential targets in cancer therapy.
Collapse
Affiliation(s)
- Pablo García-Molina
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
| | - Pilar M. Luque-Navarro
- Department of Pharmaceutical and Organic Chemistry, University of Granada, 18071 Granada, Spain;
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Alejandro Laso
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
| | - Pablo Ríos-Marco
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
| | - Antonio Ríos
- Department of Cell Biology, University of Granada, 18071 Granada, Spain;
| | - Daniela Lanari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Archimede Torretta
- Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy; (A.T.); (E.P.)
| | - Emilio Parisini
- Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy; (A.T.); (E.P.)
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Luisa C. López-Cara
- Department of Pharmaceutical and Organic Chemistry, University of Granada, 18071 Granada, Spain;
- Correspondence: (L.C.L.-C.); (C.M.); (M.P.C.-J.)
| | - Carmen Marco
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
- Correspondence: (L.C.L.-C.); (C.M.); (M.P.C.-J.)
| | - María P. Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
- Correspondence: (L.C.L.-C.); (C.M.); (M.P.C.-J.)
| |
Collapse
|
3
|
Bispo D, Fabris V, Lamb CA, Lanari C, Helguero LA, Gil AM. Hormone-Independent Mouse Mammary Adenocarcinomas with Different Metastatic Potential Exhibit Different Metabolic Signatures. Biomolecules 2020; 10:E1242. [PMID: 32867141 PMCID: PMC7563858 DOI: 10.3390/biom10091242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
The metabolic characteristics of metastatic and non-metastatic breast carcinomas remain poorly studied. In this work, untargeted Nuclear Magnetic Resonance (NMR) metabolomics was used to compare two medroxyprogesterone acetate (MPA)-induced mammary carcinomas lines with different metastatic abilities. Different metabolic signatures distinguished the non-metastatic (59-2-HI) and the metastatic (C7-2-HI) lines, with glucose, amino acid metabolism, nucleotide metabolism and lipid metabolism as the major affected pathways. Non-metastatic tumours appeared to be characterised by: (a) reduced glycolysis and tricarboxylic acid cycle (TCA) activities, possibly resulting in slower NADH biosynthesis and reduced mitochondrial transport chain activity and ATP synthesis; (b) glutamate accumulation possibly related to reduced glutathione activity and reduced mTORC1 activity; and (c) a clear shift to lower phosphoscholine/glycerophosphocholine ratios and sphingomyelin levels. Within each tumour line, metabolic profiles also differed significantly between tumours (i.e., mice). Metastatic tumours exhibited marked inter-tumour changes in polar compounds, some suggesting different glycolytic capacities. Such tumours also showed larger intra-tumour variations in metabolites involved in nucleotide and cholesterol/fatty acid metabolism, in tandem with less changes in TCA and phospholipid metabolism, compared to non-metastatic tumours. This study shows the valuable contribution of untargeted NMR metabolomics to characterise tumour metabolism, thus opening enticing opportunities to find metabolic markers related to metastatic ability in endocrine breast cancer.
Collapse
Affiliation(s)
- Daniela Bispo
- Department of Chemistry and CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Victoria Fabris
- IByME—Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (V.F.); (C.A.L.); (C.L.)
| | - Caroline A. Lamb
- IByME—Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (V.F.); (C.A.L.); (C.L.)
| | - Claudia Lanari
- IByME—Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (V.F.); (C.A.L.); (C.L.)
| | - Luisa A. Helguero
- iBIMED—Institute of Biomedicine, Department of Medical Sciences, Universidade de Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal;
| | - Ana M. Gil
- Department of Chemistry and CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
4
|
Metabolomic studies of breast cancer in murine models: A review. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165713. [PMID: 32014550 DOI: 10.1016/j.bbadis.2020.165713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/06/2019] [Accepted: 01/29/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Metabolomic strategies have been extensively used to search for biomarkers of disease, including cancer, in biological complex mixtures such as cells, tissues and biofluids. In breast cancer research, murine models are of great value and metabolomics has been increasingly applied to characterize tumor or organ tissues, or biofluids, for instance to follow-up metabolism during cancer progression or response to specific therapies. SCOPE OF REVIEW This review briefly introduces the different murine models used in breast cancer research and proceeds to present the metabolomic studies reported so far to describe the deviant metabolic behavior associated to breast cancer, in each type of model: xenografts (cell- or patient-derived), spontaneous (naturally-occurring or genetically engineered) and carcinogen-induced. The type of sample and strategies followed are identified, as well as the main findings from of study. MAJOR CONCLUSIONS Metabolomics has gradually become relevant in characterizing murine models of breast cancer, using either Nuclear Magnetic Resonance (NMR) or Mass Spectromety (MS). Both tissue and biofluids are matrixes of interest in this context, although in some type of models, reports have focused primarily on the former. The aims of tissue studies have comprised the search for mechanistic knowledge of carcinogenesis, metastasis development and response/resistance to therapies. Biofluid metabolomics has mainly aimed at finding non-invasive biomarkers for early breast cancer detection or prognosis determination. GENERAL SIGNIFICANCE Metabolomics provides exquisite detail on murine tumor and systemic metabolism of breast cancer. This knowledge paves the way for the discovery of new biomarkers, potentially translatable to in vivo non-invasive patient follow-up.
Collapse
|
5
|
Li Y, Wang C, Li D, Deng P, Shao X, Hu J, Liu C, Jie H, Lin Y, Li Z, Qian X, Zhang H, Zhao Y. 1H-NMR-based metabolic profiling of a colorectal cancer CT-26 lung metastasis model in mice. Oncol Rep 2017; 38:3044-3054. [PMID: 28901465 DOI: 10.3892/or.2017.5954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/26/2017] [Indexed: 02/05/2023] Open
Abstract
Lung metastasis is an important cause for the low 5-year survival rate of colorectal cancer patients. Understanding the metabolic profile of lung metastasis of colorectal cancer is important for developing molecular diagnostic and therapeutic approaches. We carried out the metabonomic profiling of lung tissue samples on a mouse lung metastasis model of colorectal cancer using 1H-nuclear magnetic resonance (1H-NMR). The lung tissues of mice were collected at different intervals after marine colon cancer cell line CT-26 was intravenously injected into BALB/c mice. The distinguishing metabolites of lung tissue were investigated using 1H-NMR-based metabonomic assay, which is a highly sensitive and non-destructive method for biomarker identification. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were applied to analyze 1H-NMR profiling data to seek potential biomarkers. All of the 3 analyses achieved excellent separations between the normal and metastasis groups. A total of 42 metabolites were identified, ~12 of which were closely correlated with the process of metastasis from colon to lung. These altered metabolites indicated the disturbance of metabolism in metastatic tumors including glycolysis, TCA cycle, glutaminolysis, choline metabolism and serine biosynthesis. Our findings firstly identified the distinguishing metabolites in mouse colorectal cancer lung metastasis models, and indicated that the metabolite disturbance may be associated with the progression of lung metastasis from colon cancer. The altered metabolites may be potential biomarkers that provide a promising molecular approach for clinical diagnosis and mechanistic study of colorectal cancer with lung metastasis.
Collapse
Affiliation(s)
- Yan Li
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Chunting Wang
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Dandan Li
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Pengchi Deng
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoni Shao
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Jing Hu
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Chunqi Liu
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Hui Jie
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Yiyun Lin
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Zhuoling Li
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Xinying Qian
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Huaqin Zhang
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Yinglan Zhao
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
Wang H, Zhang H, Deng P, Liu C, Li D, Jie H, Zhang H, Zhou Z, Zhao YL. Tissue metabolic profiling of human gastric cancer assessed by (1)H NMR. BMC Cancer 2016; 16:371. [PMID: 27356757 PMCID: PMC4928316 DOI: 10.1186/s12885-016-2356-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/11/2016] [Indexed: 02/05/2023] Open
Abstract
Background Gastric cancer is the fourth most common cancer and the second most deadly cancer worldwide. Study on molecular mechanisms of carcinogenesis will play a significant role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to identify the potential biomarkers for the early diagnosis of gastric cancer. Methods In this study, we reported the metabolic profiling of tissue samples on a large cohort of human gastric cancer subjects (n = 125) and normal controls (n = 54) based on 1H nuclear magnetic resonance (1H NMR) together with multivariate statistical analyses (PCA, PLS-DA, OPLS-DA and ROC curve). Results The OPLS-DA model showed adequate discrimination between cancer tissues and normal controls, and meanwhile, the model excellently discriminated the stage-related of tissue samples (stage I, 30; stage II, 46; stage III, 37; stage IV, 12) and normal controls. A total of 48 endogenous distinguishing metabolites (VIP > 1 and p < 0.05) were identified, 13 of which were changed with the progression of gastric cancer. These modified metabolites revealed disturbance of glycolysis, glutaminolysis, TCA, amino acids and choline metabolism, which were correlated with the occurrence and development of human gastric cancer. The receiver operating characteristic diagnostic AUC of OPLS-DA model between cancer tissues and normal controls was 0.945. And the ROC curves among different stages cancer subjects and normal controls were gradually improved, the corresponding AUC values were 0.952, 0.994, 0.998 and 0.999, demonstrating the robust diagnostic power of this metabolic profiling approach. Conclusion As far as we know, the present study firstly identified the differential metabolites in various stages of gastric cancer tissues. And the AUC values were relatively high. So these results suggest that the metabolic profiling of gastric cancer tissues has great potential in detecting this disease and helping to understand its underlying metabolic mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2356-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huijuan Wang
- College of Medicine, Henan University, Kaifeng, 475004, Henan, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Hailong Zhang
- College of Medicine, Henan University, Kaifeng, 475004, Henan, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Pengchi Deng
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, China
| | - Chunqi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Dandan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Hui Jie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zongguang Zhou
- Department of Gastrointestinal surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| | - Ying-Lan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
|
8
|
Wijnen JP, Jiang L, Greenwood TR, van der Kemp WJM, Klomp DWJ, Glunde K. 1H/31P polarization transfer at 9.4 Tesla for improved specificity of detecting phosphomonoesters and phosphodiesters in breast tumor models. PLoS One 2014; 9:e102256. [PMID: 25036036 PMCID: PMC4103808 DOI: 10.1371/journal.pone.0102256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To assess the ability of a polarization transfer (PT) magnetic resonance spectroscopy (MRS) technique to improve the detection of the individual phospholipid metabolites phosphocholine (PC), phosphoethanolamine (PE), glycerophosphocholine (GPC), and glycerophosphoethanolamine (GPE) in vivo in breast tumor xenografts. MATERIALS AND METHODS The adiabatic version of refocused insensitive nuclei enhanced by polarization transfer (BINEPT) MRS was tested at 9.4 Tesla in phantoms and animal models. BINEPT and pulse-acquire (PA) 31P MRS was acquired consecutively from the same orthotopic MCF-7 (n = 10) and MDA-MB-231 (n = 10) breast tumor xenografts. After in vivo MRS measurements, animals were euthanized, tumors were extracted and high resolution (HR)-MRS was performed. Signal to noise ratios (SNRs) and metabolite ratios were compared for BINEPT and PA MRS, and were also measured and compared with that from HR-MRS. RESULTS BINEPT exclusively detected metabolites with 1H-31P coupling such as PC, PE, GPC, and GPE, thereby creating a significantly improved, flat baseline because overlapping resonances from immobile and partly mobile phospholipids were removed without loss of sensitivity. GPE and GPC were more accurately detected by BINEPT in vivo, which enabled a reliable quantification of metabolite ratios such as PE/GPE and PC/GPC, which are important markers of tumor aggressiveness and treatment response. CONCLUSION BINEPT is advantageous over PA for detecting and quantifying the individual phospholipid metabolites PC, PE, GPC, and GPE in vivo at high magnetic field strength. As BINEPT can be used clinically, alterations in these phospholipid metabolites can be assessed in vivo for cancer diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Jannie P. Wijnen
- Johns Hopkins University In vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Radiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lu Jiang
- Johns Hopkins University In vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tiffany R. Greenwood
- Johns Hopkins University In vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | | - Dennis W. J. Klomp
- Department of Radiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Kristine Glunde
- Johns Hopkins University In vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Sidney Kimmel Comprehensive Cancer, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
9
|
Esmaeili M, Moestue SA, Hamans BC, Veltien A, Kristian A, Engebråten O, Maelandsmo GM, Gribbestad IS, Bathen TF, Heerschap A. In vivo ³¹P magnetic resonance spectroscopic imaging (MRSI) for metabolic profiling of human breast cancer xenografts. J Magn Reson Imaging 2014; 41:601-9. [PMID: 24532410 DOI: 10.1002/jmri.24588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/20/2014] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To study cancer associated with abnormal metabolism of phospholipids, of which several have been proposed as biomarkers for malignancy or to monitor response to anticancer therapy. We explored 3D (31) P magnetic resonance spectroscopic imaging (MRSI) at high magnetic field for in vivo assessment of individual phospholipids in two patient-derived breast cancer xenografts representing good and poor prognosis (luminal- and basal-like tumors). MATERIALS AND METHODS Metabolic profiles from luminal-like and basal-like xenograft tumors were obtained in vivo using 3D (31) P MRSI at 11.7T and from tissue extracts in vitro at 14.1T. Gene expression analysis was performed in order to support metabolic differences between the two xenografts. RESULTS In vivo (31) P MR spectra were obtained in which the prominent resonances from phospholipid metabolites were detected at a high signal-to-noise ratio (SNR >7.5). Metabolic profiles obtained in vivo were in agreement with those obtained in vitro and could be used to discriminate between the two xenograft models, based on the levels of phosphocholine, phosphoethanolamine, glycerophosphocholine, and glycerophosphoethanolamine. The differences in phospholipid metabolite concentration could partly be explained by gene expression profiles. CONCLUSION Noninvasive metabolic profiling by 3D (31) P MRSI can discriminate between subtypes of breast cancer based on different concentrations of choline- and ethanolamine-containing phospholipids.
Collapse
Affiliation(s)
- Morteza Esmaeili
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Grinde MT, Skrbo N, Moestue SA, Rødland EA, Borgan E, Kristian A, Sitter B, Bathen TF, Børresen-Dale AL, Mælandsmo GM, Engebraaten O, Sørlie T, Marangoni E, Gribbestad IS. Interplay of choline metabolites and genes in patient-derived breast cancer xenografts. Breast Cancer Res 2014; 16:R5. [PMID: 24447408 PMCID: PMC3978476 DOI: 10.1186/bcr3597] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 01/10/2014] [Indexed: 02/08/2023] Open
Abstract
Introduction Dysregulated choline metabolism is a well-known feature of breast cancer, but the underlying mechanisms are not fully understood. In this study, the metabolomic and transcriptomic characteristics of a large panel of human breast cancer xenograft models were mapped, with focus on choline metabolism. Methods Tumor specimens from 34 patient-derived xenograft models were collected and divided in two. One part was examined using high-resolution magic angle spinning (HR-MAS) MR spectroscopy while another part was analyzed using gene expression microarrays. Expression data of genes encoding proteins in the choline metabolism pathway were analyzed and correlated to the levels of choline (Cho), phosphocholine (PCho) and glycerophosphocholine (GPC) using Pearson’s correlation analysis. For comparison purposes, metabolic and gene expression data were collected from human breast tumors belonging to corresponding molecular subgroups. Results Most of the xenograft models were classified as basal-like (N = 19) or luminal B (N = 7). These two subgroups showed significantly different choline metabolic and gene expression profiles. The luminal B xenografts were characterized by a high PCho/GPC ratio while the basal-like xenografts were characterized by highly variable PCho/GPC ratio. Also, Cho, PCho and GPC levels were correlated to expression of several genes encoding proteins in the choline metabolism pathway, including choline kinase alpha (CHKA) and glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5). These characteristics were similar to those found in human tumor samples. Conclusion The higher PCho/GPC ratio found in luminal B compared with most basal-like breast cancer xenograft models and human tissue samples do not correspond to results observed from in vitro studies. It is likely that microenvironmental factors play a role in the in vivo regulation of choline metabolism. Cho, PCho and GPC were correlated to different choline pathway-encoding genes in luminal B compared with basal-like xenografts, suggesting that regulation of choline metabolism may vary between different breast cancer subgroups. The concordance between the metabolic and gene expression profiles from xenograft models with breast cancer tissue samples from patients indicates that these xenografts are representative models of human breast cancer and represent relevant models to study tumor metabolism in vivo.
Collapse
|
11
|
Preliminary Study on Hepatocyte-Targeted Phosphorus-31 MRS Using ATP-Loaded Galactosylated Chitosan Oligosaccharide Nanoparticles. Gastroenterol Res Pract 2013; 2013:512483. [PMID: 24363667 PMCID: PMC3865721 DOI: 10.1155/2013/512483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022] Open
Abstract
Background. The clinical applications of hepatic phosphorus-31 magnetic resonance spectroscopy (31P MRS) remain to be difficult because the changes of phosphates between normal hepatic tissues and pathological tissues are not so obvious, and furthermore, up to now there is few literature on hepatocyte-targeted 31P MRS. Materials and Methods. The ATP-loaded Gal-CSO (Gal-CSO/ATP) nanoparticles were prepared and the special cellular uptake of them as evaluated by using HepG-2 tumor cells and A549 tumor cells, respectively. Two kinds of cells were incubated with the nanoparticles suspension, respectively. Then were prepared the cell samples and the enhancement efficiency of ATP peaks detected by 31P MRS was evaluated. Results. The cellular uptake rate of Gal-CSO/ATP nanoparticles in HepG-2 cells was higher than that in A549 cells. Furthermore, the enlarged ATP peaks of Gal-CSO/ATP nanoparticles in HepG-2 cells were higher than those in A549 cells in vitro detected by 31P MRS. Conclusions. Gal-CSO/ATP nanoparticles have significant targeting efficiency in hepatic cells in vitro and enhancement efficiency of ATP peaks in HepG-2 cells. Furthermore, 31P MRS could be applied in the research of hepatic molecular imaging.
Collapse
|
12
|
Mazzetti S, Bracco C, Regge D, Caivano R, Russo F, Stasi M. Choline-containing compounds quantification by 1H NMR spectroscopy using external reference and noise measurements. Phys Med 2013; 29:677-83. [DOI: 10.1016/j.ejmp.2012.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/22/2012] [Accepted: 07/01/2012] [Indexed: 11/26/2022] Open
|
13
|
Tsai IL, Kuo TC, Ho TJ, Harn YC, Wang SY, Fu WM, Kuo CH, Tseng YJ. Metabolomic Dynamic Analysis of Hypoxia in MDA-MB-231 and the Comparison with Inferred Metabolites from Transcriptomics Data. Cancers (Basel) 2013; 5:491-510. [PMID: 24216987 PMCID: PMC3730319 DOI: 10.3390/cancers5020491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 04/24/2013] [Accepted: 04/24/2013] [Indexed: 01/04/2023] Open
Abstract
Hypoxia affects the tumor microenvironment and is considered important to metastasis progression and therapy resistance. Thus far, the majority of global analyses of tumor hypoxia responses have been limited to just a single omics level. Combining multiple omics data can broaden our understanding of tumor hypoxia. Here, we investigate the temporal change of the metabolite composition with gene expression data from literature to provide a more comprehensive insight into the system level in response to hypoxia. Nuclear magnetic resonance spectroscopy was used to perform metabolomic profiling on the MDA-MB-231 breast cancer cell line under hypoxic conditions. Multivariate statistical analysis revealed that the metabolic difference between hypoxia and normoxia was similar over 24 h, but became distinct over 48 h. Time dependent microarray data from the same cell line in the literature displayed different gene expressions under hypoxic and normoxic conditions mostly at 12 h or earlier. The direct metabolomic profiles show a large overlap with theoretical metabolic profiles deduced from previous transcriptomic studies. Consistent pathways are glycolysis/gluconeogenesis, pyruvate, purine and arginine and proline metabolism. Ten metabolic pathways revealed by metabolomics were not covered by the downstream of the known transcriptomic profiles, suggesting new metabolic phenotypes. These results confirm previous transcriptomics understanding and expand the knowledge from existing models on correlation and co-regulation between transcriptomic and metabolomics profiles, which demonstrates the power of integrated omics analysis.
Collapse
Affiliation(s)
- I-Lin Tsai
- Department of Pharmacy, National Taiwan University, No. 1, Jen-Ai Road, Section 1 Taipei 10051, Taiwan; E-Mail:
- The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan; E-Mails: (T.-C.K.); (T.-J.H.); (Y.-C.H.); (S.-Y.W.)
- Center for Genomic Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Tien-Chueh Kuo
- The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan; E-Mails: (T.-C.K.); (T.-J.H.); (Y.-C.H.); (S.-Y.W.)
- Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Room 410 BL Building, No. 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Tsung-Jung Ho
- The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan; E-Mails: (T.-C.K.); (T.-J.H.); (Y.-C.H.); (S.-Y.W.)
- Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Yeu-Chern Harn
- The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan; E-Mails: (T.-C.K.); (T.-J.H.); (Y.-C.H.); (S.-Y.W.)
- Graduate Institute of Networking and Multimedia, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - San-Yuan Wang
- The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan; E-Mails: (T.-C.K.); (T.-J.H.); (Y.-C.H.); (S.-Y.W.)
- Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Wen-Mei Fu
- Department of Pharmacology, National Taiwan University, 11 F No. 1 Sec. 1, Ren-ai Rd., Taipei 10051, Taiwan; E-Mail:
| | - Ching-Hua Kuo
- Department of Pharmacy, National Taiwan University, No. 1, Jen-Ai Road, Section 1 Taipei 10051, Taiwan; E-Mail:
- The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan; E-Mails: (T.-C.K.); (T.-J.H.); (Y.-C.H.); (S.-Y.W.)
- Center for Genomic Medicine, National Taiwan University, Taipei 10051, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (C.-H.K.); (Y.J.T.); Tel: +886-2-3366-4888 (Y.J.T.); Fax: +886-2-2362-8167 (Y.J.T.)
| | - Yufeng Jane Tseng
- Department of Pharmacy, National Taiwan University, No. 1, Jen-Ai Road, Section 1 Taipei 10051, Taiwan; E-Mail:
- The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan; E-Mails: (T.-C.K.); (T.-J.H.); (Y.-C.H.); (S.-Y.W.)
- Center for Genomic Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Room 410 BL Building, No. 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan
- Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (C.-H.K.); (Y.J.T.); Tel: +886-2-3366-4888 (Y.J.T.); Fax: +886-2-2362-8167 (Y.J.T.)
| |
Collapse
|
14
|
O'Brien PJ, Lee M, Spilker ME, Zhang CC, Yan Z, Nichols TC, Li W, Johnson CH, Patti GJ, Siuzdak G. Monitoring metabolic responses to chemotherapy in single cells and tumors using nanostructure-initiator mass spectrometry (NIMS) imaging. Cancer Metab 2013; 1:4. [PMID: 24280026 PMCID: PMC3834492 DOI: 10.1186/2049-3002-1-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/15/2012] [Indexed: 02/03/2023] Open
Abstract
Background Tissue imaging of treatment-induced metabolic changes is useful for optimizing cancer therapies, but commonly used methods require trade-offs between assay sensitivity and spatial resolution. Nanostructure-Initiator Mass Spectrometry imaging (NIMS) permits quantitative co-localization of drugs and treatment response biomarkers in cells and tissues with relatively high resolution. The present feasibility studies use NIMS to monitor phosphorylation of 3′-deoxy-3′-fluorothymidine (FLT) to FLT-MP in lymphoma cells and solid tumors as an indicator of drug exposure and pharmacodynamic responses. Methods NIMS analytical sensitivity and spatial resolution were examined in cultured Burkitt’s lymphoma cells treated briefly with Rapamycin or FLT. Sample aliquots were dispersed on NIMS surfaces for single cell imaging and metabolic profiling, or extracted in parallel for LC-MS/MS analysis. Docetaxel-induced changes in FLT metabolism were also monitored in tissues and tissue extracts from mice bearing drug-sensitive tumor xenografts. To correct for variations in FLT disposition, the ratio of FLT-MP to FLT was used as a measure of TK1 thymidine kinase activity in NIMS images. TK1 and tumor-specific luciferase were measured in adjacent tissue sections using immuno-fluorescence microscopy. Results NIMS and LC-MS/MS yielded consistent results. FLT, FLT-MP, and Rapamycin were readily detected at the single cell level using NIMS. Rapid changes in endogenous metabolism were detected in drug-treated cells, and rapid accumulation of FLT-MP was seen in most, but not all imaged cells. FLT-MP accumulation in xenograft tumors was shown to be sensitive to Docetaxel treatment, and TK1 immunoreactivity co-localized with tumor-specific antigens in xenograft tumors, supporting a role for xenograft-derived TK1 activity in tumor FLT metabolism. Conclusions NIMS is suitable for monitoring drug exposure and metabolite biotransformation with essentially single cell resolution, and provides new spatial and functional dimensions to studies of cancer metabolism without the need for radiotracers or tissue extraction. These findings should prove useful for in vitro and pre-clinical studies of cancer metabolism, and aid the optimization of metabolism-based cancer therapies and diagnostics.
Collapse
Affiliation(s)
- Peter J O'Brien
- Pfizer Worldwide Research and Development, La Jolla Laboratories, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pearce JM, Mahoney MC, Lee JH, Chu WJ, Cecil KM, Strakowski SM, Komoroski RA. 1H NMR analysis of choline metabolites in fine-needle-aspirate biopsies of breast cancer. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 26:337-43. [PMID: 23053715 DOI: 10.1007/s10334-012-0349-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/17/2012] [Accepted: 09/22/2012] [Indexed: 12/23/2022]
Abstract
OBJECT The relative amounts of choline (Cho), phosphocholine (PC), and glycerophosphocholine (GPC) may be sensitive indicators of breast cancer and the degree of malignancy. Here we implement some simple modifications to a previously developed (1)H NMR analysis of fine-needle-aspirate (FNA) biopsies designed to yield sufficient spectral resolution of Cho, PC, and GPC for usable relative quantitation of these metabolites. MATERIALS AND METHODS FNA biopsies of eighteen breast lesions were examined using our modified procedure for direct (1)H NMR at 400 MHz. Resonances of choline metabolites and potential interferences were fit using the computer program NUTS. RESULTS Quantitation of PC, GPC, and Cho relative to each other and to (phospho)creatine was obtained for eleven confirmed cases of infiltrating ductal carcinoma. Reliable results could not be obtained for the remaining cases primarily due to interference from lidocaine anesthetic. CONCLUSION Some simple modifications of a previously developed (1)H NMR analysis of FNAs yielded sufficient spectral resolution of Cho, PC, and GPC to permit usable relative quantitation at 400 MHz. In 9 of the 11 quantified cases the sum of GPC and Cho exceeded 42 % of the total choline-metabolite peak area.
Collapse
Affiliation(s)
- John M Pearce
- Center for Imaging Research, University of Cincinnati College of Medicine, and Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45267-0583, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Chinnaiyan P, Kensicki E, Bloom G, Prabhu A, Sarcar B, Kahali S, Eschrich S, Qu X, Forsyth P, Gillies R. The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism. Cancer Res 2012; 72:5878-88. [PMID: 23026133 DOI: 10.1158/0008-5472.can-12-1572-t] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although considerable progress has been made toward understanding glioblastoma biology through large-scale genetic and protein expression analyses, little is known about the underlying metabolic alterations promoting their aggressive phenotype. We conducted global metabolomic profiling on patient-derived glioma specimens and identified specific metabolic programs differentiating low- and high-grade tumors, with the metabolic signature of glioblastoma reflecting accelerated anabolic metabolism. When coupled with transcriptional profiles, we identified the metabolic phenotype of the mesenchymal subtype to consist of accumulation of the glycolytic intermediate phosphoenolpyruvate and decreased pyruvate kinase activity. Unbiased hierarchical clustering of metabolomic profiles identified three subclasses, which we term energetic, anabolic, and phospholipid catabolism with prognostic relevance. These studies represent the first global metabolomic profiling of glioma, offering a previously undescribed window into their metabolic heterogeneity, and provide the requisite framework for strategies designed to target metabolism in this rapidly fatal malignancy.
Collapse
Affiliation(s)
- Prakash Chinnaiyan
- Department of Radiation Oncology, Experimental Therapeutics, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kang H, Lee HY, Lee KS, Kim JH. Imaging-based tumor treatment response evaluation: review of conventional, new, and emerging concepts. Korean J Radiol 2012; 13:371-90. [PMID: 22778559 PMCID: PMC3384819 DOI: 10.3348/kjr.2012.13.4.371] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/14/2012] [Indexed: 01/07/2023] Open
Abstract
Tumor response may be assessed readily by the use of Response Evaluation Criteria in Solid Tumor version 1.1. However, the criteria mainly depend on tumor size changes. These criteria do not reflect other morphologic (tumor necrosis, hemorrhage, and cavitation), functional, or metabolic changes that may occur with targeted chemotherapy or even with conventional chemotherapy. The state-of-the-art multidetector CT is still playing an important role, by showing high-quality, high-resolution images that are appropriate enough to measure tumor size and its changes. Additional imaging biomarker devices such as dual energy CT, positron emission tomography, MRI including diffusion-weighted MRI shall be more frequently used for tumor response evaluation, because they provide detailed anatomic, and functional or metabolic change information during tumor treatment, particularly during targeted chemotherapy. This review elucidates morphologic and functional or metabolic approaches, and new concepts in the evaluation of tumor response in the era of personalized medicine (targeted chemotherapy).
Collapse
Affiliation(s)
- Hee Kang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | | | | | | |
Collapse
|
18
|
Vermeer LS, Fruhwirth GO, Pandya P, Ng T, Mason AJ. NMR metabolomics of MTLn3E breast cancer cells identifies a role for CXCR4 in lipid and choline regulation. J Proteome Res 2012; 11:2996-3003. [PMID: 22432781 PMCID: PMC3378657 DOI: 10.1021/pr300111x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The alpha chemokine receptor CXCR4 is up-regulated in certain types of breast cancer. Truncation of the C-terminus of this receptor alters cell morphology and increases invasiveness and metastatic potential. Here, to better understand the effects of CXCR4 expression and truncation in breast cancer cells, we have used high resolution magic angle spinning (HR-MAS) NMR studies of rat breast carcinoma MtLn3E cells to characterize the metabolite complement of cells heterologously expressing human CXCR4 or its C-terminal truncation mutant, Δ34-CXCR4. Notable reductions in choline levels were detected when either cells expressing wild-type CXCR4 or Δ34-CXCR4 were compared with cells containing an empty expression vector. Cells expressing CXCR4-Δ34 had reduced lipid content when compared with either the wild-type CXCR4 expressing cells or those containing the empty expression vector. Taken together, our results show that distinct effects on the metabolite complement can be linked to either CXCR4 expression or CXCR4 regulation. The metabolite markers for these two effects identified in the present study can, in turn, be used to further investigate the role of CXCR4 in metastasis.
Collapse
Affiliation(s)
- Louic S. Vermeer
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Gilbert O. Fruhwirth
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies and Randall Division of Cell & Molecular Biophysics, King’s College London, Guy’s Medical School Campus, London SE1 1UL, UK
| | - Pahini Pandya
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies and Randall Division of Cell & Molecular Biophysics, King’s College London, Guy’s Medical School Campus, London SE1 1UL, UK
| | - A. James Mason
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
19
|
Rommel D, Abarca-Quinones J, De Saeger C, Peeters F, Leclercq I, Duprez T. Enhanced choline metabolism in a rodent rhabdomyosarcoma model: correlation between RT-PCR and translational 3 T H-MRS. Magn Reson Imaging 2012; 30:1010-6. [PMID: 22513075 DOI: 10.1016/j.mri.2012.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE To investigate which transmembrane choline transporters and intracellular choline kinases play a prominent role at gene expression level in the rise of the total choline (tCho) peak at proton MR spectra in a rodent rhabdomyosarcoma model. MATERIALS AND METHODS Twenty-two rats bearing grafted bilateral syngenic rhabdomyosarcoma were examined on a clinical 3 T MR system. Total choline concentration was measured from proton MR spectra using cubic centimeter volumes of interest (VOIs) located contiguously along the greater axis of the tumour. After euthanasia, cubic centimetre tissue specimens corresponding to Proton magnetic resonance spectroscopy (H-MRS) VOIs were frozen in liquid nitrogen. Out of 89 H-MRS voxels, only 39 with a corresponding tissue specimen suitable for biochemical processing were included in the analysis. RNA was extracted from all the 39 samples and reverse-transcribed into cDNA. Choline kinase α and β gene expression as well as genes of the transmembrane transporters OCT1, OCT2, OCT3, CTL1, CTL3, CTL4 and CHT1 were studied using reverse transcriptase polymerase chain reaction. The expression level of each gene (ΔCt), was normalized referred to that of the RPL19 gene. The Spearman rank correlation coefficient was used to analyse variables. RESULTS There was no overexpression of genes coding for kinases; however, significant correlation was observed between kinase α sub-type and the tCho peak (P=.002; r=0.51). OCT1 was the most overexpressed transporter gene. Less overexpressed CTL1 gene was significantly correlated with the tCho peak (P=.02; r=0.38). CONCLUSION Choline transporters seem to play a predominant role in the increase in total choline concentration at the gene expression level in our model.
Collapse
Affiliation(s)
- Denis Rommel
- Department of Radiology and Medical Imaging, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc Av. Hippocrate, 10, 1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
20
|
Mao XA. Improve the selectively refocused INEPT pulse sequence for detecting phosphomonoesters and phosphodiesters. Magn Reson Med 2011; 68:332-8. [PMID: 22190173 DOI: 10.1002/mrm.23233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/20/2011] [Accepted: 09/06/2011] [Indexed: 12/15/2022]
Abstract
In application of the (31)P selectively refocused insensitive nuclei enhanced polarization transfer (srINEPT) technique to the detection of phosphomono- and diesters in tissues, homonuclear couplings between the CH(2)O protons and the NCH(2) protons seriously attenuate the sensitivity. These couplings can be conventionally removed by two soft 180° pulses in the (1)H evolution period which selectively invert the NCH(2) magnetizations. However, the srINEPT pulse sequence can be simplified by replacing the pulse train "soft 180°-hard 180°-soft 180°" with a single soft 180° pulse that selectively inverts the CH(2)O magnetizations. Theoretical analysis in this study demonstrates the correctness of this approach in principle. Validation on a milk phantom allowed us to investigate and discuss advantages and disadvantages of the proposed srINEPT with respect to the original srINEPT. Furthermore, comparison of different selective pulses made it possible to demonstrate that the proposed srINEPT experiment is not sensitive to errors in pulse length, offset, and B(1) field strength of the selective pulse when ReBurp pulse is used for selective refocusing.
Collapse
Affiliation(s)
- Xi-an Mao
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| |
Collapse
|
21
|
Abstract
Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression. Following transformation, the modulation of enzymes that control anabolic and catabolic pathways causes increased levels of choline-containing precursors and breakdown products of membrane phospholipids. These increased levels are associated with proliferation, and recent studies emphasize the complex reciprocal interactions between oncogenic signalling and choline metabolism. Because choline-containing compounds are detected by non-invasive magnetic resonance spectroscopy (MRS), increased levels of these compounds provide a non-invasive biomarker of transformation, staging and response to therapy. Furthermore, enzymes of choline metabolism, such as choline kinase, present novel targets for image-guided cancer therapy.
Collapse
Affiliation(s)
- Kristine Glunde
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, 720 Rutland Avenue, 212 Traylor Building, Baltimore, Maryland 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Zaver M. Bhujwalla
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, 720 Rutland Avenue, 212 Traylor Building, Baltimore, Maryland 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Sabrina M. Ronen
- Department of Radiology, University of California San Francisco School of Medicine, UCSF Mission Bay Campus, Byers Hall, San Francisco, California CA94158-2330, USA
| |
Collapse
|
22
|
Miyake T, Parsons SJ. Functional interactions between Choline kinase α, epidermal growth factor receptor and c-Src in breast cancer cell proliferation. Oncogene 2011; 31:1431-41. [PMID: 21822308 PMCID: PMC3213328 DOI: 10.1038/onc.2011.332] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epidermal growth factor receptor (EGFR) family members and c-Src are co-overexpressed in many cancers. The synergistic effect of EGFR and c-Src has been shown in the tumorigenesis of breast and other cancers. Reported mechanisms of synergy include transcriptional regulation by STAT5b and the regulation of cellular ATP production by mitochondrial protein COX II. Here, we report a new mechanism of EGFR-c-Src synergy through choline kinase α (CHKA). The first enzyme of the phosphatidyl choline production pathway, CHKA, is overexpressed in many cancers, and the product of the enzyme, phosphocholine, is also increased in tumor cells. In this report, we find that CHKA forms a complex with EGFR in a c-Src-dependent manner. Endogenous CHKA and EGFR co-immunoprecipitated from a variety of breast cancer cell lines and immortalized mammary epithelial cells. CHKA interacted with the EGFR kinase domain upon c-Src co-overexpression and was phosphorylated in a c-Src-dependent manner on Y197 and Y333. Overexpression of EGFR and c-Src increased total cellular activity and protein levels of CHKA. Mutation of CHKA Y197 and Y333 reduced complex formation, EGFR-dependent activation of CHKA enzyme activity and epidermal growth factor (EGF)-dependent DNA synthesis. Furthermore, small interfering RNA-mediated knockdown of CHKA in MCF-7 and MCF-10A cells reduced EGF-dependent cell proliferation. Together, these results strongly implicate a new c-Src-dependent link between CHKA and EGFR, which contributes to the regulation of cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- T Miyake
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, VA, USA
| | | |
Collapse
|
23
|
Podo F, Canevari S, Canese R, Pisanu ME, Ricci A, Iorio E. MR evaluation of response to targeted treatment in cancer cells. NMR IN BIOMEDICINE 2011; 24:648-672. [PMID: 21387442 DOI: 10.1002/nbm.1658] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 11/22/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
The development of molecular technologies, together with progressive sophistication of molecular imaging methods, has allowed the further elucidation of the multiple mutations and dysregulatory effects of pathways leading to oncogenesis. Acting against these pathways by specifically targeted agents represents a major challenge for current research efforts in oncology. As conventional anatomically based pharmacological endpoints may be inadequate to monitor the tumor response to these targeted treatments, the identification and use of more appropriate, noninvasive pharmacodynamic biomarkers appear to be crucial to optimize the design, dosage and schedule of these novel therapeutic approaches. An aberrant choline phospholipid metabolism and enhanced flux of glucose derivatives through glycolysis, which sustain the redirection of mitochondrial ATP to glucose phosphorylation, are two major hallmarks of cancer cells. This review focuses on the changes detected in these pathways by MRS in response to targeted treatments. The progress and limitations of our present understanding of the mechanisms underlying MRS-detected phosphocholine accumulation in cancer cells are discussed in the light of gene and protein expression and the activation of different enzymes involved in phosphatidylcholine biosynthesis and catabolism. Examples of alterations induced in the MRS choline profile of cells exposed to different agents or to tumor environmental factors are presented. Current studies aimed at the identification in cancer cells of MRS-detected pharmacodynamic markers of therapies targeted against specific conditional or constitutive cell receptor stimulation are then reviewed. Finally, the perspectives of present efforts addressed to identify enzymes of the phosphatidylcholine cycle as possible novel targets for anticancer therapy are summarized.
Collapse
Affiliation(s)
- Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Ueland PM. Choline and betaine in health and disease. J Inherit Metab Dis 2011; 34:3-15. [PMID: 20446114 DOI: 10.1007/s10545-010-9088-4] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
Choline is an essential nutrient, but is also formed by de novo synthesis. Choline and its derivatives serve as components of structural lipoproteins, blood and membrane lipids, and as a precursor of the neurotransmitter acetylcholine. Pre-and postnatal choline availability is important for neurodevelopment in rodents. Choline is oxidized to betaine that serves as an osmoregulator and is a substrate in the betaine-homocysteine methyltransferase reaction, which links choline and betaine to the folate-dependent one-carbon metabolism. Choline and betaine are important sources of one-carbon units, in particular, during folate deficiency. Choline or betaine supplementation in humans reduces concentration of total homocysteine (tHcy), and plasma betaine is a strong predictor of plasma tHcy in individuals with low plasma concentration of folate and other B vitamins (B₂, B₆, and B₁₂) in combination TT genotype of the methylenetetrahydrofolate reductase 677 C->T polymorphism. The link to one-carbon metabolism and the recent availability of food composition data have motivated studies on choline and betaine as risk factors of chronic diseases previously studied in relation to folate and homocysteine status. High intake and plasma level of choline in the mother seems to afford reduced risk of neural tube defects. Intake of choline and betaine shows no consistent relation to cancer or cardiovascular risk or risk factors, whereas an unfavorable cardiovascular risk factor profile was associated with high choline and low betaine concentrations in plasma. Thus, choline and betaine showed opposite relations with key components of metabolic syndrome, suggesting a disruption of mitochondrial choline oxidation to betaine as part of the mitochondrial dysfunction in metabolic syndrome.
Collapse
Affiliation(s)
- Per Magne Ueland
- Section for Pharmacology, Institute of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
25
|
Cuperlovic-Culf M, Chute IC, Culf AS, Touaibia M, Ghosh A, Griffiths S, Tulpan D, Léger S, Belkaid A, Surette ME, Ouellette RJ. 1H NMR metabolomics combined with gene expression analysis for the determination of major metabolic differences between subtypes of breast cell lines. Chem Sci 2011. [DOI: 10.1039/c1sc00382h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
26
|
Smith TAD. Towards detecting the HER-2 receptor and metabolic changes induced by HER-2-targeted therapies using medical imaging. Br J Radiol 2010; 83:638-44. [PMID: 20675463 DOI: 10.1259/bjr/31053812] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
HER-2/neu (a receptor for human epidermal growth factor) is involved in cell survival, proliferation, angiogenesis and invasiveness. It is overexpressed in about 25% of breast cancers. Overexpression of HER-2 is associated with response to the anti-HER-2 antibody trastuzumab (herceptin). However, HER-2 expression can be heterogeneous within the primary tumour and can also exhibit discordant expression between a primary tumour and its metastases, bringing into question the practice of HER-2 screening to determine whether a patient is a candidate for trastuzumab using material obtained only from the primary tumour. Medical imaging modalities using HER-2-targeted tracers (or contrast agents) facilitate a global approach to the determination of HER-2 expression across all detectable tumour lesions, and could provide a more reliable indication of the patient's likely response to trastuzumab treatment. Here, I review the development and pre-clinical (and occasional clinical) assessment of HER-2-targeted tracers. I discuss studies in which established imaging tracers, such as (11)C-choline, have been used to determine response to trastuzumab in a range of medical imaging modalities, including positron emission tomography (PET), single photon emission tomography (SPECT), MRI and optical imaging.
Collapse
Affiliation(s)
- T A D Smith
- School of Medical Sciences, Biomedical Physics Building, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
27
|
Borgan E, Sitter B, Lingjærde OC, Johnsen H, Lundgren S, Bathen TF, Sørlie T, Børresen-Dale AL, Gribbestad IS. Merging transcriptomics and metabolomics--advances in breast cancer profiling. BMC Cancer 2010; 10:628. [PMID: 21080935 PMCID: PMC2996395 DOI: 10.1186/1471-2407-10-628] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 11/16/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Combining gene expression microarrays and high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) of the same tissue samples enables comparison of the transcriptional and metabolic profiles of breast cancer. The aim of this study was to explore the potential of combining these two different types of information. METHODS Breast cancer tissue from 46 patients was analyzed by HR MAS MRS followed by gene expression microarrays. Two strategies were used to combine the gene expression and metabolic data; first using multivariate analyses to identify different groups based on gene expression and metabolic data; second correlating levels of specific metabolites to transcripts to suggest new hypotheses of connections between metabolite levels and the underlying biological processes. A parallel study was designed to address experimental issues of combining microarrays and HR MAS MRS. RESULTS In the first strategy, using the microarray data and previously reported molecular classification methods, the majority of samples were classified as luminal A. Three subgroups of luminal A tumors were identified based on hierarchical clustering of the HR MAS MR spectra. The samples in one of the subgroups, designated A2, showed significantly lower glucose and higher alanine levels than the other luminal A samples, suggesting a higher glycolytic activity in these tumors. This group was also enriched for genes annotated with Gene Ontology (GO) terms related to cell cycle and DNA repair. In the second strategy, the correlations between concentrations of myo-inositol, glycine, taurine, glycerophosphocholine, phosphocholine, choline and creatine and all transcripts in the filtered microarray data were investigated. GO-terms related to the extracellular matrix were enriched among the genes that correlated the most to myo-inositol and taurine, while cell cycle related GO-terms were enriched for the genes that correlated the most to choline. Additionally, a subset of transcripts was identified to have slightly altered expression after HR MAS MRS and was therefore removed from all other analyses. CONCLUSIONS Combining transcriptional and metabolic data from the same breast carcinoma sample is feasible and may contribute to a more refined subclassification of breast cancers as well as reveal relations between metabolic and transcriptional levels. See Commentary: http://www.biomedcentral.com/1741-7015/8/73.
Collapse
Affiliation(s)
- Eldrid Borgan
- Department of Genetics, Institute for Cancer Research, Division of Surgery and Cancer, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
1H-NMR-based metabolomics of tumor tissue for the metabolic characterization of rat hepatocellular carcinoma formation and metastasis. Tumour Biol 2010; 32:223-31. [DOI: 10.1007/s13277-010-0116-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 09/21/2010] [Indexed: 12/12/2022] Open
|
29
|
Moestue SA, Borgan E, Huuse EM, Lindholm EM, Sitter B, Børresen-Dale AL, Engebraaten O, Maelandsmo GM, Gribbestad IS. Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models. BMC Cancer 2010; 10:433. [PMID: 20716336 PMCID: PMC2931488 DOI: 10.1186/1471-2407-10-433] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 08/17/2010] [Indexed: 01/05/2023] Open
Abstract
Background Increased concentrations of choline-containing compounds are frequently observed in breast carcinomas, and may serve as biomarkers for both diagnostic and treatment monitoring purposes. However, underlying mechanisms for the abnormal choline metabolism are poorly understood. Methods The concentrations of choline-derived metabolites were determined in xenografted primary human breast carcinomas, representing basal-like and luminal-like subtypes. Quantification of metabolites in fresh frozen tissue was performed using high-resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS). The expression of genes involved in phosphatidylcholine (PtdCho) metabolism was retrieved from whole genome expression microarray analyses. The metabolite profiles from xenografts were compared with profiles from human breast cancer, sampled from patients with estrogen/progesterone receptor positive (ER+/PgR+) or triple negative (ER-/PgR-/HER2-) breast cancer. Results In basal-like xenografts, glycerophosphocholine (GPC) concentrations were higher than phosphocholine (PCho) concentrations, whereas this pattern was reversed in luminal-like xenografts. These differences may be explained by lower choline kinase (CHKA, CHKB) expression as well as higher PtdCho degradation mediated by higher expression of phospholipase A2 group 4A (PLA2G4A) and phospholipase B1 (PLB1) in the basal-like model. The glycine concentration was higher in the basal-like model. Although glycine could be derived from energy metabolism pathways, the gene expression data suggested a metabolic shift from PtdCho synthesis to glycine formation in basal-like xenografts. In agreement with results from the xenograft models, tissue samples from triple negative breast carcinomas had higher GPC/PCho ratio than samples from ER+/PgR+ carcinomas, suggesting that the choline metabolism in the experimental models is representative for luminal-like and basal-like human breast cancer. Conclusions The differences in choline metabolite concentrations corresponded well with differences in gene expression, demonstrating distinct metabolic profiles in the xenograft models representing basal-like and luminal-like breast cancer. The same characteristics of choline metabolite profiles were also observed in patient material from ER+/PgR+ and triple-negative breast cancer, suggesting that the xenografts are relevant model systems for studies of choline metabolism in luminal-like and basal-like breast cancer.
Collapse
Affiliation(s)
- Siver A Moestue
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Monitoring the Effect of Docetaxel Treatment in MCF7 Xenografts Using Multimodal In Vivo and Ex Vivo Magnetic Resonance Methods, Histopathology, and Gene Expression. Transl Oncol 2010; 3:252-63. [PMID: 20689767 DOI: 10.1593/tlo.09322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/17/2010] [Accepted: 03/22/2010] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to evaluate the sensitivity of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), diffusion-weighted (DW)-MRI, in vivo MR spectroscopy (MRS), and ex vivo high-resolution magic angle spinning (HR MAS) MRS for the detection of early treatment effects after docetaxel administration. Docetaxel is an antitumor agent that leads to mitotic arrest, apoptosis, and mitotic catastrophe cell death. Gene expression analysis was performed to detect altered regulation in gene expression pathways related to docetaxel treatment effects. Histopathology was used as a measure of alterations in apoptosis and proliferation due to docetaxel. Experiments were performed using MCF7 mouse xenografts, randomized into a docetaxel (30 mg/kg) treatment group and a control group given saline. MRI/MRS was performed 1 day before treatment and 1, 3, and 6 days after treatment. Parametric images of the extracellular extravascular volume fraction (v(e)) transfer constant (K(trans)) and the apparent diffusion coefficient (ADC) were calculated from the DCE-MRI and DW-MRI data. Biopsies were analyzed by HR MAS MRS, and histopathology and gene expression profiles were determined (Illumina). A significant increase in the ADC 3 and 6 days after treatment and a significant decrease in total choline and a higher v(e) were found in treated tumors 6 days after treatment. No significant difference was found in the K(trans) between the two groups. Our results show that docetaxel induces apoptosis and decreases proliferation in MCF7 xenografts. Further, these phenomena can be monitored by in vivo MRS, DW-MRI, and gene expression.
Collapse
|
31
|
Shah T, Wildes F, Penet MF, Winnard PT, Glunde K, Artemov D, Ackerstaff E, Gimi B, Kakkad S, Raman V, Bhujwalla ZM. Choline kinase overexpression increases invasiveness and drug resistance of human breast cancer cells. NMR IN BIOMEDICINE 2010; 23:633-42. [PMID: 20623626 PMCID: PMC3115627 DOI: 10.1002/nbm.1510] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A direct correlation exists between increased choline kinase (Chk) expression, and the resulting increase of phosphocholine levels, and histological tumor grade. To better understand the function of Chk and choline phospholipid metabolism in breast cancer we have stably overexpressed one of the two isoforms of Chk-alpha known to be upregulated in malignant cells, in non-invasive MCF-7 human breast cancer cells. Dynamic tracking of cell invasion and cell metabolism were studied with a magnetic resonance (MR) compatible cell perfusion assay. The MR based invasion assay demonstrated that MCF-7 cells overexpressing Chk-alpha (MCF-7-Chk) exhibited an increase of invasion relative to control MCF-7 cells (0.84 vs 0.3). Proton MR spectroscopy studies showed significantly higher phosphocholine and elevated triglyceride signals in Chk overexpressing clones compared to control cells. A test of drug resistance in MCF-7-Chk cells revealed that these cells had an increased resistance to 5-fluorouracil and higher expression of thymidylate synthase compared to control MCF-7 cells. To further characterize increased drug resistance in these cells, we performed rhodamine-123 efflux studies to evaluate drug efflux pumps. MCF-7-Chk cells effluxed twice as much rhodamine-123 compared to MCF-7 cells. Chk-alpha overexpression resulted in MCF-7 human breast cancer cells acquiring an increasingly aggressive phenotype, supporting the role of Chk-alpha in mediating invasion and drug resistance, and the use of phosphocholine as a biomarker of aggressive breast cancers.
Collapse
Affiliation(s)
- Tariq Shah
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Flonne Wildes
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Marie-France Penet
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Paul T. Winnard
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Kristine Glunde
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Dmitri Artemov
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ellen Ackerstaff
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- Memorial Sloan-Kettering Cancer Center 1275 York Ave., New York, NY
| | - Barjor Gimi
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- 708 Vail, Dartmouth Medical School, Hanover, NH, 03755
| | - Samata Kakkad
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Venu Raman
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Zaver M. Bhujwalla
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- Correspondence to: Z. M. Bhujwalla, Department of Radiology, The Johns Hopkins University School of Medicine, 208C Traylor Bldg, 720 Rutland Ave, Baltimore, MD 21205, USA.,
| |
Collapse
|
32
|
Tafreshi NK, Kumar V, Morse DL, Gatenby RA. Molecular and Functional Imaging of Breast Cancer. Cancer Control 2010; 17:143-55. [DOI: 10.1177/107327481001700302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Significant efforts have been directed toward developing and enhancing imaging methods for the early detection, diagnosis, and characterization of small breast tumors. Molecular and functional imaging sets the stage for enhancement of current methodology. Methods Current imaging modalities are described based on the molecular characteristics of normal and malignant tissue. New molecular imaging methods that have the potential for clinical use are also discussed. Results: Dynamic contrast-enhanced magnetic resonance imaging is more sensitive than mammography in BRCA1 carriers. It is used in screening and in the early evaluation of neoadjuvant therapy. Positron emission mammography is 91% sensitive and 93% specific in detecting primary breast cancers. Sentinel node scintigraphy is a key component of axillary lymph node evaluation. Other imaging modalities being studied include Tc99m sestamibi, radiolabeled thymidine or uridine, estrogen receptor imaging, magnetic resonance spectroscopy, and diffusion magnetic resonance imaging. Conclusions Molecular and functional imaging of the breast will likely alter clinical practice in diagnosing and staging primary breast cancer and assessing response to therapy since it will provide earlier information regarding the underlying biology of individual breast cancers, tumor stage, potential treatment strategies, and biomarkers for early evaluation of treatment effects.
Collapse
Affiliation(s)
| | - Virendra Kumar
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - David L. Morse
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | |
Collapse
|
33
|
Iorio E, Ricci A, Bagnoli M, Pisanu ME, Castellano G, Di Vito M, Venturini E, Glunde K, Bhujwalla ZM, Mezzanzanica D, Canevari S, Podo F. Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells. Cancer Res 2010; 70:2126-35. [PMID: 20179205 DOI: 10.1158/0008-5472.can-09-3833] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered phosphatidylcholine (PC) metabolism in epithelial ovarian cancer (EOC) could provide choline-based imaging approaches as powerful tools to improve diagnosis and identify new therapeutic targets. The increase in the major choline-containing metabolite phosphocholine (PCho) in EOC compared with normal and nontumoral immortalized counterparts (EONT) may derive from (a) enhanced choline transport and choline kinase (ChoK)-mediated phosphorylation, (b) increased PC-specific phospholipase C (PC-plc) activity, and (c) increased intracellular choline production by PC deacylation plus glycerophosphocholine-phosphodiesterase (GPC-pd) or by phospholipase D (pld)-mediated PC catabolism followed by choline phosphorylation. Biochemical, protein, and mRNA expression analyses showed that the most relevant changes in EOC cells were (a) 12-fold to 25-fold ChoK activation, consistent with higher protein content and increased ChoKalpha (but not ChoKbeta) mRNA expression levels; and (b) 5-fold to 17-fold PC-plc activation, consistent with higher, previously reported, protein expression. PC-plc inhibition by tricyclodecan-9-yl-potassium xanthate (D609) in OVCAR3 and SKOV3 cancer cells induced a 30% to 40% reduction of PCho content and blocked cell proliferation. More limited and variable sources of PCho could derive, in some EOC cells, from 2-fold to 4-fold activation of pld or GPC-pd. Phospholipase A2 activity and isoform expression levels were lower or unchanged in EOC compared with EONT cells. Increased ChoKalpha mRNA, as well as ChoK and PC-plc protein expression, were also detected in surgical specimens isolated from patients with EOC. Overall, we showed that the elevated PCho pool detected in EOC cells primarily resulted from upregulation/activation of ChoK and PC-plc involved in PC biosynthesis and degradation, respectively.
Collapse
Affiliation(s)
- Egidio Iorio
- Department of Cell Biology and Neurosciences, Section of Molecular and Cellular Imaging, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jensen LR, Huuse EM, Bathen TF, Goa PE, Bofin AM, Pedersen TB, Lundgren S, Gribbestad IS. Assessment of early docetaxel response in an experimental model of human breast cancer using DCE-MRI, ex vivo HR MAS, and in vivo 1H MRS. NMR IN BIOMEDICINE 2010; 23:56-65. [PMID: 19650073 DOI: 10.1002/nbm.1426] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The purpose of this study was to evaluate the use of dynamic contrast-enhanced (DCE) MRI, in vivo (1)H MRS and ex vivo high resolution magic angle spinning (HR MAS) MRS of tissue samples as methods to detect early treatment effects of docetaxel in a breast cancer xenograft model (MCF-7) in mice. MCF-7 cells were implanted subcutaneously in athymic mice and treated with docetaxel (20, 30, and 40 mg/kg) or saline six weeks later. DCE-MRI and in vivo (1)H MRS were performed on a 7 T MR system three days after treatment. The dynamic images were used as input for a two-compartment model, yielding the vascular parameters K(trans) and v(e). HR MAS MRS, histology, and immunohistochemical staining for proliferation (Ki-67), apoptosis (M30 cytodeath), and vascular/endothelial cells (CD31) were performed on excised tumor tissue. Both in vivo spectra and HR MAS spectra were used as input for multivariate analysis (principal component analysis (PCA) and partial least squares regression analysis (PLS)) to compare controls to treated tumors. Tumor growth was suppressed in docetaxel-treated mice compared to the controls. The anti-tumor effect led to an increase in K(trans) and v(e) values in all the treated groups. Furthermore, in vivo MRS and HR MAS MRS revealed a significant decrease in choline metabolite levels for the treated groups, in accordance with reduced proliferative index as seen on Ki-67 stained sections. In this study DCE-MRI, in vivo MRS and ex vivo HR MAS MRS have been used to demonstrate that docetaxel treatment of a human breast cancer xenograft model results in changes in the vascular dynamics and metabolic profile of the tumors. This indicates that these MR methods could be used to monitor intra-tumoral treatment effects.
Collapse
Affiliation(s)
- Line R Jensen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Rodent rhabdomyosarcoma: comparison between total choline concentration at H-MRS and [18F]-fluoromethylcholine uptake at PET using accurate methods for collecting data. Mol Imaging Biol 2009; 12:415-23. [PMID: 19937391 DOI: 10.1007/s11307-009-0283-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/18/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE To compare choline concentration/amount at proton magnetic resonance spectroscopy (H-MRS) and [18F]-fluoromethylcholine (FCH) uptake at positron emission tomography (PET) in a tumour animal model. PROCEDURES Twenty-two rats bearing grafted syngenic rhabdomyosarcoma in both thighs were examined on a 3T MR system and on a small animal PET system. Total choline concentration was measured on proton MR spectra using a so-called 'best internal fitting' volume of interest. Choline uptake was expressed as mean and maximum standardized uptake value (SUV and SUVmax, respectively) and as the percent of injected dose (%ID) after tumour delineation on fused PET-MR images. Data sets were displayed on standard scatter plots. RESULTS Thirty-six tumours were available for analysis. The area under the curve of the 3.2 ppm choline peak ranged from 69 to 476 (mean, 192) in arbitrary units. Mean SUV values ranged from 0.05 to 0.49 (mean, 0.19) and the %ID from 0.05 to 2.28 (mean, 0.54). Scatter plots failed to reveal quantitative relationship between choline concentration and uptake. Empirically data-driven cut-off lines applied to choline amount (choline concentration x tumour volume) versus choline uptake suggested a paradoxically negative relationship. CONCLUSION Total choline concentration did not correlate with FCH uptake in a tumour experimental model. A negative feedback of high values of total choline amount on cellular FCH uptake seemed to be present.
Collapse
|
36
|
Klawitter J, Kominsky DJ, Brown JL, Klawitter J, Christians U, Leibfritz D, Melo JV, Eckhardt SG, Serkova NJ. Metabolic characteristics of imatinib resistance in chronic myeloid leukaemia cells. Br J Pharmacol 2009; 158:588-600. [PMID: 19663881 DOI: 10.1111/j.1476-5381.2009.00345.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Early detection of resistance development is crucial for imatinib-based treatment in chronic myeloid leukaemia (CML) patients. We aimed to distinguish metabolic markers of cell resistance to imatinib. EXPERIMENTAL APPROACH Two human imatinib-sensitive CML cell lines: LAMA84-s and K562-s, and their resistant counterparts: LAMA84-r and K562-r (both resistant to 1 microM imatinib), and K562-R (5 microM) were analysed by nuclear magnetic resonance spectroscopy to assess global metabolic profiling, including energy state, glucose and phospholipid metabolism. KEY RESULTS We found, by Western blotting and flow cytometry, that the levels of Bcr-Abl tyrosine kinase and multi-drug resistance p-glycoprotein were inconsistent among resistant clones. On the other hand, phospholipid metabolism and lactate production were highly predictive for cell response to imatinib. As previously reported, sensitive cells showed significantly decreased glycolytic activity (lactate) and phospholipid synthesis (phosphocholine) as well as increased phospholipid catabolism (glycerophosphocholine) after 24 h of 1 microM imatinib treatment, which correlated with inhibition of cell proliferation and induction of apoptosis. In contrast to their sensitive counterparts, the K562-r, K562-R and LAMA84-r maintained increased phospholipid synthesis and glycolytic lactate production in the presence of 1 microM (K562-r and LAMA84-r) and 5 microM (K562-R) imatinib. CONCLUSIONS AND IMPLICATIONS Specific metabolic markers for early detection of imatinib resistance, including increased glycolytic activity and phospholipid turnover, can be identified in resistant clones. Once validated in human isolated leukocytes, they may be used to monitor the responsiveness of CML patients to treatment.
Collapse
Affiliation(s)
- Jelena Klawitter
- Department of Anesthesiology, University of Colorado Health Sciences Center, Denver, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|