1
|
Yıldız Y, Ardıçlı D, Göçmen R, Yalnızoğlu D, Topçu M, Coşkun T, Tokatlı A, Haliloğlu G. Electro-clinical features and long-term outcomes in guanidinoacetate methyltransferase (GAMT) deficiency. Eur J Paediatr Neurol 2024; 49:66-72. [PMID: 38394710 DOI: 10.1016/j.ejpn.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE To evaluate clinical characteristics and long-term outcomes in patients with guanidinoacetate methyltransferase (GAMT) deficiency with a special emphasis on seizures and electroencephalography (EEG) findings. METHODS We retrospectively analyzed the clinical and molecular characteristics, seizure types, EEG findings, neuroimaging features, clinical severity scores, and treatment outcomes in six patients diagnosed with GAMT deficiency. RESULTS Median age at presentation and diagnosis were 11.5 months (8-12 months) and 63 months (18 months -11 years), respectively. Median duration of follow-up was 14 years. Global developmental delay (6/6) and seizures (5/6) were the most common symptoms. Four patients presented with febrile seizures. The age at seizure-onset ranged between 8 months and 4 years. Most common seizure types were generalized tonic seizures (n = 4) and motor seizures resulting in drop attacks (n = 3). Slow background activity (n = 5) and generalized irregular sharp and slow waves (n = 3) were the most common EEG findings. Burst-suppression and electrical status epilepticus during slow-wave sleep (ESES) pattern was present in one patient. Three of six patients had drug-resistant epilepsy. Post-treatment clinical severity scores showed improvement regarding movement disorders and epilepsy. All patients were seizure-free in the follow-up. CONCLUSIONS Epilepsy is one of the main symptoms in GAMT deficiency with various seizure types and non-specific EEG findings. Early diagnosis and initiation of treatment are crucial for better seizure and cognitive outcomes. This long-term follow up study highlights to include cerebral creatine deficiency syndromes in the differential diagnosis of patients with global developmental delay and epilepsy and describes the course under treatment.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Turkey.
| | - Didem Ardıçlı
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey
| | - Rahşan Göçmen
- Hacettepe University Faculty of Medicine, Department of Radiology, Turkey.
| | - Dilek Yalnızoğlu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey.
| | - Meral Topçu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey
| | - Turgay Coşkun
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Turkey
| | - Ayşegül Tokatlı
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Turkey.
| | - Göknur Haliloğlu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey.
| |
Collapse
|
2
|
Libell JL, Lakhani DA, Balar AB, Khan M, Carpenter JS, Joseph JT. Guanidinoacetate N-methyltransferase deficiency: Case report and brief review of the literature. Radiol Case Rep 2023; 18:4331-4337. [PMID: 37808418 PMCID: PMC10550807 DOI: 10.1016/j.radcr.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Guanidinoacetate N-methyltransferase (GAMT) deficiency is a rare autosomal recessive disorder characterized by a decrease in creatine synthesis, resulting in cerebral creatine deficiency syndrome (CCDS). GAMT deficiency is caused by mutations in the GAMT gene located on chromosome 19, which impairs the conversion of guanidinoacetic acid (GAA) to creatine. The resulting accumulation of the toxic metabolite GAA and the lack of creatine lead to various symptoms, including global developmental delays, behavioral issues, and epilepsy. The gold standard for diagnosis of GAMT deficiency is genetic testing. Treatment options for GAMT deficiency include creatine supplementation, ornithine supplementation, arginine restriction, and sodium benzoate supplementation. These treatment options have been shown to improve movement disorders and epileptic symptoms, but their impact on intellectual and speech development is limited. Early intervention has shown promising results in normalizing neurological development in a minor subgroup of patients. Therefore, there is a growing need for newborn screening techniques to detect GAMT deficiency early and prevent permanent neurological delays. Here we report a case of GAMT deficiency with emphasis on imaging presentation. Our case showed reduced brain parenchyma creatine stores on MR Spectroscopy, which may provide an avenue to aid in early diagnosis.
Collapse
Affiliation(s)
- Joshua L. Libell
- School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Dhairya A. Lakhani
- Department of Radiology, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26506, USA
| | - Aneri B. Balar
- Department of Radiology, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26506, USA
| | - Musharaf Khan
- Department of Radiology, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26506, USA
| | - Jeffrey S. Carpenter
- Department of Radiology, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26506, USA
| | - Joe T. Joseph
- Department of Radiology, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26506, USA
| |
Collapse
|
3
|
Cannet C, Frauendienst-Egger G, Freisinger P, Götz H, Götz M, Himmelreich N, Kock V, Spraul M, Bus C, Biskup S, Trefz F. Ex vivo proton spectroscopy ( 1 H-NMR) analysis of inborn errors of metabolism: Automatic and computer-assisted analyses. NMR IN BIOMEDICINE 2023; 36:e4853. [PMID: 36264537 DOI: 10.1002/nbm.4853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
There are about 1500 genetic metabolic diseases. A small number of treatable diseases are diagnosed by newborn screening programs, which are continually being developed. However, most diseases can only be diagnosed based on clinical symptoms or metabolic findings. The main biological fluids used are urine, plasma and, in special situations, cerebrospinal fluid. In contrast to commonly used methods such as gas chromatography and high performance liquid chromatography mass spectrometry, ex vivo proton spectroscopy (1 H-NMR) is not yet used in routine clinical practice, although it has been recommended for more than 30 years. Automatic analysis and improved NMR technology have also expanded the applications used for the diagnosis of inborn errors of metabolism. We provide a mini-overview of typical applications, especially in urine but also in plasma, used to diagnose common but also rare genetic metabolic diseases with 1 H-NMR. The use of computer-assisted diagnostic suggestions can facilitate interpretation of the profiles. In a proof of principle, to date, 182 reports of 59 different diseases and 500 reports of healthy children are stored. The percentage of correct automatic diagnoses was 74%. Using the same 1 H-NMR profile-targeted analysis, it is possible to apply an untargeted approach that distinguishes profile differences from healthy individuals. Thus, additional conditions such as lysosomal storage diseases or drug interferences are detectable. Furthermore, because 1 H-NMR is highly reproducible and can detect a variety of different substance categories, the metabolomic approach is suitable for monitoring patient treatment and revealing additional factors such as nutrition and microbiome metabolism. Besides the progress in analytical techniques, a multiomics approach is most effective to combine metabolomics with, for example, whole exome sequencing, to also diagnose patients with nondetectable metabolic abnormalities in biological fluids. In this mini review we also provide our own data to demonstrate the role of NMR in a multiomics platform in the field of inborn errors of metabolism.
Collapse
Affiliation(s)
| | - Georg Frauendienst-Egger
- Department of Pediatrics, Reutlingen, Klinikum Reutlingen, School of Medicine, University of Tuebingen, Reutlingen, Germany
| | - Peter Freisinger
- Department of Pediatrics, Reutlingen, Klinikum Reutlingen, School of Medicine, University of Tuebingen, Reutlingen, Germany
| | | | | | | | - Vanessa Kock
- Department of Pediatrics, Reutlingen, Klinikum Reutlingen, School of Medicine, University of Tuebingen, Reutlingen, Germany
| | | | - Christine Bus
- CEGAT, Tübingen, Germany and Human Genetics Institute, Tübingen, Germany
| | - Saskia Biskup
- CEGAT, Tübingen, Germany and Human Genetics Institute, Tübingen, Germany
| | | |
Collapse
|
4
|
Modi BP, Khan HN, van der Lee R, Wasim M, Haaxma CA, Richmond PA, Drögemöller B, Shah S, Salomons G, van der Kloet FM, Vaz FM, van der Crabben SN, Ross CJ, Wasserman WW, van Karnebeek CD, Awan FR. Adult GAMT deficiency: A literature review and report of two siblings. Mol Genet Metab Rep 2021; 27:100761. [PMID: 33996490 PMCID: PMC8093930 DOI: 10.1016/j.ymgmr.2021.100761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/02/2022] Open
Abstract
Guanidinoacetate methyltransferase (GAMT) deficiency is a creatine deficiency disorder and an inborn error of metabolism presenting with progressive intellectual and neurological deterioration. As most cases are identified and treated in early childhood, adult phenotypes that can help in understanding the natural history of the disorder are rare. We describe two adult cases of GAMT deficiency from a consanguineous family in Pakistan that presented with a history of global developmental delay, cognitive impairments, excessive drooling, behavioral abnormalities, contractures and apparent bone deformities initially presumed to be the reason for abnormal gait. Exome sequencing identified a homozygous nonsense variant in GAMT: NM_000156.5:c.134G>A (p.Trp45*). We also performed a literature review and compiled the genetic and clinical characteristics of all adult cases of GAMT deficiency reported to date. When compared to the adult cases previously reported, the musculoskeletal phenotype and the rapidly progressive nature of neurological and motor decline seen in our patients is striking. This study presents an opportunity to gain insights into the adult presentation of GAMT deficiency and highlights the need for in-depth evaluation and reporting of clinical features to expand our understanding of the phenotypic spectrum.
Collapse
Affiliation(s)
- Bhavi P. Modi
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Correspondence to: B. P. Modi, University of British Columbia, BC Children's Hospital Research Institute, 938 W 28 Ave, Vancouver, BC V5Z 4H4, Canada.
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Charlotte A. Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Phillip A. Richmond
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Britt Drögemöller
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Suleman Shah
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Gajja Salomons
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Frans M. van der Kloet
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands
| | - Fred M. Vaz
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
- Dept. of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, the Netherlands
| | | | - Colin J. Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wyeth W. Wasserman
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Clara D.M. van Karnebeek
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, Netherlands
- Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
- United for Metabolic Diseases, the Netherlands
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Correspondence to: F. R. Awan, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan.
| |
Collapse
|
5
|
Szeri F, Lundkvist S, Donnelly S, Engelke UFH, Rhee K, Williams CJ, Sundberg JP, Wevers RA, Tomlinson RE, Jansen RS, van de Wetering K. The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP. PLoS Genet 2020; 16:e1008884. [PMID: 32639996 PMCID: PMC7371198 DOI: 10.1371/journal.pgen.1008884] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/20/2020] [Accepted: 05/25/2020] [Indexed: 01/23/2023] Open
Abstract
The membrane protein ANKH was known to prevent pathological mineralization of joints and was thought to export pyrophosphate (PPi) from cells. This did not explain, however, the presence of ANKH in tissues, such as brain, blood vessels and muscle. We now report that in cultured cells ANKH exports ATP, rather than PPi, and, unexpectedly, also citrate as a prominent metabolite. The extracellular ATP is rapidly converted into PPi, explaining the role of ANKH in preventing ankylosis. Mice lacking functional Ank (Ankank/ank mice) had plasma citrate concentrations that were 65% lower than those detected in wild type control animals. Consequently, citrate excretion via the urine was substantially reduced in Ankank/ank mice. Citrate was even undetectable in the urine of a human patient lacking functional ANKH. The hydroxyapatite of Ankank/ank mice contained dramatically reduced levels of both, citrate and PPi and displayed diminished strength. Our results show that ANKH is a critical contributor to extracellular citrate and PPi homeostasis and profoundly affects bone matrix composition and, consequently, bone quality.
Collapse
Affiliation(s)
- Flora Szeri
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Stefan Lundkvist
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sylvia Donnelly
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Udo F. H. Engelke
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kyu Rhee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Charlene J. Williams
- Cooper Medical School of Rowan University, Camden, New Jersey, United States of America
| | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Ron A. Wevers
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ryan E. Tomlinson
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Robert S. Jansen
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
6
|
Cuperlovic-Culf M, Badhwar A. Recent advances from metabolomics and lipidomics application in alzheimer's disease inspiring drug discovery. Expert Opin Drug Discov 2019; 15:319-331. [PMID: 31619081 DOI: 10.1080/17460441.2020.1674808] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Although age is a major risk factor for Alzheimer's disease (AD), it is not an inevitable consequence of aging nor is it exclusively an old-age disease. Several other major risk factors for AD are strongly associated with metabolism and include lack of exercise, obesity, diabetes, high blood pressure and cholesterol, over-consumption of alcohol and depression in addition to low educational level, social isolation, and cognitive inactivity. Approaches for Alzheimer prevention and treatment through manipulation of metabolism and utilization of active metabolites have great potential either as a primary or secondary treatment avenue or as a preventative strategy in high-risk individuals.Areas covered: This review outlines the current knowledge concerning the relationship between AD and metabolism and the novel treatments attempting to correct changes in AD patients determined through metabolomics or lipidomic analyses.Expert opinion: Metabolites are one of the main driving factors and indicators of AD and can offer many possible avenues for prevention and treatment. However, with the highly interconnected effects of metabolites and metabolism, as well as the many different routes for metabolism dysfunction, successful treatment would have to include the correction of metabolic errors as well as errors in transport and metabolite processing in order to affect and revert AD progression.
Collapse
Affiliation(s)
| | - Amanpreet Badhwar
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, Canada
| |
Collapse
|
7
|
Wanders RJA, Vaz FM, Ferdinandusse S, van Kuilenburg ABP, Kemp S, van Karnebeek CD, Waterham HR, Houtkooper RH. Translational Metabolism: A multidisciplinary approach towards precision diagnosis of inborn errors of metabolism in the omics era. J Inherit Metab Dis 2019; 42:197-208. [PMID: 30723938 DOI: 10.1002/jimd.12008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
The laboratory diagnosis of inborn errors of metabolism has been revolutionized in recent years, thanks to the amazing developments in the field of DNA sequencing including whole exome and whole genome sequencing (WES and WGS). Interpretation of the results coming from WES and/or WGS analysis is definitely not trivial especially since the biological relevance of many of the variants identified by WES and/or WGS, have not been tested experimentally and prediction programs like POLYPHEN-2 and SIFT are far from perfect. Correct interpretation of WES and/or WGS results can only be achieved by performing functional studies at multiple levels (different metabolomics platforms, enzymology, in vitro and in vivo flux analysis), often requires studies in model organisms like zebra fish, Caenorhabditis elegans, Saccharomyces cerevisiae, mutant mice and others, and also requires the input of many different disciplines to make this Translational Metabolism approach effective.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederic M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Clara D van Karnebeek
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Treatment outcome of twenty-two patients with guanidinoacetate methyltransferase deficiency: An international retrospective cohort study. Eur J Paediatr Neurol 2018; 22:369-379. [PMID: 29506905 DOI: 10.1016/j.ejpn.2018.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 11/23/2022]
Abstract
PURPOSE Guanidinoacetate methyltransferase (GAMT) deficiency is an autosomal recessive disorder caused by pathogenic variants in GAMT. Brain creatine depletion and guanidinoacetate accumulation cause developmental delay, seizures and movement disorder. Treatment consists of creatine, ornithine and arginine-restricted diet. We initiated an international treatment registry using Research Electronic Data Capture (REDCap) software to evaluate treatment outcome. METHODS Physicians completed an online REDCap questionnaire. Clinical severity score applied pre-treatment and on treatment. RESULTS There were 22 patients. All had developmental delay, 18 had seizures and 8 had movement disorder. Based on the clinical severity score, 5 patients had a severe, 14 patients had a moderate and 3 patients had a mild phenotype. All patients had pathogenic variants in GAMT. The phenotype ranged from mild to moderate in patients with the most common c.327G > A variant. The phenotype ranged from mild to severe in patients with truncating variants. All patients were on creatine, 18 patients were on ornithine and 15 patients were on arginine- or protein-restricted diet. Clinical severity score improved in 13 patients on treatment. Developmental delay improved in five patients. One patient achieved normal development. Eleven patients became seizure free. Movement disorder resolved in four patients. CONCLUSION In our small patient cohort, there seems to be no phenotype-genotype correlation. Creatine and ornithine and/or arginine- or protein-restricted diet were the most useful treatment to improve phenotype.
Collapse
|
9
|
Joncquel-Chevalier Curt M, Bout MA, Fontaine M, Kim I, Huet G, Bekri S, Morin G, Moortgat S, Moerman A, Cuisset JM, Cheillan D, Vamecq J. Functional assessment of creatine transporter in control and X-linked SLC6A8-deficient fibroblasts. Mol Genet Metab 2018; 123:463-471. [PMID: 29478817 DOI: 10.1016/j.ymgme.2018.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023]
Abstract
Creatine transporter is currently the focus of renewed interest with emerging roles in brain neurotransmission and physiology, and the bioenergetics of cancer metastases. We here report on amendments of a standard creatine uptake assay which might help clinical chemistry laboratories to extend their current range of measurements of creatine and metabolites in body fluids to functional enzyme explorations. In this respect, short incubation times and the use of a stable-isotope-labeled substrate (D3-creatine) preceded by a creatine wash-out step from cultured fibroblast cells by removal of fetal bovine serum (rich in creatine) from the incubation medium are recommended. Together, these measures decreased, by a first order of magnitude, creatine concentrations in the incubation medium at the start of creatine-uptake studies and allowed to functionally discriminate between 4 hemizygous male and 4 heterozygous female patients with X-linked SLC6A8 deficiency, and between this cohort of eight patients and controls. The functional assay corroborated genetic diagnosis of SLC6A8 deficiency. Gene anomalies in our small cohort included splicing site (c.912G > A [p.Ile260_Gln304del], c.778-2A > G and c.1495 + 2 T > G), substitution (c.407C > T) [p.Ala136Val] and deletion (c.635_636delAG [p.Glu212Valfs*84] and c.1324delC [p.Gln442Lysfs*21]) variants with reduced creatine transporter function validating their pathogenicity, including that of a previously unreported c.1324delC variant. The present assay adaptations provide an easy, reliable and discriminative manner for exploring creatine transporter activity and disease variations. It might apply to drug testing or other evaluations in the genetic and metabolic horizons covered by the emerging functions of creatine and its transporter, in a way, however, requiring and completed by additional studies on female patients and blood-brain barrier permeability properties of selected compounds. As a whole, the proposed assay of creatine transporter positively adds to currently existing measurements of this transporter activity, and determining on a large scale the extent of its exact suitability to detect female patients should condition in the future its transfer in clinical practice.
Collapse
MESH Headings
- Adolescent
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Brain Diseases, Metabolic, Inborn/pathology
- Case-Control Studies
- Child
- Child, Preschool
- Cohort Studies
- Creatine/deficiency
- Creatine/genetics
- Creatine/metabolism
- Female
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Follow-Up Studies
- Humans
- Infant
- Male
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/metabolism
- Mental Retardation, X-Linked/pathology
- Mutation
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/genetics
- Plasma Membrane Neurotransmitter Transport Proteins/metabolism
- Prognosis
Collapse
Affiliation(s)
- Marie Joncquel-Chevalier Curt
- Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU, Lille, France
| | - Marie-Adélaïde Bout
- Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU, Lille, France
| | - Monique Fontaine
- Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU, Lille, France
| | - Isabelle Kim
- Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU, Lille, France
| | - Guillemette Huet
- Cell Culture Department, Center of Biology-Pathology, CHRU Lille, F-59000 Lille, France
| | - Soumeya Bekri
- Inserm U1245, UNIROUEN, Normandie Univ, Normandy Centre for Genomic and Personalized Medicine, France.Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | - Gilles Morin
- EA 4666, Département de génétique, Université de Picardie-Jules-Verne, CHU d'Amiens, 80054 Amiens, France
| | - Stéphanie Moortgat
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Alexandre Moerman
- Service de Génétique Clinique Guy Fontaine, Hôpital Jeanne de Flandre, CHRU Lille, 59037 Lille, France
| | - Jean-Marie Cuisset
- Service de Neurologie Infantile, Hôpital Roger Salengro, CHRU Lille, 59037 Lille, France
| | - David Cheillan
- Hospices Civils de Lyon, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, 69677 Bron, France and Université de Lyon, INSERM U1060, CarMen; Medical Reference Center for Inherited Metabolic Diseases, Jeanne de Flandre Hospital, CHRU Lille, France
| | - Joseph Vamecq
- Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU, Lille, France; Inserm, Lille, France; Université de Lyon, INSERM U1060 CarMeN, Lyon, France.; Univ. Lille, RADEME - Maladies RAres du Développement et du Métabolisme : du phénotype au génotype et à la Fonction, Lille, EA 7364, France.
| |
Collapse
|
10
|
Alsady M, de Groot T, Kortenoeven MLA, Carmone C, Neijman K, Bekkenkamp-Grovenstein M, Engelke U, Wevers R, Baumgarten R, Korstanje R, Deen PMT. Lithium induces aerobic glycolysis and glutaminolysis in collecting duct principal cells. Am J Physiol Renal Physiol 2017; 314:F230-F239. [PMID: 29070571 DOI: 10.1152/ajprenal.00297.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lithium, given to bipolar disorder patients, causes nephrogenic diabetes insipidus (Li-NDI), a urinary-concentrating defect. Li-NDI occurs due to downregulation of principal cell AQP2 expression, which coincides with principal cell proliferation. The metabolic effect of lithium on principal cells, however, is unknown and investigated here. In earlier studies, we showed that the carbonic anhydrase (CA) inhibitor acetazolamide attenuated Li-induced downregulation in mouse-collecting duct (mpkCCD) cells. Of the eight CAs present in mpkCCD cells, siRNA and drug treatments showed that downregulation of CA9 and to some extent CA12 attenuated Li-induced AQP2 downregulation. Moreover, lithium induced cell proliferation and increased the secretion of lactate. Lithium also increased urinary lactate levels in wild-type mice that developed Li-NDI but not in lithium-treated mice lacking ENaC, the principal cell entry site for lithium. Inhibition of aerobic glycolysis with 2-deoxyglucose (2DG) attenuated lithium-induced AQP2 downregulation in mpkCCD cells but did not attenuate Li-NDI in mice. Interestingly, NMR analysis demonstrated that lithium also increased the urinary succinate, fumarate, citrate, and NH4+ levels, which were, in contrast to lactate, not decreased by 2DG. Together, our data reveal that lithium induces aerobic glycolysis and glutaminolysis in principal cells and that inhibition of aerobic glycolysis, but not the glutaminolysis, does not attenuate Li-NDI.
Collapse
Affiliation(s)
- Mohammad Alsady
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Theun de Groot
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands.,The Jackson Laboratory, Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory , Bar Harbor, Maine
| | | | - Claudia Carmone
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Kim Neijman
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands
| | | | - Udo Engelke
- Department of Laboratory Medicine, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Ron Wevers
- Department of Laboratory Medicine, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Ruben Baumgarten
- Society of Experimental Laboratory Medicine , Amersfoort , The Netherlands
| | - Ron Korstanje
- The Jackson Laboratory, Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory , Bar Harbor, Maine
| | | |
Collapse
|
11
|
Rackayova V, Cudalbu C, Pouwels PJW, Braissant O. Creatine in the central nervous system: From magnetic resonance spectroscopy to creatine deficiencies. Anal Biochem 2016; 529:144-157. [PMID: 27840053 DOI: 10.1016/j.ab.2016.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Creatine (Cr) is an important organic compound acting as intracellular high-energy phosphate shuttle and in energy storage. While located in most cells where it plays its main roles in energy metabolism and cytoprotection, Cr is highly concentrated in muscle and brain tissues, in which Cr also appears to act in osmoregulation and neurotransmission. This review discusses the basis of Cr metabolism, synthesis and transport within brain cells. The importance of Cr in brain function and the consequences of its impaired metabolism in primary and secondary Cr deficiencies are also discussed. Cr and phosphocreatine (PCr) in living systems can be well characterized using in vivo magnetic resonance spectroscopy (MRS). This review describes how 1H MRS allows the measurement of Cr and PCr, and how 31P MRS makes it possible to estimate the creatine kinase (CK) rate constant and so detect dynamic changes in the Cr/PCr/CK system. Absolute quantification by MRS using creatine as internal reference is also debated. The use of in vivo MRS to study brain Cr in a non-invasive way is presented, as well as its use in clinical and preclinical studies, including diagnosis and treatment follow-up in patients.
Collapse
Affiliation(s)
- Veronika Rackayova
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Petra J W Pouwels
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | - Olivier Braissant
- Service of Biomedicine, Neurometabolic Unit, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
12
|
Cao Z, Gordiichuk PI, Loos K, Sudhölter EJR, de Smet LCPM. The effect of guanidinium functionalization on the structural properties and anion affinity of polyelectrolyte multilayers. SOFT MATTER 2016; 12:1496-505. [PMID: 26658499 DOI: 10.1039/c5sm01655j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Poly(allylamine hydrochloride) (PAH) is chemically functionalized with guanidinium (Gu) moieties in water at room temperature. The resulting PAH-Gu is used to prepare polyelectrolyte multilayers (PEMs) with poly(sodium 4-styrene sulfonate) (PSS) via layer-by-layer deposition. The polyelectrolyte (PE) adsorption processes are monitored real-time by optical reflectometry and a quartz crystal microbalance with dissipation monitoring (QCM-D). Compared to the reference PSS/PAH PEMs, the PSS/PAH-Gu PEMs show a lower amount of deposited PE materials, lower wet thickness, higher stability under alkaline conditions and higher rigidity. These differences are rationalized by the additional Gu-SO3(-) interactions, also affecting the conformation of the PE chains in the PEM. The interactions between the PEMs and various sodium salts (NaCl, NaNO3, Na2SO4 and NaH2PO4) are also monitored using QCM-D. From the changes in the frequency, dissipation responses and supportive Reflection Absorption Infrared Spectroscopy it is concluded that Gu-functionalized PEMs absorb more H2PO4(-) compared to the Gu-free reference PEMs. This can be understood by strong interactions between Gu and H2PO4(-), the differences in the anion hydration energy and the anion valency. It is anticipated that compounds like the presented Gu-functionalized PE may facilitate the further development of H2PO4(-) sensors and ion separation/recovery systems.
Collapse
Affiliation(s)
- Zheng Cao
- Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Clark JF, Cecil KM. Diagnostic methods and recommendations for the cerebral creatine deficiency syndromes. Pediatr Res 2015; 77:398-405. [PMID: 25521922 DOI: 10.1038/pr.2014.203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/15/2014] [Indexed: 12/29/2022]
Abstract
Primary care pediatricians and a variety of specialist physicians strive to define an accurate diagnosis for children presenting with impairment of expressive speech and delay in achieving developmental milestones. Within the past two decades, a group of disorders featuring this presentation have been identified as cerebral creatine deficiency syndromes (CCDS). Patients with these disorders were initially discerned using proton magnetic resonance spectroscopy of the brain within a magnetic resonance imaging (MRI) examination. The objective of this review is to provide the clinician with an overview of the current information available on identifying and treating these conditions. We explain the salient features of creatine metabolism, synthesis, and transport required for normal development. We propose diagnostic approaches for confirming a CCDS diagnosis. Finally, we describe treatment approaches for managing patients with these conditions.
Collapse
Affiliation(s)
- Joseph F Clark
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kim M Cecil
- 1] Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio [2] Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio [3] Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio [4] Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
14
|
van de Kamp JM, Mancini GM, Salomons GS. X-linked creatine transporter deficiency: clinical aspects and pathophysiology. J Inherit Metab Dis 2014; 37:715-33. [PMID: 24789340 DOI: 10.1007/s10545-014-9713-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022]
Abstract
Creatine transporter deficiency was discovered in 2001 as an X-linked cause of intellectual disability characterized by cerebral creatine deficiency. This review describes the current knowledge regarding creatine metabolism, the creatine transporter and the clinical aspects of creatine transporter deficiency. The condition mainly affects the brain while other creatine requiring organs, such as the muscles, are relatively spared. Recent studies have provided strong evidence that creatine synthesis also occurs in the brain, leading to the intriguing question of why cerebral creatine is deficient in creatine transporter deficiency. The possible mechanisms explaining the cerebral creatine deficiency are discussed. The creatine transporter knockout mouse provides a good model to study the disease. Over the past years several treatment options have been explored but no treatment has been proven effective. Understanding the pathogenesis of creatine transporter deficiency is of paramount importance in the development of an effective treatment.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/drug therapy
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/pathology
- Animals
- Brain Diseases, Metabolic, Inborn/complications
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/physiopathology
- Creatine/deficiency
- Creatine/genetics
- Genetic Diseases, X-Linked/genetics
- Humans
- Intellectual Disability/etiology
- Intellectual Disability/genetics
- Membrane Transport Proteins/deficiency
- Membrane Transport Proteins/genetics
- Mental Retardation, X-Linked/complications
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/physiopathology
- Mice
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/genetics
Collapse
Affiliation(s)
- Jiddeke M van de Kamp
- Department of Clinical Genetics, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
15
|
Mercimek-Mahmutoglu S, Ndika J, Kanhai W, de Villemeur TB, Cheillan D, Christensen E, Dorison N, Hannig V, Hendriks Y, Hofstede FC, Lion-Francois L, Lund AM, Mundy H, Pitelet G, Raspall-Chaure M, Scott-Schwoerer JA, Szakszon K, Valayannopoulos V, Williams M, Salomons GS. Thirteen new patients with guanidinoacetate methyltransferase deficiency and functional characterization of nineteen novel missense variants in the GAMT gene. Hum Mutat 2014; 35:462-9. [PMID: 24415674 DOI: 10.1002/humu.22511] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/06/2014] [Indexed: 11/08/2022]
Abstract
Guanidinoacetate methyltransferase deficiency (GAMT-D) is an autosomal recessively inherited disorder of creatine biosynthesis. Creatine deficiency on cranial proton magnetic resonance spectroscopy, and elevated guanidinoacetate levels in body fluids are the biomarkers of GAMT-D. In 74 patients, 50 different mutations in the GAMT gene have been identified with missense variants being the most common. Clinical and biochemical features of the patients with missense variants were obtained from their physicians using a questionnaire. In 20 patients, 17 missense variants, 25% had a severe, 55% a moderate, and 20% a mild phenotype. The effect of these variants on GAMT enzyme activity was overexpressed using primary GAMT-D fibroblasts: 17 variants retained no significant activity and are therefore considered pathogenic. Two additional variants, c.22C>A (p.Pro8Thr) and c.79T>C (p.Tyr27His) (the latter detected in control cohorts) are in fact not pathogenic as these alleles restored GAMT enzyme activity, although both were predicted to be possibly damaging by in silico analysis. We report 13 new patients with GAMT-D, six novel mutations and functional analysis of 19 missense variants, all being included in our public LOVD database. Our functional assay is important for the confirmation of the pathogenicity of identified missense variants in the GAMT gene.
Collapse
Affiliation(s)
- Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada; Metabolic Laboratory, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sirrs SM, Lehman A, Stockler S, van Karnebeek CDM. Treatable inborn errors of metabolism causing neurological symptoms in adults. Mol Genet Metab 2013; 110:431-8. [PMID: 24427801 DOI: 10.1016/j.ymgme.2013.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The identification of inborn errors of metabolism (IEM) in adults presenting with a wide range of neurological symptoms is a relatively new field in medicine. We sought to identify which treatable IEM have been diagnosed for the first time in adults and generate a protocol for metabolic screening targeting those treatable disorders. METHODS Medline/Pubmed searches of English language literature limited to the adult age group were performed. Diseases identified through this search were then compared to previously published lists of treatable IEM in both adults and children. RESULTS 85% of the treatable conditions known to cause global developmental delay or intellectual disability in children had reports where the diagnosis of that IEM was made in one or more adult patients with neurological symptoms. Screening tests in blood, urine, CSF and MRI can detect most of these treatable conditions but the diagnostic accuracy of these screening tests in adults is not clear. CONCLUSION Treatable IEM need to be considered in the differential diagnosis of neurological symptoms in patients of any age.
Collapse
|
17
|
Robinette SL, Holmes E, Nicholson JK, Dumas ME. Genetic determinants of metabolism in health and disease: from biochemical genetics to genome-wide associations. Genome Med 2012; 4:30. [PMID: 22546284 PMCID: PMC3446258 DOI: 10.1186/gm329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increasingly sophisticated measurement technologies have allowed the fields of metabolomics and genomics to identify, in parallel, risk factors of disease; predict drug metabolism; and study metabolic and genetic diversity in large human populations. Yet the complementarity of these fields and the utility of studying genes and metabolites together is belied by the frequent separate, parallel applications of genomic and metabolomic analysis. Early attempts at identifying co-variation and interaction between genetic variants and downstream metabolic changes, including metabolic profiling of human Mendelian diseases and quantitative trait locus mapping of individual metabolite concentrations, have recently been extended by new experimental designs that search for a large number of gene-metabolite associations. These approaches, including metabolomic quantitiative trait locus mapping and metabolomic genome-wide association studies, involve the concurrent collection of both genomic and metabolomic data and a subsequent search for statistical associations between genetic polymorphisms and metabolite concentrations across a broad range of genes and metabolites. These new data-fusion techniques will have important consequences in functional genomics, microbial metagenomics and disease modeling, the early results and implications of which are reviewed.
Collapse
Affiliation(s)
- Steven L Robinette
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
18
|
Mencarelli MA, Tassini M, Pollazzon M, Vivi A, Calderisi M, Falco M, Fichera M, Monti L, Buoni S, Mari F, Engelke U, Wevers RA, Hayek J, Renieri A. Creatine transporter defect diagnosed by proton NMR spectroscopy in males with intellectual disability. Am J Med Genet A 2011; 155A:2446-52. [PMID: 21910234 PMCID: PMC3306553 DOI: 10.1002/ajmg.a.34208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/23/2011] [Indexed: 11/09/2022]
Abstract
Creatine deficiency syndrome due to mutations in X-linked SLC6A8 gene results in nonspecific intellectual disability (ID). Diagnosis cannot be established on clinical grounds and is often based on the assessment of brain creatine levels by magnetic resonance spectroscopy (MRS). Considering high costs of MRS and necessity of sedation, this technique cannot be used as a first level-screening test. Likewise, gene test analysis is time consuming and not easily accessible to all laboratories. In this article feasibility of urine analysis (creatine/creatinine (Cr/Crn) ratio) performed by nuclear magnetic resonance (NMR) as a first level-screening test is explored. Before running a systematic selection of cases a preliminary study for further molecular analysis is shown. NMR urine spectra (n = 1,347) of male patients with an ID without a clinically recognizable syndrome were measured. On the basis of abnormal Cr/Crn ratio, three patients with the highest values were selected for molecular analysis. A confirmatory second urine test was positive in two patients and diagnosis was further confirmed by a decreased brain creatine level and by SLC6A8 gene analysis. A de novo mutation was identified in one. Another patient inherited a novel mutation from the mother who also has a mild ID. A repeat urine test was negative in the third patient and accordingly creatine level in the brain and SLC6A8 gene analysis both gave a normal result. We conclude that Cr/Crn ratio measured by NMR for male patients represents a rapid and useful first level screening test preceding molecular analysis.
Collapse
|
19
|
Keun HC. Metabolic Profiling for Biomarker Discovery. Biomarkers 2010. [DOI: 10.1002/9780470918562.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Zannolli R, Buoni S, Tassini M, De Nicola A, Betti G, De Felice C, Orsi A, Varetti MC, Ferrara F, Messina M, Giannini C, Mohn A, Chiarelli F, Liberati M, Strambi M, Funghini S, Vivi A, Wevers RA, Hayek J. Silent increase of urinary ethylmalonic acid is an indicator of nonspecific brain dysfunction. NMR IN BIOMEDICINE 2010; 23:353-358. [PMID: 20187168 DOI: 10.1002/nbm.1468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/14/2009] [Accepted: 09/14/2009] [Indexed: 05/28/2023]
Abstract
Our aim was to compare urinary ethylmalonic acid (EMA) levels in subjects who had no apparent clinical reason to have increased levels of this substance but were suffering from non-specific CNS impairment, and healthy controls. Urinary EMA concentrations detected by (1)H-NMR spectroscopy were studied in 130 subjects with CNS impairment of unknown origin (with no definite diagnosis, no specific symptoms or signs, and normal common biochemical and metabolic screening results) and 130 age- and sex-matched healthy subjects. EMA levels exceeding two standard deviations (SD) above normal (i.e. 8.1 mmol/molCn) were found in a subgroup of CNS-impaired patients and healthy controls. EMA levels exceeding 2 SD above normal were fourfold prevalent in the urine of patients with non-specific CNS impairment compared to from the EMA levels in healthy controls. Moreover, we found that the level exceeding > 8.1 mmol/molCn (i.e. > + 2 SD) had sufficient discrimination accuracy in identifying subjects with non-specific CNS impairment; the level exceeding 12 mmol/molCn (i.e. > + 6 SD) reaches suitable accuracy (i.e. 100% specificity and 78.6% sensitivity). These observations are of importance, as we found that subtle increases in urinary EMA levels are frequent in patients with non-specific CNS impairment. The reasons for this association remain unknown.
Collapse
Affiliation(s)
- Raffaella Zannolli
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|