1
|
Ricci A, Dugo M, Pisanu ME, De Cecco L, Raspagliesi F, Valeri B, Veneroni S, Chirico M, Palombelli G, Daidone MG, Podo F, Canese R, Mezzanzanica D, Bagnoli M, Iorio E. Impact of Cold Ischemia on the Stability of 1H-MRS-Detected Metabolic Profiles of Ovarian Cancer Specimens. J Proteome Res 2024; 23:483-493. [PMID: 38109371 DOI: 10.1021/acs.jproteome.3c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) of surgically collected tumor specimens may contribute to investigating cancer metabolism and the significance of the "total choline" (tCho) peak (3.2 ppm) as malignancy and therapy response biomarker. To ensure preservation of intrinsic metabolomic information, standardized handling procedures are needed. The effects of time to freeze (cold ischemia) were evaluated in (a) surgical epithelial ovarian cancer (EOC) specimens using high-resolution (HR) 1H-MRS (9.4 T) of aqueous extracts and (b) preclinical EOC samples (xenografts in SCID mice) investigated by in vivo MRI-guided 1H-MRS (4.7 T) and by HR-1H-MRS (9.4 T) of tumor extracts or intact fragments (using magic-angle-spinning (MAS) technology). No significant changes were found in the levels of 27 of 29 MRS-detected metabolites (including the tCho profile) in clinical specimens up to 2 h cold ischemia, besides an increase in lysine and a decrease in glutathione. EOC xenografts showed a 2-fold increase in free choline within 2 h cold ischemia, without further significant changes for any MRS-detected metabolite (including phosphocholine and tCho) up to 6 h. At shorter times (≤1 h), HR-MAS analyses showed unaltered tCho components, along with significant changes in lactate, glutamate, and glutamine. Our results support the view that a time to freeze of 1 h represents a safe threshold to ensure the maintenance of a reliable tCho profile in EOC specimens.
Collapse
Affiliation(s)
- Alessandro Ricci
- Notified Body 0373 Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Matteo Dugo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - Maria Elena Pisanu
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Loris De Cecco
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - Francesco Raspagliesi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano, Italy
| | - Barbara Valeri
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano, Italy
| | - Silvia Veneroni
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - Mattea Chirico
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Gianmauro Palombelli
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Maria Grazia Daidone
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - Franca Podo
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Rossella Canese
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Delia Mezzanzanica
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - Marina Bagnoli
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - Egidio Iorio
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| |
Collapse
|
2
|
Dolciami M, Canese R, Testa C, Pernazza A, Santangelo G, Palaia I, Rocca CD, Catalano C, Manganaro L. The contribution of the 1H-MRS lipid signal to cervical cancer prognosis: a preliminary study. Eur Radiol Exp 2022; 6:47. [PMID: 36184731 PMCID: PMC9527268 DOI: 10.1186/s41747-022-00300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background The aim of this study was to investigate the role of the lipid peak derived from 1H magnetic resonance (MR) spectroscopy in assessing cervical cancer prognosis, particularly in assessing response to neoadjuvant chemotherapy (NACT) of locally advanced cervical cancer (LACC). Methods We enrolled 17 patients with histologically proven cervical cancer who underwent 3-T MR imaging at baseline. In addition to conventional imaging sequences for pelvic assessment, the protocol included a single-voxel point-resolved spectroscopy (PRESS) sequence, with repetition time of 1,500 ms and echo times of 28 and 144 ms. Spectra were analysed using the LCModel fitting routine, thus extracting multiple metabolites, including lipids (Lip) and total choline (tCho). Patients with LACC were treated with NACT and reassessed by MRI at term. Based on tumour volume reduction, patients were classified as good responder (GR; tumour volume reduction > 50%) and poor responder or nonresponder (PR-or-NR; tumour volume reduction ≤ 50%). Results Of 17 patients, 11 were LACC. Of these 11, only 6 had both completed NACT and had good-quality 1H-MR spectra; 3 GR and 3 PR-or-NR. A significant difference in lipid values was observed in the two groups of patients, particularly with higher Lip values and higher Lip/tCho ratio in PR-NR patients (p =0.040). A significant difference was also observed in choline distribution (tCho), with higher values in GR patients (p = 0.040). Conclusions Assessment of lipid peak at 1H-MR spectroscopy could be an additional quantitative parameter in predicting the response to NACT in patients with LACC. Supplementary Information The online version contains supplementary material available at 10.1186/s41747-022-00300-1.
Collapse
Affiliation(s)
- Miriam Dolciami
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Rossella Canese
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Angelina Pernazza
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giusi Santangelo
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Innocenza Palaia
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Liu R, Li R, Fang J, Deng K, Chen C, Li J, Wu Z, Zeng X. Apparent diffusion coefficient histogram analysis for differentiating solid ovarian tumors. Front Oncol 2022; 12:904323. [PMID: 35978817 PMCID: PMC9376384 DOI: 10.3389/fonc.2022.904323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 12/21/2022] Open
Abstract
Objective To evaluate the utility of apparent diffusion coefficient (ADC) histogram analysis to differentiate between three types of solid ovarian tumors: granulosa cell tumors (GCTs) of the ovary, ovarian fibromas, and high-grade serous ovarian carcinomas (HGSOCs). Methods The medical records of 11 patients with GCTs of the ovary (regions of interest [ROI-cs], 137), 61 patients with ovarian fibromas (ROI-cs, 161), and 14 patients with HGSOCs (ROI-cs, 113) confirmed at surgery and histology who underwent diffusion-weighted imaging were retrospectively reviewed. Histogram parameters of ADC maps (ADCmean, ADCmax, ADCmin) were estimated and compared using the Kruskal-WallisH test and Mann-Whitney U test. The area under the curve of receiver operating characteristic curves was used to assess the diagnostic performance of ADC parameters for solid ovarian tumors. Results There were significant differences in ADCmean, ADCmax and ADCmin values between GCTs of the ovary, ovarian fibromas, and HGSOCs. The cutoff ADCmean value for differentiating a GCT of the ovary from an ovarian fibroma was 0.95×10-3 mm2/s, for differentiating a GCT of the ovary from an HGSOC was 0.69×10-3 mm2/s, and for differentiating an ovarian fibroma from an HGSOC was 1.24×10-3 mm2/s. Conclusion ADCmean derived from ADC histogram analysis provided quantitative information that allowed accurate differentiation of GCTs of the ovary, ovarian fibromas, and HGSOCs before surgery.
Collapse
Affiliation(s)
- Renwei Liu
- Department of Radiology, Affiliated Longhua People’s Hospital Southern Medical University (Longhua People’s Hospital), Shenzhen, China
| | - Ruifeng Li
- Department of Radiology, Affiliated Longhua People’s Hospital Southern Medical University (Longhua People’s Hospital), Shenzhen, China
| | - Jinzhi Fang
- Department of Radiology, Affiliated Longhua People’s Hospital Southern Medical University (Longhua People’s Hospital), Shenzhen, China
| | - Kan Deng
- C&TS Clinical Science, Philips Healthcare, Guangzhou, China
| | - Cuimei Chen
- Department of Radiology, Affiliated Longhua People’s Hospital Southern Medical University (Longhua People’s Hospital), Shenzhen, China
| | - Jianhua Li
- Department of Radiology, Affiliated Longhua People’s Hospital Southern Medical University (Longhua People’s Hospital), Shenzhen, China
| | - Zhiqing Wu
- Department of Radiology, Affiliated Longhua People’s Hospital Southern Medical University (Longhua People’s Hospital), Shenzhen, China
| | - Xiaoxu Zeng
- Department of Radiology, Affiliated Longhua People’s Hospital Southern Medical University (Longhua People’s Hospital), Shenzhen, China
- *Correspondence: Xiaoxu Zeng,
| |
Collapse
|
4
|
Bellanti F, Bukke VN, Moola A, Villani R, Scuderi C, Steardo L, Palombelli G, Canese R, Beggiato S, Altamura M, Vendemiale G, Serviddio G, Cassano T. Effects of Ultramicronized Palmitoylethanolamide on Mitochondrial Bioenergetics, Cerebral Metabolism, and Glutamatergic Transmission: An Integrated Approach in a Triple Transgenic Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2022; 14:890855. [PMID: 35686025 PMCID: PMC9170916 DOI: 10.3389/fnagi.2022.890855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/19/2022] [Indexed: 01/26/2023] Open
Abstract
The therapeutic potential of ultramicronized palmitoylethanolamide (um-PEA) was investigated in young (6-month-old) and adult (12-month-old) 3 × Tg-AD mice, which received um-PEA for 3 months via a subcutaneous delivery system. Mitochondrial bioenergetics, ATP homeostasis, and magnetic resonance imaging/magnetic resonance spectroscopy were evaluated in the frontal cortex (FC) and hippocampus (HIPP) at the end of um-PEA treatment. Glutamate release was investigated by in vivo microdialysis in the ventral HIPP (vHIPP). We demonstrated that chronic um-PEA treatment ameliorates the decrease in the complex-I respiration rate and the FoF1-ATPase (complex V) activity, as well as ATP content depletion in the cortical mitochondria. Otherwise, the impairment in mitochondrial bioenergetics and the release of glutamate after depolarization was not ameliorated by um-PEA treatment in the HIPP of both young and adult 3 × Tg-AD mice. Moreover, progressive age- and pathology-related changes were observed in the cortical and hippocampal metabolism that closely mimic the alterations observed in the human AD brain; these metabolic alterations were not affected by chronic um-PEA treatment. These findings confirm that the HIPP is the most affected area by AD-like pathology and demonstrate that um-PEA counteracts mitochondrial dysfunctions and helps rescue brain energy metabolism in the FC, but not in the HIPP.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Archana Moola
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | | | - Rossella Canese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mario Altamura
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- *Correspondence: Tommaso Cassano
| |
Collapse
|
5
|
Liu Y, Qi C, Zheng L, Li J, Wang L, Yang Y. 1H-NMR based metabolic study of MMTV-PyMT mice along with pathological progress to screen biomarkers for the early diagnosis of breast cancer. Mol Omics 2022; 18:167-177. [DOI: 10.1039/d1mo00387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study showed the common metabolic changes between BC patients and mice, which were related to pathological processes.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
- Department of Pathology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, 510120, P. R. China
| | - Cuiling Qi
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lingyun Zheng
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yongxia Yang
- Pharmacy Information Engineering Department, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Quartieri F, Nesi M, Avanzi NR, Borghi D, Casale E, Corti E, Cucchi U, Donati D, Fasolini M, Felder ER, Galvani A, Giorgini ML, Lomolino A, Menichincheri M, Orrenius C, Perrera C, Re Depaolini S, Riccardi-Sirtori F, Salsi E, Isacchi A, Gnocchi P. Identification of unprecedented ATP-competitive choline kinase inhibitors. Bioorg Med Chem Lett 2021; 51:128310. [PMID: 34416377 DOI: 10.1016/j.bmcl.2021.128310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
In this article we describe the identification of unprecedented ATP-competitive ChoKα inhibitors starting from initial hit NMS-P830 that binds to ChoKα in an ATP concentration-dependent manner. This result is confirmed by the co-crystal structure of NMS-P830 in complex with Δ75-ChoKα. NMS-P830 is able to inhibit ChoKα in cells resulting in the reduction of intracellular phosphocholine formation. A structure-based medicinal chemistry program resulted in the identification of selective compounds that have good biochemical activity, solubility and metabolic stability and are suitable for further optimization. The ChoKα inhibitors disclosed in this article demonstrate for the first time the possibility to inhibit ChoKα with ATP-competitive compounds.
Collapse
Affiliation(s)
- Francesca Quartieri
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy.
| | - Marcella Nesi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Nilla R Avanzi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Daniela Borghi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Elena Casale
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Emiliana Corti
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Ulisse Cucchi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Daniele Donati
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Marina Fasolini
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Eduard R Felder
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Arturo Galvani
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Maria L Giorgini
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Antonio Lomolino
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | | | - Christian Orrenius
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Claudia Perrera
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | | | | | - Enea Salsi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Antonella Isacchi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Paola Gnocchi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| |
Collapse
|
7
|
Chhetri A, Li X, Rispoli JV. Current and Emerging Magnetic Resonance-Based Techniques for Breast Cancer. Front Med (Lausanne) 2020; 7:175. [PMID: 32478083 PMCID: PMC7235971 DOI: 10.3389/fmed.2020.00175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide, and early detection remains a principal factor for improved patient outcomes and reduced mortality. Clinically, magnetic resonance imaging (MRI) techniques are routinely used in determining benign and malignant tumor phenotypes and for monitoring treatment outcomes. Static MRI techniques enable superior structural contrast between adipose and fibroglandular tissues, while dynamic MRI techniques can elucidate functional characteristics of malignant tumors. The preferred clinical procedure-dynamic contrast-enhanced MRI-illuminates the hypervascularity of breast tumors through a gadolinium-based contrast agent; however, accumulation of the potentially toxic contrast agent remains a major limitation of the technique, propelling MRI research toward finding an alternative, noninvasive method. Three such techniques are magnetic resonance spectroscopy, chemical exchange saturation transfer, and non-contrast diffusion weighted imaging. These methods shed light on underlying chemical composition, provide snapshots of tissue metabolism, and more pronouncedly characterize microstructural heterogeneity. This review article outlines the present state of clinical MRI for breast cancer and examines several research techniques that demonstrate capacity for clinical translation. Ultimately, multi-parametric MRI-incorporating one or more of these emerging methods-presently holds the best potential to afford improved specificity and deliver excellent accuracy to clinics for the prediction, detection, and monitoring of breast cancer.
Collapse
Affiliation(s)
- Apekshya Chhetri
- Magnetic Resonance Biomedical Engineering Laboratory, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Xin Li
- Magnetic Resonance Biomedical Engineering Laboratory, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Joseph V. Rispoli
- Magnetic Resonance Biomedical Engineering Laboratory, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Center for Cancer Research, Purdue University, West Lafayette, IN, United States
- School of Electrical & Computer Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
Canese R, Palombelli G, Chirico M, Sestili P, Bagnoli M, Canevari S, Mezzanzanica D, Podo F, Iorio E. Integration of MRI and MRS approaches to monitor molecular imaging and metabolomic effects of trabectedin on a preclinical ovarian cancer model. NMR IN BIOMEDICINE 2019; 32:e4016. [PMID: 30375088 DOI: 10.1002/nbm.4016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/14/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Although several drugs are available to treat recurrences of human epithelial ovarian cancer (EOC), clinical responses often remain short lived and lead to only marginal improvements in patients' survival. One of the new drugs proposed for recurrent platinum-resistant EOC patients is trabectedin (Trab), a marine-derived antitumor agent initially isolated from the tunicate Ecteinascidia turbinata and currently produced synthetically. Predictive biomarkers of therapy response to this drug and the potential use of non-invasive functional MRI and MRS approaches for an early assessment of Trab efficacy have not yet been evaluated, although they might be relevant for improving the clinical management of EOC patients. In the present work we combined functional and spectroscopic magnetic resonance technologies, such as in vivo diffusion-weighted MRI and 1 H MRS, with ex vivo high resolution MRS (HR-MRS) metabolomic analyses, with the aim of identifying new pharmacodynamic markers of Trab effectiveness on well characterized, highly aggressive human SKOV3.ip (a HER2-enriched cell variant derived from SKOV3 cells) EOC xenografts. In vivo treatment with Trab (three consecutive weekly 0.2 mg/kg i.v. injections) resulted in the following: (1) a significant reduction of in vivo tumor growth, along with the formation in cancer lesions of diffuse hyper-intense areas detected by T2 -weighted MRI and attributed to necrosis, in agreement with histopathology findings; (2) significant increases in the apparent diffusion coefficient mean and median values versus saline-treated control tumors; and (3) a significant reduction in the choline-containing metabolites' signal detected by quantitative in vivo MRS. Multivariate and quantitative HR-MRS analyses on ex vivo tissue samples revealed Trab-induced alterations in phospholipid and glucose metabolism identified as a decrease in phosphocholine and an increase in lactate. Collectively, these data identify Trab-induced functional MRI and MRS alterations in EOC models as a possible basis for further developments of these non-invasive imaging methods to improve the clinical management of EOC patients.
Collapse
Affiliation(s)
- Rossella Canese
- NMR and MRI Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | - Mattea Chirico
- NMR and MRI Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Sestili
- Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Bagnoli
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Canevari
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Delia Mezzanzanica
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Franca Podo
- NMR and MRI Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Egidio Iorio
- NMR and MRI Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
9
|
Zoratto F, Altabella L, Tistarelli N, Laviola G, Adriani W, Canese R. Inside the Developing Brain to Understand Teen Behavior From Rat Models: Metabolic, Structural, and Functional-Connectivity Alterations Among Limbic Structures Across Three Pre-adolescent Stages. Front Behav Neurosci 2018; 12:208. [PMID: 30319367 PMCID: PMC6165895 DOI: 10.3389/fnbeh.2018.00208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Adolescence is an age of transition when most brain structures undergo drastic modifications, becoming progressively more interconnected and undergoing several changes from a metabolic and structural viewpoint. In the present study, three MR techniques are used in rats to investigate how metabolites, structures and patterns of connectivity do change. We focused in particular on areas belonging to the limbic system, across three post-weaning developmental stages: from "early" (PND 21-25) to "mid" (i.e., a juvenile transition, PND 28-32) and then to "late" (i.e., the adolescent transition, PND 35-39). The rs-fMRI data, with comparison between early and mid (juvenile transition) age-stage rats, highlights patterns of enhanced connectivity from both Striata to both Hippocampi and from there to (left-sided) Nucleus accumbens (NAcc) and Orbitofrontal Cortex (OFC). Also, during this week there is a maturation of pathways from right Striatum to ipsilateral NAcc, from right OFC to ipsilateral NAcc and vice versa, from left Prefrontal Cortex to ipsilateral OFC and eventually from left Striatum, NAcc and Prefrontal Cortex to contralateral OFC. After only 1 week, in late age-stage rats entering into adolescence, the first pathway mentioned above keeps on growing while other patterns appear: both NAcc are reached from contralateral Striatum, right Hippocampus from both Amygdalae, and left NAcc -further- from right Hippocampus. It's interesting to notice the fact that, independently from the age when these connections develop, Striata of both hemispheres send axons to both Hippocampi and both NAcc sides, both Hippocampi reach left NAcc and OFC and finally both NAcc sides reach right OFC. Intriguingly, the Striatum only indirectly reaches the OFC by passing through Hippocampus and NAcc. Data obtained with DTI highlight how adolescents' neurite density may be affected within sub-cortical gray matter, especially for NAcc and OFC at "late" age-stage (adolescence). Finally, levels of metabolites were investigated by 1H-MRS in the anterior part of the hippocampus: we put into evidence an increase in myo-inositol during juvenile transition and a taurine reduction plus a total choline increase during adolescent transition. In this paper, the aforementioned pattern guides the formulation of hypotheses concerning the correlation between the establishment of novel brain connections and the emergence of behavioral traits that are typical of adolescence.
Collapse
Affiliation(s)
- Francesca Zoratto
- Center Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Naomi Tistarelli
- Faculty of Psychology, Università Telematica Internazionale Uninettuno, Rome, Italy
| | - Giovanni Laviola
- Center Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Adriani
- Center Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.,Faculty of Psychology, Università Telematica Internazionale Uninettuno, Rome, Italy
| | | |
Collapse
|
10
|
Paris L, Podo F, Spadaro F, Abalsamo L, Pisanu ME, Ricci A, Cecchetti S, Altabella L, Buoncervello M, Lozneanu L, Bagnoli M, Ramoni C, Canevari S, Mezzanzanica D, Iorio E, Canese R. Phosphatidylcholine-specific phospholipase C inhibition reduces HER2-overexpression, cell proliferation and in vivo tumor growth in a highly tumorigenic ovarian cancer model. Oncotarget 2017; 8:55022-55038. [PMID: 28903399 PMCID: PMC5589638 DOI: 10.18632/oncotarget.18992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/19/2017] [Indexed: 01/02/2023] Open
Abstract
Antagonizing the oncogenic effects of human epidermal growth factor receptor 2 (HER2) with current anti-HER2 agents has not yet yielded major progress in the treatment of advanced HER2-positive epithelial ovarian cancer (EOC). Using preclinical models to explore alternative molecular mechanisms affecting HER2 overexpression and oncogenicity may lead to new strategies for EOC patient treatment. We previously reported that phosphatidylcholine-specific phospholipase C (PC-PLC) exerts a pivotal role in regulating HER2 overexpression in breast cancer cells. The present study, conducted on two human HER2-overexpressing EOC cell lines - SKOV3 and its in vivo-passaged SKOV3.ip cell variant characterized by enhanced in vivo tumorigenicity - and on SKOV3.ip xenografts implanted in SCID mice, showed: a) about 2-fold higher PC-PLC and HER2 protein expression levels in SKOV3.ip compared to SKOV3 cells; b) physical association of PC-PLC with HER2 in non-raft domains; c) HER2 internalization and ca. 50% reduction of HER2 mRNA and protein expression levels in SKOV3.ip cells exposed to the PC-PLC inhibitor tricyclodecan-9-yl-potassium xanthate (D609); d) differential effects of D609 and trastuzumab on HER2 protein expression and cell proliferation; e) decreased in vivo tumor growth in SKOV3.ip xenografts during in vivo treatment with D609; f) potential use of in vivo magnetic resonance spectroscopy (MRS) and imaging (MRI) parameters as biomarkers of EOC response to PC-PLC inhibition. Overall, these findings support the view that PC-PLC inhibition may represent an effective means to target the tumorigenic effects of HER2 overexpression in EOC and that in vivo MR approaches can efficiently monitor its effects.
Collapse
Affiliation(s)
- Luisa Paris
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161, Roma, Italy
| | - Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161, Roma, Italy
| | - Francesca Spadaro
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Roma, Italy
| | - Laura Abalsamo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161, Roma, Italy
| | - Maria Elena Pisanu
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161, Roma, Italy
| | - Alessandro Ricci
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161, Roma, Italy
| | - Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161, Roma, Italy
| | - Luisa Altabella
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161, Roma, Italy
| | - Maria Buoncervello
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Roma, Italy
| | - Ludmila Lozneanu
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milano, Italy.,Department of Histology, University of Medicine and Pharmacy "Grigore T. Popa", 700115, Iasi, Romania
| | - Marina Bagnoli
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milano, Italy
| | - Carlo Ramoni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161, Roma, Italy
| | - Silvana Canevari
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milano, Italy
| | - Delia Mezzanzanica
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milano, Italy
| | - Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161, Roma, Italy
| | - Rossella Canese
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161, Roma, Italy
| |
Collapse
|
11
|
Penet MF, Krishnamachary B, Wildes F, Mironchik Y, Mezzanzanica D, Podo F, de Reggi M, Gharib B, Bhujwalla ZM. Effect of Pantethine on Ovarian Tumor Progression and Choline Metabolism. Front Oncol 2016; 6:244. [PMID: 27900284 PMCID: PMC5110532 DOI: 10.3389/fonc.2016.00244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 11/02/2016] [Indexed: 01/21/2023] Open
Abstract
Epithelial ovarian cancer remains the leading cause of death from gynecologic malignancy among women in developed countries. New therapeutic strategies evaluated with relevant preclinical models are urgently needed to improve survival rates. Here, we have assessed the effect of pantethine on tumor growth and metabolism using magnetic resonance imaging and high-resolution proton magnetic resonance spectroscopy (MRS) in a model of ovarian cancer. To evaluate treatment strategies, it is important to use models that closely mimic tumor growth in humans. Therefore, we used an orthotopic model of ovarian cancer where a piece of tumor tissue, derived from an ovarian tumor xenograft, is engrafted directly onto the ovary of female mice, to maintain the tumor physiological environment. Treatment with pantethine, the precursor of vitamin B5 and active moiety of coenzyme A, was started when tumors were ~100 mm3 and consisted of a daily i.p. injection of 750 mg/kg in saline. Under these conditions, no side effects were observed. High-resolution 1H MRS was performed on treated and control tumor extracts. A dual-phase extraction method based on methanol/chloroform/water was used to obtain lipid and water-soluble fractions from the tumors. We also investigated effects on metastases and ascites formation. Pantethine treatment resulted in slower tumor progression, decreased levels of phosphocholine and phosphatidylcholine, and reduced metastases and ascites occurrence. In conclusion, pantethine represents a novel potential, well-tolerated, therapeutic tool in patients with ovarian cancer. Further in vivo preclinical studies are needed to confirm the beneficial role of pantethine and to better understand its mechanism of action.
Collapse
Affiliation(s)
- Marie-France Penet
- JHU ICMIC Program, Russell H. Morgan, Division of Cancer Imaging Research, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Balaji Krishnamachary
- JHU ICMIC Program, Russell H. Morgan, Division of Cancer Imaging Research, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Flonne Wildes
- JHU ICMIC Program, Russell H. Morgan, Division of Cancer Imaging Research, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Yelena Mironchik
- JHU ICMIC Program, Russell H. Morgan, Division of Cancer Imaging Research, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Delia Mezzanzanica
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Franca Podo
- Section of Molecular and Cellular Imaging, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Max de Reggi
- Neurobiology of Cellular Interactions and Neurophysiopathology (NICN), Aix Marseille Univ, CNRS , Marseille , France
| | - Bouchra Gharib
- Neurobiology of Cellular Interactions and Neurophysiopathology (NICN), Aix Marseille Univ, CNRS , Marseille , France
| | - Zaver M Bhujwalla
- JHU ICMIC Program, Russell H. Morgan, Division of Cancer Imaging Research, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Iorio E, Caramujo MJ, Cecchetti S, Spadaro F, Carpinelli G, Canese R, Podo F. Key Players in Choline Metabolic Reprograming in Triple-Negative Breast Cancer. Front Oncol 2016; 6:205. [PMID: 27747192 PMCID: PMC5043614 DOI: 10.3389/fonc.2016.00205] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC), defined as lack of estrogen and progesterone receptors in the absence of protein overexpression/gene amplification of human epidermal growth factor receptor 2, is still a clinical challenge despite progress in breast cancer care. 1H magnetic resonance spectroscopy allows identification and non-invasive monitoring of TNBC metabolic aberrations and elucidation of some key mechanisms underlying tumor progression. Thus, it has the potential to improve in vivo diagnosis and follow-up and also to identify new targets for treatment. Several studies have shown an altered phosphatidylcholine (PtdCho) metabolism in TNBCs, both in patients and in experimental models. Upregulation of choline kinase-alpha, an enzyme of the Kennedy pathway that phosphorylates free choline (Cho) to phosphocholine (PCho), is a major contributor to the increased PCho content detected in TNBCs. Phospholipase-mediated PtdCho headgroup hydrolysis also contributes to the build-up of a PCho pool in TNBC cells. The oncogene-driven PtdCho cycle appears to be fine tuned in TNBC cells in at least three ways: by modulating the choline import, by regulating the activity or expression of specific metabolic enzymes, and by contributing to the rewiring of the entire metabolic network. Thus, only by thoroughly dissecting these mechanisms, it will be possible to effectively translate this basic knowledge into further development and implementation of Cho-based imaging techniques and novel classes of therapeutics.
Collapse
Affiliation(s)
- Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Maria José Caramujo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Francesca Spadaro
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità , Rome , Italy
| | - Giulia Carpinelli
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Rossella Canese
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
13
|
Podo F, Paris L, Cecchetti S, Spadaro F, Abalsamo L, Ramoni C, Ricci A, Pisanu ME, Sardanelli F, Canese R, Iorio E. Activation of Phosphatidylcholine-Specific Phospholipase C in Breast and Ovarian Cancer: Impact on MRS-Detected Choline Metabolic Profile and Perspectives for Targeted Therapy. Front Oncol 2016; 6:171. [PMID: 27532027 PMCID: PMC4969288 DOI: 10.3389/fonc.2016.00171] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/05/2016] [Indexed: 12/12/2022] Open
Abstract
Elucidation of molecular mechanisms underlying the aberrant phosphatidylcholine cycle in cancer cells plays in favor of the use of metabolic imaging in oncology and opens the way for designing new targeted therapies. The anomalous choline metabolic profile detected in cancer by magnetic resonance spectroscopy and spectroscopic imaging provides molecular signatures of tumor progression and response to therapy. The increased level of intracellular phosphocholine (PCho) typically detected in cancer cells is mainly attributed to upregulation of choline kinase, responsible for choline phosphorylation in the biosynthetic Kennedy pathway, but can also be partly produced by activation of phosphatidylcholine-specific phospholipase C (PC-PLC). This hydrolytic enzyme, known for implications in bacterial infection and in plant survival to hostile environmental conditions, is reported to be activated in mitogen- and oncogene-induced phosphatidylcholine cycles in mammalian cells, with effects on cell signaling, cell cycle regulation, and cell proliferation. Recent investigations showed that PC-PLC activation could account for 20–50% of the intracellular PCho production in ovarian and breast cancer cells of different subtypes. Enzyme activation was associated with PC-PLC protein overexpression and subcellular redistribution in these cancer cells compared with non-tumoral counterparts. Moreover, PC-PLC coimmunoprecipitated with the human epidermal growth factor receptor-2 (HER2) and EGFR in HER2-overexpressing breast and ovarian cancer cells, while pharmacological PC-PLC inhibition resulted into long-lasting HER2 downregulation, retarded receptor re-expression on plasma membrane and antiproliferative effects. This body of evidence points to PC-PLC as a potential target for newly designed therapies, whose effects can be preclinically and clinically monitored by metabolic imaging methods.
Collapse
Affiliation(s)
- Franca Podo
- Molecular and Cellular Imaging Unit, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Luisa Paris
- Molecular and Cellular Imaging Unit, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Serena Cecchetti
- Molecular and Cellular Imaging Unit, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Francesca Spadaro
- Molecular and Cellular Imaging Unit, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Laura Abalsamo
- Molecular and Cellular Imaging Unit, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Carlo Ramoni
- Molecular and Cellular Imaging Unit, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Alessandro Ricci
- Molecular and Cellular Imaging Unit, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Maria Elena Pisanu
- Molecular and Cellular Imaging Unit, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Francesco Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Research Hospital Policlinico San Donato , Milan , Italy
| | - Rossella Canese
- Molecular and Cellular Imaging Unit, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Egidio Iorio
- Molecular and Cellular Imaging Unit, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
14
|
Canese R, Mezzanzanica D, Bagnoli M, Indraccolo S, Canevari S, Podo F, Iorio E. In vivo Magnetic Resonance Metabolic and Morphofunctional Fingerprints in Experimental Models of Human Ovarian Cancer. Front Oncol 2016; 6:164. [PMID: 27446810 PMCID: PMC4923069 DOI: 10.3389/fonc.2016.00164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/17/2016] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the gynecological malignancy with the highest death rate, characterized by frequent relapse and onset of drug resistance. Disease diagnosis and therapeutic follow-up could benefit from application of molecular imaging approaches, such as magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS), able to monitor metabolic and functional alterations and investigate the underlying molecular mechanisms. Here, we overview the quantitative alterations that occur during either orthotopic or subcutaneous growth of preclinical EOC models. A common feature of (1)H MR spectra is the presence of a prominent peak due to total choline-containing metabolites (tCho), together with other metabolic alterations and MRI-detected morphofunctional patterns specific for different phenotypes. The tCho signal, already present at early stages of tumor growth, and changes of diffusion-weighted MRI parameters could serve as markers of malignancy and/or tumor response to therapy. The identification by MRS and MRI of biochemical and physiopathological fingerprints of EOC disease in preclinical models can represent a basis for further developments of non-invasive MR approaches in the clinical setting.
Collapse
Affiliation(s)
- Rossella Canese
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Delia Mezzanzanica
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marina Bagnoli
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, IOV – Istituto Oncologico Veneto – I.R.C.C.S, Padova, Italy
| | - Silvana Canevari
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
15
|
Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS). Metabolites 2016; 6:metabo6010011. [PMID: 27011205 PMCID: PMC4812340 DOI: 10.3390/metabo6010011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022] Open
Abstract
According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics.
Collapse
|
16
|
Macrì S, Ceci C, Proietti Onori M, Invernizzi RW, Bartolini E, Altabella L, Canese R, Imperi M, Orefici G, Creti R, Margarit I, Magliozzi R, Laviola G. Mice repeatedly exposed to Group-A β-Haemolytic Streptococcus show perseverative behaviors, impaired sensorimotor gating, and immune activation in rostral diencephalon. Sci Rep 2015; 5:13257. [PMID: 26304458 PMCID: PMC4548234 DOI: 10.1038/srep13257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/09/2015] [Indexed: 01/24/2023] Open
Abstract
Repeated exposure to Group-A β-Haemolytic Streptococcus (GAS) may constitute a vulnerability factor in the onset and course of pediatric motor disturbances. GAS infections/colonization can stimulate the production of antibodies, which may cross the blood brain barrier, target selected brain areas (e.g. basal ganglia), and exacerbate motor alterations. Here, we exposed developing SJL male mice to four injections with a GAS homogenate and evaluated the following domains: motor coordination; general locomotion; repetitive behaviors; perseverative responses; and sensorimotor gating (pre-pulse inhibition, PPI). To demonstrate that behavioral changes were associated with immune-mediated brain alterations, we analyzed, in selected brain areas, the presence of infiltrates and microglial activation (immunohistochemistry), monoamines (HPLC), and brain metabolites (in vivo Magnetic Resonance Spectroscopy). GAS-exposed mice showed increased repetitive and perseverative behaviors, impaired PPI, and reduced concentrations of serotonin in prefrontal cortex, a brain area linked to the behavioral domains investigated, wherein they also showed remarkable elevations in lactate. Active inflammatory processes were substantiated by the observation of infiltrates and microglial activation in the white matter of the anterior diencephalon. These data support the hypothesis that repeated GAS exposure may elicit inflammatory responses in brain areas involved in motor control and perseverative behavior, and result in phenotypic abnormalities.
Collapse
Affiliation(s)
- Simone Macrì
- Sect. Behavioural Neuroscience, Dept. Cell Biology &Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy
| | - Chiara Ceci
- Sect. Behavioural Neuroscience, Dept. Cell Biology &Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy
| | - Martina Proietti Onori
- Sect. Behavioural Neuroscience, Dept. Cell Biology &Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy
| | | | - Erika Bartolini
- Research Centre, Novartis Vaccines and Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Luisa Altabella
- Sect. Molecular and Cellular Imaging, Dept. Cell Biology &Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy
| | - Rossella Canese
- Sect. Molecular and Cellular Imaging, Dept. Cell Biology &Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy
| | - Monica Imperi
- Sect. Respiratory and Systemic Bacterial Diseases, Dept. of Infectious, Parasitic, and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy
| | - Graziella Orefici
- Sect. Respiratory and Systemic Bacterial Diseases, Dept. of Infectious, Parasitic, and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy
| | - Roberta Creti
- Sect. Respiratory and Systemic Bacterial Diseases, Dept. of Infectious, Parasitic, and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy
| | - Immaculada Margarit
- Research Centre, Novartis Vaccines and Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Roberta Magliozzi
- Sect. Demyelinating and Inflammatory Diseases of the CNS, Dept. Cell Biology &Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy
| | - Giovanni Laviola
- Sect. Behavioural Neuroscience, Dept. Cell Biology &Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy
| |
Collapse
|
17
|
Deficient Purposeful Use of Forepaws in Female Mice Modelling Rett Syndrome. Neural Plast 2015; 2015:326184. [PMID: 26185689 PMCID: PMC4491574 DOI: 10.1155/2015/326184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/21/2015] [Accepted: 05/24/2015] [Indexed: 12/31/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioural and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases. Motor abnormalities represent a significant part of the spectrum of RTT symptoms. In the present study we investigated motor coordination and fine motor skill domains in MeCP2-308 female mice, a validated RTT model. This was complemented by the in vivo magnetic resonance spectroscopy (MRS) analysis of metabolic profile in behaviourally relevant brain areas. MeCP2-308 heterozygous female mice (Het, 10-12 months of age) were impaired in tasks validated for the assessment of purposeful and coordinated forepaw use (Morag test and Capellini handling task). A fine-grain analysis of spontaneous behaviour in the home-cage also revealed an abnormal handling pattern when interacting with the nesting material, reduced motivation to explore the environment, and increased time devoted to feeding in Het mice. The brain MRS evaluation highlighted decreased levels of bioenergetic metabolites in the striatal area in Het mice compared to controls. Present results confirm behavioural and brain alterations previously reported in MeCP2-308 males and identify novel endpoints on which the efficacy of innovative therapeutic strategies for RTT may be tested.
Collapse
|
18
|
MR Spectroscopy for Differentiating Benign From Malignant Solid Adnexal Tumors. AJR Am J Roentgenol 2015; 204:W724-30. [PMID: 26001263 DOI: 10.2214/ajr.14.13391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Persistent modification of forebrain networks and metabolism in rats following adolescent exposure to a 5-HT7 receptor agonist. Psychopharmacology (Berl) 2015; 232:75-89. [PMID: 24923983 DOI: 10.1007/s00213-014-3639-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE The serotonin 7 receptor (5-HT7-R) is part of a neuro-transmission system with a proposed role in neural plasticity and in mood, cognitive or sleep regulation. OBJECTIVES We investigated long-term consequences of sub-chronic treatment, during adolescence (43-45 to 47-49 days old) in rats, with a novel 5-HT7-R agonist (LP-211, 0 or 0.250 mg/kg/day). METHODS We evaluated behavioural changes as well as forebrain structural/functional modifications by in vivo magnetic resonance (MR) in a 4.7 T system, followed by ex vivo histology. RESULTS Adult rats pre-treated during adolescence showed reduced anxiety-related behaviour, in terms of reduced avoidance in the light/dark test and a less fragmented pattern of exploration in the novel object recognition test. Diffusion tensor imaging (DTI) revealed decreased mean diffusivity (MD) in the amygdala, increased fractional anisotropy (FA) in the hippocampus (Hip) and reduced axial (D||) together with increased radial (D⊥) diffusivity in the nucleus accumbens (NAcc). An increased neural dendritic arborization was confirmed in the NAcc by ex vivo histology. Seed-based functional MR imaging (fMRI) identified increased strength of connectivity within and between "limbic" and "cortical" loops, with affected cross-correlations between amygdala, NAcc and Hip. The latter displayed enhanced connections through the dorsal striatum (dStr) to dorso-lateral prefrontal cortex (dl-PFC) and cerebellum. Functional connection also increased between amygdala and limbic elements such as NAcc, orbito-frontal cortex (OFC) and hypothalamus. MR spectroscopy (1H-MRS) indicated that adolescent LP-211 exposure increased glutamate and total creatine in the adult Hip. CONCLUSIONS Persistent MR-detectable modifications indicate a rearrangement within forebrain networks, accounting for long-lasting behavioural changes as a function of developmental 5-HT7-R stimulation.
Collapse
|
20
|
Altabella L, Zoratto F, Adriani W, Canese R. MR imaging-detectable metabolic alterations in attention deficit/hyperactivity disorder: from preclinical to clinical studies. AJNR Am J Neuroradiol 2014; 35:S55-63. [PMID: 24481327 DOI: 10.3174/ajnr.a3843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
MR spectroscopy represents one of the most suitable in vivo tool to assess neurochemical dysfunction in several brain disorders, including attention deficit/hyperactivity disorder. This is the most common neuropsychiatric disorder in childhood and adolescence, which persists into adulthood (in approximately 30%-50% of cases). In past years, many studies have applied different MR spectroscopy techniques to investigate the pathogenesis and effect of conventional treatments. In this article, we review the most recent clinical and preclinical MR spectroscopy results on subjects with attention deficit/hyperactivity disorder and animal models, from childhood to adulthood. We found that the most investigated brain regions were the (pre)frontal lobes and striatum, both involved in the frontostriatal circuits and networks that are known to be impaired in this pathology. Neurometabolite alterations were detected in several regions: the NAA, choline, and glutamatergic compounds. The creatine pool was also altered when an absolute quantitative protocol was adopted. In particular, glutamate was increased in children with attention deficit/hyperactivity disorder, and this can apparently be reversed by methylphenidate treatment. The main difficulties in reviewing MR spectroscopy studies were in the nonhomogeneity of the analyzed subjects, the variety of the investigated brain regions, and also the use of different MR spectroscopy techniques. As for possible improvements in future studies, we recommend the use of standardized protocols and the analysis of other brain regions of particular interest for attention deficit hyperactivity disorder, like the hippocampus, limbic structures, thalamus, and cerebellum.
Collapse
Affiliation(s)
- L Altabella
- From the Department of Cell Biology and Neurosciences (L.A., F.Z., W.A., R.C.), Istituto Superiore di Sanità, Rome, Italy
| | - F Zoratto
- From the Department of Cell Biology and Neurosciences (L.A., F.Z., W.A., R.C.), Istituto Superiore di Sanità, Rome, ItalyBambino Gesù Children's Hospital IRCCS (F.Z.), Rome, Italy
| | - W Adriani
- From the Department of Cell Biology and Neurosciences (L.A., F.Z., W.A., R.C.), Istituto Superiore di Sanità, Rome, Italy
| | - R Canese
- From the Department of Cell Biology and Neurosciences (L.A., F.Z., W.A., R.C.), Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
21
|
The Directive 2010/63/EU on animal experimentation may skew the conclusions of pharmacological and behavioural studies. Sci Rep 2014; 3:2380. [PMID: 23924859 PMCID: PMC3737502 DOI: 10.1038/srep02380] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/10/2013] [Indexed: 01/17/2023] Open
Abstract
All laboratory animals shall be provided some form of environmental enrichment (EE) in the nearest future (Directive 2010/63/EU). Displacing standard housing with EE entails the possibility that data obtained under traditional housing may be reconsidered. Specifically, while EE often contrasts the abnormalities of consolidated disease models, it also indirectly demonstrates that their validity depends on housing conditions. We mimicked a situation in which the consequences of a novel pharmacological compound were addressed before and after the adoption of the Directive. We sub-chronically exposed standard- or EE-reared adolescent CD1 mice (postnatal days 23-33) to the synthetic compound JWH-018, and evaluated its short- and long-term potential cannabinoid properties on: weight gain, locomotion, analgesia, motor coordination, body temperature, brain metabolism (1H MRI/MRS), anxiety- and depressive-related behaviours. While several parameters are modulated by JWH-018 independently of housing, other effects are environmentally mediated. The transition from standard housing to EE shall be carefully monitored.
Collapse
|
22
|
House CD, Hernandez L, Annunziata CM. Recent technological advances in using mouse models to study ovarian cancer. Front Oncol 2014; 4:26. [PMID: 24592355 PMCID: PMC3923136 DOI: 10.3389/fonc.2014.00026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/28/2014] [Indexed: 12/14/2022] Open
Abstract
Serous epithelial ovarian cancer (SEOC) is the most lethal gynecological cancer in the United States with disease recurrence being the major cause of morbidity and mortality. Despite recent advances in our understanding of the molecular mechanisms responsible for the development of SEOC, the survival rate for women with this disease has remained relatively unchanged in the last two decades. Preclinical mouse models of ovarian cancer, including xenograft, syngeneic, and genetically engineered mice, have been developed to provide a mechanism for studying the development and progression of SEOC. Such models strive to increase our understanding of the etiology and dissemination of ovarian cancer in order to overcome barriers to early detection and resistance to standard chemotherapy. Although there is not a single model that is most suitable for studying ovarian cancer, improvements have led to current models that more closely mimic human disease in their genotype and phenotype. Other advances in the field, such as live animal imaging techniques, allow effective monitoring of the microenvironment and therapeutic efficacy. New and improved preclinical mouse models, combined with technological advances to study such models, will undoubtedly render success of future human clinical trials for patients with SEOC.
Collapse
Affiliation(s)
| | - Lidia Hernandez
- Women's Malignancies Branch, National Cancer Institute , Bethesda, MD , USA
| | | |
Collapse
|
23
|
Michetti C, Romano E, Altabella L, Caruso A, Castelluccio P, Bedse G, Gaetani S, Canese R, Laviola G, Scattoni ML. Mapping pathological phenotypes in reelin mutant mice. Front Pediatr 2014; 2:95. [PMID: 25237666 PMCID: PMC4154529 DOI: 10.3389/fped.2014.00095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/21/2014] [Indexed: 11/20/2022] Open
Abstract
Autism Spectrum Disorders (ASD) are neurodevelopmental disorders with multifactorial origin characterized by social communication deficits and the presence of repetitive behaviors/interests. Several studies showed an association between the reelin gene mutation and increased risk of ASD and a reduced reelin expression in some brain regions of ASD subjects, suggesting a role for reelin deficiency in ASD etiology. Reelin is a large extracellular matrix glycoprotein playing important roles during development of the central nervous system. To deeply investigate the role of reelin dysfunction as vulnerability factor in ASD, we assessed the behavioral, neurochemical, and brain morphological features of reeler male mice. We recently reported a genotype-dependent deviation in the ultrasonic vocal repertoire and a general delay in motor development of reeler pups. We now report that adult male heterozygous (Het) reeler mice did not show social behavior and communication deficits during male-female social interactions. Wildtype and Het mice showed a typical light/dark locomotor activity profile, with a peak during the central interval of the dark phase. However, when faced with a mild stressful stimulus (a saline injection) only Het mice showed an over response to stress. In addition to the behavioral studies, we conducted high performance liquid chromatography and magnetic resonance imaging and spectroscopy to investigate whether reelin mutation influences brain monoamine and metabolites levels in regions involved in ASD. Low levels of dopamine in cortex and high levels of glutamate and taurine in hippocampus were detected in Het mice, in line with clinical data collected on ASD children. Altogether, our data detected subtle but relevant neurochemical abnormalities in reeler mice supporting this mutant line, particularly male subjects, as a valid experimental model to estimate the contribution played by reelin deficiency in the global ASD neurobehavioral phenotype.
Collapse
Affiliation(s)
- Caterina Michetti
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy ; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , Rome , Italy
| | - Emilia Romano
- Behavioural Neuroscience Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy ; Bambino Gesù Children's Hospital, Istituto Di Ricovero e Cura a Carattere Scientifico , Rome , Italy
| | - Luisa Altabella
- Molecular and Cellular Imaging Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy
| | - Angela Caruso
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy ; Department of Psychology, School of Behavioural Neuroscience, Sapienza University of Rome , Rome , Italy
| | - Paolo Castelluccio
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy
| | - Gaurav Bedse
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , Rome , Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , Rome , Italy
| | - Rossella Canese
- Molecular and Cellular Imaging Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy
| | - Giovanni Laviola
- Behavioural Neuroscience Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy
| | - Maria Luisa Scattoni
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
24
|
Pisanu ME, Ricci A, Paris L, Surrentino E, Liliac L, Bagnoli M, Canevari S, Mezzanzanica D, Podo F, Iorio E, Canese R. Monitoring response to cytostatic cisplatin in a HER2(+) ovary cancer model by MRI and in vitro and in vivo MR spectroscopy. Br J Cancer 2013; 110:625-35. [PMID: 24335926 PMCID: PMC3915124 DOI: 10.1038/bjc.2013.758] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/01/2013] [Accepted: 11/07/2013] [Indexed: 01/25/2023] Open
Abstract
Background: Limited knowledge is available on alterations induced by cytostatic drugs on magnetic resonance spectroscopy (MRS) and imaging (MRI) parameters of human cancers, in absence of apoptosis or cytotoxicity. We here investigated the effects of a cytostatic cisplatin (CDDP) treatment on 1H MRS and MRI of HER2-overexpressing epithelial ovarian cancer (EOC) cells and in vivo xenografts. Methods: High-resolution MRS analyses were performed on in vivo passaged SKOV3.ip cells and cell/tissue extracts (16.4 or 9.4 T). In vivo MRI/MRS quantitative analyses (4.7 T) were conducted on xenografts obtained by subcutaneous implantation of SKOV3.ip cells in SCID mice. The apparent diffusion coefficient (ADC) and metabolite levels were measured. Results: CDDP-induced cytostatic effects were associated with a metabolic shift of cancer cells towards accumulation of MRS-detected neutral lipids, whereas the total choline profile failed to be perturbed in both cultured cells and xenografts. In vivo MRI examinations showed delayed tumour growth in the CDDP-treated group, associated with early reduction of the ADC mean value. Conclusion: This study provides an integrated set of information on cancer metabolism and physiology for monitoring the response of an EOC model to a cytostatic chemotherapy, as a basis for improving the interpretation of non-invasive MR examinations of EOC patients.
Collapse
Affiliation(s)
- M E Pisanu
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - A Ricci
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - L Paris
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - E Surrentino
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - L Liliac
- 1] Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy [2] Department of Histology, University of Medicine and Pharmacy 'Grigore T. Popa', Iasi, Romania
| | - M Bagnoli
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - S Canevari
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - D Mezzanzanica
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - F Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - E Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - R Canese
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| |
Collapse
|
25
|
Yang Y, Wang L, Wang S, Liang S, Chen A, Tang H, Chen L, Deng F. Study of metabonomic profiles of human esophageal carcinoma by use of high-resolution magic-angle spinning 1H NMR spectroscopy and multivariate data analysis. Anal Bioanal Chem 2013; 405:3381-9. [PMID: 23455688 DOI: 10.1007/s00216-013-6774-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/20/2012] [Accepted: 01/22/2013] [Indexed: 11/30/2022]
Abstract
Esophageal carcinoma (EC) is one of the most common malignant tumors. EC survival has remained disappointingly low because of the high malignancy of esophageal cancer and the lack of obvious clinical symptoms at an early stage. Early diagnosis is often difficult because the small tumor nodules are frequently missed. Metabonomics based on high-resolution magic-angle spinning (HRMAS) NMR has been popular for tumor detection because it is highly sensitive, provides rich biochemical information and requires no sample pretreatment. (1)H HRMAS spectra of non-involved adjacent esophageal tissues and of well differentiated and moderately differentiated esophageal carcinoma tumors were recorded and analyzed by use of multivariate and statistical analysis techniques. Moderately differentiated EC tumors were found to have increased total choline, alanine, and glutamate and reduced creatine, myo-inositol, and taurine compared with non-involved adjacent tissues. Moreover, clear differences between the metabonomic profiles of EC tissues enabled tumor differentiation. Furthermore, the integral Gly/MI ratio for samples of different tissue types were statistically significantly different; this was sufficient both for distinguishing non-involved tissues from esophageal carcinoma and for classification of well differentiated and moderately differentiated EC tumors.
Collapse
Affiliation(s)
- Yongxia Yang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abramov Y, Carmi S, Anteby SO, Ringel I. Ex vivo 1H and 31P magnetic resonance spectroscopy as a means for tumor characterization in ovarian cancer patients. Oncol Rep 2012; 29:321-8. [PMID: 23042519 DOI: 10.3892/or.2012.2071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/18/2012] [Indexed: 11/06/2022] Open
Abstract
We aimed to determine whether cells obtained from malignant ovarian tumors had different ex vivo 1H- and 31P (phosphorus-31)-magnetic resonance (MR) spectra compared to cells obtained from benign ovarian cysts. In addition, we aimed to assess the metabolic effects of chemotherapy on malignant cells obtained from peritoneal effusions of ovarian cancer patients. We included 20 ovarian cancer patients undergoing explorative laparotomy for tumor resection, 15 patients undergoing oophorectomy for benign ovarian cysts and 8 patients with advanced ovarian cancer with cancerous peritoneal effusion undergoing palliative percutaneous drainage. Ovarian and metastatic tissues were obtained from all patients undergoing laparotomy and analyzed using 1H magnetic resonance spectroscopy (MRS). Cancerous cells from peritoneal effusions were incubated with 3 different anti-mitotic drugs (paclitaxel, cisplatin and carboplatin) at LC50 and the consequent metabolic changes were monitored using 31P-MRS. 1H-MRS revealed significantly higher intracellular lactate levels in cells obtained from ovarian tumors, most prominently in the moderately to poorly differentiated histological types, while total choline (Chol) compounds were higher in the moderately to poorly differentiated subgroup only. Ovarian cancer cells obtained from peritoneal effusions showed a significantly decreased glycerophosphocholine (GPC), glycerophosphoethanolamine (GPE) and uridine diphospho-sugar (UDPS) levels following ex vivo exposure to all 3 anti-mitotic drugs. Ex vivo 1H-MRS identified significant metabolic differences between cells obtained from ovarian tumors compared to those originating in benign ovarian cysts, including increased lactate and total choline compound levels. The 31P-MRS technique allowed characterization and monitoring of metabolic changes occurring in ovarian cancer cells in response to chemotherapy.
Collapse
Affiliation(s)
- Yoram Abramov
- Department of Obstetrics and Gynecology, Carmel Medical Center, Technion University, Rappaport Faculty of Medicine, Haifa, Israel.
| | | | | | | |
Collapse
|
27
|
Macrì S, Ceci C, Canese R, Laviola G. Prenatal stress and peripubertal stimulation of the endocannabinoid system differentially regulate emotional responses and brain metabolism in mice. PLoS One 2012; 7:e41821. [PMID: 22848620 PMCID: PMC3405010 DOI: 10.1371/journal.pone.0041821] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/26/2012] [Indexed: 12/22/2022] Open
Abstract
The central endocannabinoid system (ECS) and the hypothalamic-pituitary-adrenal-axis mediate individual responses to emotionally salient stimuli. Their altered developmental adjustment may relate to the emergence of emotional disturbances. Although environmental influences regulate the individual phenotype throughout the entire lifespan, their effects may result particularly persistent during plastic developmental stages (e.g. prenatal life and adolescence). Here, we investigated whether prenatal stress – in the form of gestational exposure to corticosterone supplemented in the maternal drinking water (100 mg/l) during the last week of pregnancy – combined with a pharmacological stimulation of the ECS during adolescence (daily fatty acid amide hydrolase URB597 i.p. administration - 0.4 mg/kg - between postnatal days 29–38), influenced adult mouse emotional behaviour and brain metabolism measured through in vivo quantitative magnetic resonance spectroscopy. Compared to control mice, URB597-treated subjects showed, in the short-term, reduced locomotion and, in the long term, reduced motivation to execute operant responses to obtain palatable rewards paralleled by reduced levels of inositol and taurine in the prefrontal cortex. Adult mice exposed to prenatal corticosterone showed increased behavioural anxiety and reduced locomotion in the elevated zero maze, and altered brain metabolism (increased glutamate and reduced taurine in the hippocampus; reduced inositol and N-Acetyl-Aspartate in the hypothalamus). Present data further corroborate the view that prenatal stress and pharmacological ECS stimulation during adolescence persistently regulate emotional responses in adulthood. Yet, whilst we hypothesized these factors to be interactive in nature, we observed that the consequences of prenatal corticosterone administration were independent from those of ECS drug-induced stimulation during adolescence.
Collapse
Affiliation(s)
- Simone Macrì
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Roma, Italy.
| | | | | | | |
Collapse
|