1
|
Erdemi S, Oğuz Ş, Aydoğan C, Bektaş O, Teymur A, Aydoğan Z, Bal EM, Tayar H. Brain damage evaluation via arterial spin labeling perfusion imaging for patients with aneurysmal subarachnoid hemorrhage. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:98-107. [PMID: 37950077 DOI: 10.1007/s00117-023-01228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Subarachnoid hemorrhage (SAH) is a neurological condition with an annual incidence of 6-22 per 100,000. Despite many advances in diagnosis, the rates of mortality and morbidity in patients remain high. The most important reason for this is complications accompanied by perfusion changes. The aim of our study was to show the perfusion changes with arterial spin labelling (ASL) after SAH. MATERIALS AND METHODS In this prospective study, 23 patients diagnosed with aneurysmal SAH were evaluated by ASL perfusion imaging between days 1-3 and 8-10. The mean signal intensities (SI) of both hemispheres from the anterior cerebral artery, middle cerebral artery, and basal ganglia were measured manually according to the region of interest. The relationship between the SI values calculated for both cerebral hemispheres, complications, and grading scales of the side with more intense (ipsilateral) and less (contralateral) bleeding were evaluated. RESULTS There was a significant difference in the ipsilateral/contralateral SI ratio (SIIps/ConBGin) (p = 0.015) among all ASL values, including the basal ganglia between days 0-3 and 8-10. There was a significant negative correlation between ASL parameters and rating scale scores. Additionally, when the SIIps/ConBGinDay0-3 ratio cut-off value was ≤ 0.72, the sensitivity and specificity were 57.1% and 100.0%, respectively, in predicting non-fatal complications, and the sensitivity and specificity in predicting all complications, including death, were 55.6% and 100.0%, respectively. CONCLUSION Global or regional perfusion decrease can be shown using ASL, with or without the development of vasospasm, without the need for exogenous contrast agent use.
Collapse
Affiliation(s)
| | - Şükrü Oğuz
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Cemal Aydoğan
- Trabzon Ahi Evren Thoracic and Cardiovascular Surgery Training and Research Hospital, Trabzon, Turkey
| | - Onur Bektaş
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Aykut Teymur
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Zeynep Aydoğan
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Elif M Bal
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Hatice Tayar
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
2
|
Grashei M, Wodtke P, Skinner JG, Sühnel S, Setzer N, Metzler T, Gulde S, Park M, Witt D, Mohr H, Hundshammer C, Strittmatter N, Pellegata NS, Steiger K, Schilling F. Simultaneous magnetic resonance imaging of pH, perfusion and renal filtration using hyperpolarized 13C-labelled Z-OMPD. Nat Commun 2023; 14:5060. [PMID: 37604826 PMCID: PMC10442412 DOI: 10.1038/s41467-023-40747-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
pH alterations are a hallmark of many pathologies including cancer and kidney disease. Here, we introduce [1,5-13C2]Z-OMPD as a hyperpolarized extracellular pH and perfusion sensor for MRI which allows to generate a multiparametric fingerprint of renal disease status and to detect local tumor acidification. Exceptional long T1 of two minutes at 1 T, high pH sensitivity of up to 1.9 ppm per pH unit and suitability of using the C1-label as internal frequency reference enables pH imaging in vivo of three pH compartments in healthy rat kidneys. Spectrally selective targeting of both 13C-resonances enables simultaneous imaging of perfusion and filtration in 3D and pH in 2D within one minute to quantify renal blood flow, glomerular filtration rates and renal pH in healthy and hydronephrotic kidneys with superior sensitivity compared to clinical routine methods. Imaging multiple biomarkers within a single session renders [1,5-13C2]Z-OMPD a promising new hyperpolarized agent for oncology and nephrology.
Collapse
Affiliation(s)
- Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Sandra Sühnel
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Nadine Setzer
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Mihyun Park
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Daniela Witt
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Nicole Strittmatter
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, I-27100, Pavia, Italy
| | - Katja Steiger
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, D-85748, Garching, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Batail JM, Corouge I, Combès B, Conan C, Guillery-Sollier M, Vérin M, Sauleau P, Le Jeune F, Gauvrit JY, Robert G, Barillot C, Ferre JC, Drapier D. Apathy in depression: An arterial spin labeling perfusion MRI study. J Psychiatr Res 2023; 157:7-16. [PMID: 36427413 DOI: 10.1016/j.jpsychires.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/28/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Apathy, as defined as a deficit in goal-directed behaviors, is a critical clinical dimension in depression associated with chronic impairment. Little is known about its cerebral perfusion specificities in depression. To explore neurovascular mechanisms underpinning apathy in depression by pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI). METHODS Perfusion imaging analysis was performed on 90 depressed patients included in a prospective study between November 2014 and February 2017. Imaging data included anatomical 3D T1-weighted and perfusion pCASL sequences. A multiple regression analysis relating the quantified cerebral blood flow (CBF) in different regions of interest defined from the FreeSurfer atlas, to the Apathy Evaluation Scale (AES) total score was conducted. RESULTS After confound adjustment (demographics, disease and clinical characteristics) and correction for multiple comparisons, we observed a strong negative relationship between the CBF in the left anterior cingulate cortex (ACC) and the AES score (standardized beta = -0.74, corrected p value = 0.0008). CONCLUSION Our results emphasized the left ACC as a key region involved in apathy severity in a population of depressed participants. Perfusion correlates of apathy in depression evidenced in this study may contribute to characterize different phenotypes of depression.
Collapse
Affiliation(s)
- J M Batail
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France; Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France; Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France.
| | - I Corouge
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France
| | - B Combès
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France
| | - C Conan
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France
| | - M Guillery-Sollier
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France; Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France; Univ Rennes, LP3C (Laboratoire de Psychologie: Cognition, Comportement, Communication) - EA 1285, CC5000, Rennes, France
| | - M Vérin
- Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France; CHU Rennes, Department of Neurology, F-35033, Rennes, France
| | - P Sauleau
- Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France; CHU Rennes, Department of Neurophysiology, F-35033, Rennes, France
| | - F Le Jeune
- Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France; Centre Eugène Marquis, Department of Nuclear Medicine, F-35062, Rennes, France
| | - J Y Gauvrit
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France; CHU Rennes, Department of Radiology, F-35033, Rennes, France
| | - G Robert
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France; Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France; Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France
| | - C Barillot
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France
| | - J C Ferre
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France; CHU Rennes, Department of Radiology, F-35033, Rennes, France
| | - D Drapier
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France; Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France
| |
Collapse
|
4
|
Lin CH, Hsieh TJ, Chou YC, Chen CKH. Feasibility of Arterial Spin Labeling Magnetic Resonance Imaging for Musculoskeletal Tumors with Optimized Post-Labeling Delay. Diagnostics (Basel) 2022; 12:2450. [PMID: 36292139 PMCID: PMC9600497 DOI: 10.3390/diagnostics12102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) is used to perform perfusion imaging without administration of contrast media. However, the reliability of ASL for musculoskeletal tumors and the influence of post-labeling delay (PLD) have not been fully clarified. This study aimed to evaluate the performance of ASL with different PLDs in the imaging of musculoskeletal tumors. Forty-five patients were enrolled and were divided into a malignant group, a hypervascular benign group, a hypovascular benign group and a control group. The tissue blood flow (TBF) of the lesions and normal muscles was measured and the lesion-to-muscle TBF ratio and differences were calculated. The results showed that both the TBF of lesions and muscles increased as the PLD increased, and the TBF of muscles correlated significantly and positively with the TBF of lesions (all p < 0.05). The TBF and lesion-to-muscle TBF differences of the malignant lesions were significantly higher than those of the hypovascular benign lesions and the control group in all PLD groups (all p < 0.0125) and only those of the hypervascular benign lesions in the longest PLD (3025 ms) group (p = 0.0120, 0.0116). In conclusion, ASL detects high TBF in malignant tumors and hypervascular benign lesions, and a longer PLD is recommended for ASL to differentiate musculoskeletal tumors.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Department of Medical Imaging, Chi Mei Medical Center, Yongkang, Tainan 71004, Taiwan
| | - Tsyh-Jyi Hsieh
- Department of Medical Imaging, Chi Mei Medical Center, Yongkang, Tainan 71004, Taiwan
- Department of Radiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chen Chou
- Department of Medical Imaging, Chi Mei Medical Center, Yongkang, Tainan 71004, Taiwan
| | | |
Collapse
|
5
|
Buch K, Hakimelahi R, Locascio JJ, Bolar DS, Gonzalez RG, Schaefer PW. Clinical utility of arterial spin labeling perfusion images in the emergency department for the work-up of stroke-like symptoms. Neuroradiology 2021; 64:925-934. [PMID: 34664110 DOI: 10.1007/s00234-021-02835-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To assess the utility of ASL in evaluating patients presenting to the ED with stroke-like symptoms. METHODS ASL and DWI images from 526 consecutive patients presenting to the ED with acute stroke symptoms were retrospectively reviewed. DWI images were evaluated for volume of restricted diffusion using ABC/2. ASL maps were evaluated for decreased, normal, or increased signal. The volume of decreased ASL signal was calculated using the same ABC/2 technique. The volume of decreased ASL signal was correlated with the volume of DWI signal abnormality to identify cases of mismatch (DWI:ASL ratio > 1.8) and to correlate this mismatch with infarct growth on imaging follow-up. NIHSS, length of hospital stay, mRS, and future admission for acute stroke-like symptoms were recorded. Correlations between ASL abnormalities and clinical parameters were evaluated using a two-tailed t-test. RESULTS Of the 526 patients presenting with acute stroke symptoms, 136 patients had an abnormal ASL scan and 388 patients had a normal ASL scan. Of the 136 patients with abnormal ASL, 84 patients had low ASL signal with 79 of these being related to acute infarcts. Elevated ASL signal was seen in 52 patients, of which 30 of these patients had reperfusion hyperemia related to acute infarctions. ASL had a negative predictive value of 94% for evaluating patients with acute ischemic stroke. A subset of patients with abnormal ASL scans with a discharge diagnosis of acute infarction were found to have an ASL:DWI mismatch (ratio > 1.8) and demonstrated significant lesion growth on follow-up imaging (57%). This included some patients who exhibited low ASL signal before development of diffusion restriction (infarction). CONCLUSION In patients presenting to the ED with acute stroke symptoms, ASL provides information not available with DWI alone. The NPV of ASL for evaluating patients with acute ischemia was 94%.
Collapse
Affiliation(s)
- Karen Buch
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Gray 241 G, Boston, MA, 02114, USA.
| | - Reza Hakimelahi
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Gray 241 G, Boston, MA, 02114, USA
| | - Joseph J Locascio
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Divya S Bolar
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - R Giliberto Gonzalez
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Gray 241 G, Boston, MA, 02114, USA
| | - Pamela W Schaefer
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Gray 241 G, Boston, MA, 02114, USA
| |
Collapse
|
6
|
Zakharova NE, Pronin IN, Batalov AI, Shults EI, Tyurina AN, Baev AA, Fadeeva LM. [Modern standards for magnetic resonance imaging of the brain tumors]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:102-112. [PMID: 32649820 DOI: 10.17116/neiro202084031102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuroimaging is essential in survey of patients with brain tumors. An important objectives of neuroimaging are highly reliable non-invasive diagnosis, treatment planning and evaluation of treatment outcomes. Magnetic resonance imaging (MRI) is one of the modern neuroimaging methods. This technique ensures analysis of structural cerebral changes, vascular and metabolic characteristics of brain tumors. It is necessary to standardize imaging parameters and unify protocols and methods considering a widespread use of MRI for brain tumors. In our practice, we use our own experience, world literature data and evidence-based international guidelines on the diagnosis of various brain diseases. The purpose of this review is to study the modern principles of magnetic resonance imaging in adults with brain tumors in neurosurgical practice.
Collapse
Affiliation(s)
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E I Shults
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A N Tyurina
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A A Baev
- Burdenko Neurosurgical Center, Moscow, Russia
| | - L M Fadeeva
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
7
|
Lahiri A, Fessler JA, Hernandez-Garcia L. Optimizing MRF-ASL scan design for precise quantification of brain hemodynamics using neural network regression. Magn Reson Med 2020; 83:1979-1991. [PMID: 31751497 PMCID: PMC9280864 DOI: 10.1002/mrm.28051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/13/2019] [Accepted: 10/05/2019] [Indexed: 01/02/2023]
Abstract
PURPOSE Arterial Spin Labeling (ASL) is a quantitative, non-invasive alternative for perfusion imaging that does not use contrast agents. The magnetic resonance fingerprinting (MRF) framework can be adapted to ASL to estimate multiple physiological parameters simultaneously. In this work, we introduce an optimization scheme to increase the sensitivity of the ASL fingerprint. We also propose a regression based estimation framework for MRF-ASL. METHODS To improve the sensitivity of MRF-ASL signals to underlying parameters, we optimized ASL labeling durations using the Cramer-Rao Lower Bound (CRLB). This paper also proposes a neural network regression based estimation framework trained using noisy synthetic signals generated from our ASL signal model. We tested our methods in silico and in vivo, and compared with multiple post labeling delay (multi-PLD) ASL and unoptimized MRF-ASL. We present comparisons of estimated maps for the six parameters of our signal model. RESULTS The scan design process facilitated precise estimates of multiple hemodynamic parameters and tissue properties from a single scan, in regions of normal gray and white matter, as well as regions with anomalous perfusion activity in the brain. In particular, there was a 86.7% correlation of perfusion estimates with the ground truth in silico, using our proposed techniques. In vivo, there was roughly a 7 fold improvement in the Coefficient of Variation (CoV) for white matter perfusion, and 2 fold improvement in gray matter perfusion CoV in comparison to a reference Multi PLD method. The regression based estimation approach provided perfusion estimates rapidly, with estimation times of around 1s per map. CONCLUSIONS Scan design optimization, coupled with regression-based estimation is a powerful tool for improving precision in MRF-ASL.
Collapse
Affiliation(s)
- Anish Lahiri
- Department of Electrical and Computer Engineering, University of Michigan
| | - Jeffrey A Fessler
- Department of Electrical and Computer Engineering, University of Michigan
| | | |
Collapse
|
8
|
Leeuwis AE, Hooghiemstra AM, Bron EE, Kuipers S, Oudeman EA, Kalay T, Brunner-La Rocca HP, Kappelle LJ, van Oostenbrugge RJ, Greving JP, Niessen WJ, van Buchem MA, van Osch MJP, van Rossum AC, Prins ND, Biessels GJ, Barkhof F, van der Flier WM. Cerebral blood flow and cognitive functioning in patients with disorders along the heart-brain axis: Cerebral blood flow and the heart-brain axis. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12034. [PMID: 32995468 PMCID: PMC7507476 DOI: 10.1002/trc2.12034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION We examined the role of hemodynamic dysfunction in cognition by relating cerebral blood flow (CBF), measured with arterial spin labeling (ASL), to cognitive functioning, in patients with heart failure (HF), carotid occlusive disease (COD), and patients with cognitive complaints and vascular brain injury on magnetic resonance imaging (MRI; ie, possible vascular cognitive impairment [VCI]). METHODS We included 439 participants (124 HF; 75 COD; 127 possible VCI; 113 reference participants) from the Dutch multi-center Heart-Brain Study. We used pseudo-continuous ASL to estimate whole-brain and regional partial volume-corrected CBF. Neuropsychological tests covered global cognition and four cognitive domains. RESULTS CBF values were lowest in COD, followed by VCI and HF, compared to reference participants. This did not explain cognitive impairment, as we did not find an association between CBF and cognitive functioning. DISCUSSION We found that reduced CBF is not the major explanatory factor underlying cognitive impairment in patients with hemodynamic dysfunction along the heart-brain axis.
Collapse
Affiliation(s)
- Anna E Leeuwis
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
| | - Astrid M Hooghiemstra
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
- Department of Medical Humanities Amsterdam UMC Amsterdam Public Health Research Institute VU University Medical Center Amsterdam the Netherlands
| | - Esther E Bron
- Biomedical Imaging Group Rotterdam Erasmus MC Departments of Medical Informatics and Radiology & Nuclear Medicine Rotterdam the Netherlands
| | - Sanne Kuipers
- Department of Neurology UMC Utrecht Brain Center University Medical Center Utrecht Utrecht the Netherlands
| | - Eline A Oudeman
- Department of Neurology UMC Utrecht Brain Center University Medical Center Utrecht Utrecht the Netherlands
| | - Tugba Kalay
- Department of Neurology Maastricht University Medical Center Maastricht the Netherlands
| | | | - L Jaap Kappelle
- Department of Neurology UMC Utrecht Brain Center University Medical Center Utrecht Utrecht the Netherlands
| | | | - Jacoba P Greving
- Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht the Netherlands
| | - Wiro J Niessen
- Biomedical Imaging Group Rotterdam Erasmus MC Departments of Medical Informatics and Radiology & Nuclear Medicine Rotterdam the Netherlands
- Imaging Physics Applied Sciences Delft University of Technology Delft the Netherlands
| | - Mark A van Buchem
- Department of Radiology Leiden University Medical Center Leiden the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI Department of Radiology Leiden University Medical Center Leiden the Netherlands
| | - Albert C van Rossum
- Department of Cardiology Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
| | - Niels D Prins
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
| | - Geert-Jan Biessels
- Department of Neurology UMC Utrecht Brain Center University Medical Center Utrecht Utrecht the Netherlands
| | - Frederik Barkhof
- UCL Institutes of Neurology and Healthcare Engineering London United Kingdom
- Department of Radiology and Nuclear Medicine Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
- Department of Epidemiology Amsterdam UMC Vrije Universiteit Amsterdam Amsterdam the Netherlands
| |
Collapse
|
9
|
Zhang N, Qin J, Yan J, Zhu Y, Xu Y, Zhu X, Ju S, Li Y. Increased ASL-CBF in the right amygdala predicts the first onset of depression in healthy young first-degree relatives of patients with major depression. J Cereb Blood Flow Metab 2020; 40:54-66. [PMID: 31272311 PMCID: PMC6928554 DOI: 10.1177/0271678x19861909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Healthy first-degree relatives of patients with major depression are at an elevated risk of developing depression, and regional cerebral blood flow (CBF) alterations are observed in patients with depression. Therefore, in a 33-month follow-up study, we used arterial spin labeling-magnetic resonance imaging (ASL-MRI) to investigate quantitative CBF before and after the diagnosis of depression in healthy young adults with and without first-degree relatives with major depression (FH + and FH-, respectively). In cross-sectional and longitudinal CBF comparisons, CBF in the right amygdala was increased or decreased. Additionally, a significant correlation was observed between the altered CBF in the right amygdala and the scores on the 17-item Hamilton Depression Rating Scale (HDRS) in the FH + group. Furthermore, logistic regression and receiver operating characteristic curve analyses showed that increased CBF in the right amygdala at baseline predicted the subsequent onset of depression in the FH + group. Our results suggest that among healthy young adults with a familial risk of depression, those who exhibit increased CBF in the amygdala are susceptible to developing this disease.
Collapse
Affiliation(s)
- Ningning Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jiasheng Qin
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuhao Xu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, China
| | - Yuefeng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, China
| |
Collapse
|
10
|
Intravascular signal suppression and microvascular signal mapping using delays alternating with nutation for tailored excitation (DANTE) pulse for arterial spin labeling perfusion imaging. MAGMA (NEW YORK, N.Y.) 2019; 33:367-376. [PMID: 31625029 DOI: 10.1007/s10334-019-00785-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To optimize the delays alternating with nutation for tailored excitation (DANTE) pulse as a vascular crushing gradient to eliminate macro-and micro-vascular signals and to generate a macrovascular space-related map by applying DANTE with multiple conditions. MATERIALS AND METHODS Numerical simulation was performed to estimate the optimal flip angle (FA) of the DANTE. A phantom study was conducted to evaluate the impact of the FA and gradient area (GA) of the DANTE with three flow velocities and various parameters of the DANTE. Finally, an in vivo study was performed to assess the optimal DANTE parameters and to map the estimated macrovascular signal of the arterial spin labeling (ASL) signal. RESULTS Numerical simulation revealed that the decrease of magnetization plateaued at 12.5° of FA. The phantom study showed that the setting of larger FA or GA decreased the ASL signals. The decrease of the ASL signal depended on the flow velocity, and the dependence increased with decreasing GA. The in vivo study revealed that larger FA and GA decreased the perfusion signal. DISCUSSION An optimized DANTE makes it possible to efficiently suppress the macro-and-micro vascular signals depending on the flow velocity. Moreover, macrovascular signal mapping may be useful to assess altered hemodynamic states.
Collapse
|
11
|
Wright KL, Jiang Y, Ma D, Noll DC, Griswold MA, Gulani V, Hernandez-Garcia L. Estimation of perfusion properties with MR Fingerprinting Arterial Spin Labeling. Magn Reson Imaging 2018; 50:68-77. [PMID: 29545215 DOI: 10.1016/j.mri.2018.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/10/2018] [Indexed: 12/22/2022]
Abstract
In this study, the acquisition of ASL data and quantification of multiple hemodynamic parameters was explored using a Magnetic Resonance Fingerprinting (MRF) approach. A pseudo-continuous ASL labeling scheme was used with pseudo-randomized timings to acquire the MRF ASL data in a 2.5 min acquisition. A large dictionary of MRF ASL signals was generated by combining a wide range of physical and hemodynamic properties with the pseudo-random MRF ASL sequence and a two-compartment model. The acquired signals were matched to the dictionary to provide simultaneous quantification of cerebral blood flow, tissue time-to-peak, cerebral blood volume, arterial time-to-peak, B1, and T1. A study in seven healthy volunteers resulted in the following values across the population in grey matter (mean ± standard deviation): cerebral blood flow of 69.1 ± 6.1 ml/min/100 g, arterial time-to-peak of 1.5 ± 0.1 s, tissue time-to-peak of 1.5 ± 0.1 s, T1 of 1634 ms, cerebral blood volume of 0.0048 ± 0.0005. The CBF measurements were compared to standard pCASL CBF estimates using a one-compartment model, and a Bland-Altman analysis showed good agreement with a minor bias. Repeatability was tested in five volunteers in the same exam session, and no statistical difference was seen. In addition to this validation, the MRF ASL acquisition's sensitivity to the physical and physiological parameters of interest was studied numerically.
Collapse
Affiliation(s)
- Katherine L Wright
- Dept. of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA.
| | - Yun Jiang
- Dept. of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA
| | - Dan Ma
- Dept. of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA
| | - Douglas C Noll
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mark A Griswold
- Dept. of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA; Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Vikas Gulani
- Dept. of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA; Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
12
|
Bansal V, Kumar S, Sharma S, Sharma S, Sood RG. Usefulness of Pulsed Arterial Spin Labeling Magnetic Resonance Imaging in New-onset Seizure Patients and Its Comparison with Dynamic Susceptibility Contrast Magnetic Resonance Imaging. J Neurosci Rural Pract 2017; 8:569-574. [PMID: 29204016 PMCID: PMC5709879 DOI: 10.4103/jnrp.jnrp_141_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction Dynamic susceptibility contrast (DSC) perfusion and pulsed arterial spin labeling (PASL) imaging are newer advanced magnetic resonance sequences which are capable of detecting vascular changes in patients with new-onset seizure disorder even when no significant abnormalities are visualized on conventional sequences. The purpose of our study is to establish utility of arterial spin labeling (ASL) in new-onset seizure patients and compare ASL with DSC perfusion sequence. Materials and Methods Twenty-six patients coming to emergency department with new-onset seizure disorder were evaluated using DSC and ASL sequence. Perfusion asymmetry was assessed using region of interests taken at places where signal asymmetry was maximal. Results PASL sequence showed focal vascular changes in form of hyperperfusion in four patients, hypoperfusion in nine patients, and normal perfusion in 13 patients. Altered perfusion whether hypo/hyperperfusion was detected in five out of 16 patients even when conventional sequences were normal. There was strong positive linear correlation between ASL and DSC with P = 0.001. Conclusion Noninvasive PASL is capable of detecting vascular changes induced by seizure and is comparable to DSC sequence. Thus, it is recommended when there is a need for repeated evaluations; in follow-up/therapy response assessment and when contrast administration is contraindicated.
Collapse
Affiliation(s)
- Varun Bansal
- Department of Radio-Diagnosis, IGMC, Shimla, Himachal Pradesh, India
| | - Suresh Kumar
- Department of Radio-Diagnosis, IGMC, Shimla, Himachal Pradesh, India
| | - Sudhir Sharma
- Department of Neurology, IGMC, Shimla, Himachal Pradesh, India
| | - Sanjiv Sharma
- Department of Radio-Diagnosis, IGMC, Shimla, Himachal Pradesh, India
| | - R G Sood
- Department of Radio-Diagnosis, IGMC, Shimla, Himachal Pradesh, India
| |
Collapse
|
13
|
Pinker K, Shitano F, Sala E, Do RK, Young RJ, Wibmer AG, Hricak H, Sutton EJ, Morris EA. Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging 2017; 47:604-620. [PMID: 29095543 DOI: 10.1002/jmri.25870] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
With the genomic revolution in the early 1990s, medical research has been driven to study the basis of human disease on a genomic level and to devise precise cancer therapies tailored to the specific genetic makeup of a tumor. To match novel therapeutic concepts conceived in the era of precision medicine, diagnostic tests must be equally sufficient, multilayered, and complex to identify the relevant genetic alterations that render cancers susceptible to treatment. With significant advances in training and medical imaging techniques, image analysis and the development of high-throughput methods to extract and correlate multiple imaging parameters with genomic data, a new direction in medical research has emerged. This novel approach has been termed radiogenomics. Radiogenomics aims to correlate imaging characteristics (ie, the imaging phenotype) with gene expression patterns, gene mutations, and other genome-related characteristics and is designed to facilitate a deeper understanding of tumor biology and capture the intrinsic tumor heterogeneity. Ultimately, the goal of radiogenomics is to develop imaging biomarkers for outcome that incorporate both phenotypic and genotypic metrics. Due to the noninvasive nature of medical imaging and its ubiquitous use in clinical practice, the field of radiogenomics is rapidly evolving and initial results are encouraging. In this article, we briefly discuss the background and then summarize the current role and the potential of radiogenomics in brain, liver, prostate, gynecological, and breast tumors. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;47:604-620.
Collapse
Affiliation(s)
- Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Austria
| | - Fuki Shitano
- Department of Radiology, Body Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Evis Sala
- Department of Radiology, Body Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Richard K Do
- Department of Radiology, Body Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert J Young
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andreas G Wibmer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elizabeth J Sutton
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elizabeth A Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
14
|
Villanueva-Meyer JE, Mabray MC, Cha S. Current Clinical Brain Tumor Imaging. Neurosurgery 2017; 81:397-415. [PMID: 28486641 PMCID: PMC5581219 DOI: 10.1093/neuros/nyx103] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/23/2017] [Indexed: 01/12/2023] Open
Abstract
Neuroimaging plays an ever evolving role in the diagnosis, treatment planning, and post-therapy assessment of brain tumors. This review provides an overview of current magnetic resonance imaging (MRI) methods routinely employed in the care of the brain tumor patient. Specifically, we focus on advanced techniques including diffusion, perfusion, spectroscopy, tractography, and functional MRI as they pertain to noninvasive characterization of brain tumors and pretreatment evaluation. The utility of both structural and physiological MRI in the post-therapeutic brain evaluation is also reviewed with special attention to the challenges presented by pseudoprogression and pseudoresponse.
Collapse
Affiliation(s)
- Javier E. Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California San Francisco, San Francisco, California
| | - Marc C. Mabray
- Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California San Francisco, San Francisco, California
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California San Francisco, San Francisco, California
| |
Collapse
|
15
|
Griffith B, Jain R. Perfusion Imaging in Neuro-Oncology: Basic Techniques and Clinical Applications. Magn Reson Imaging Clin N Am 2017; 24:765-779. [PMID: 27742116 DOI: 10.1016/j.mric.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Perfusion imaging is a method for assessing the flow of blood occurring at the tissue level and can be accomplished by both CT and MR perfusion techniques. The use of perfusion imaging has increased substantially in the past decade, particularly in neuro-oncologic imaging, where it is has been used for brain tumor grading and directing biopsies or targeted therapy, as well as for the evaluation of treatment response and disease progression. This article discusses the basic principles and techniques of perfusion imaging, as well as its applications in neuro-oncology.
Collapse
Affiliation(s)
- Brent Griffith
- Department of Radiology, Henry Ford Health System, Detroit, MI, USA.
| | - Rajan Jain
- NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Yoon AJ, Do HP, Cen S, Fong MW, Saremi F, Barr ML, Nayak KS. Assessment of segmental myocardial blood flow and myocardial perfusion reserve by adenosine-stress myocardial arterial spin labeling perfusion imaging. J Magn Reson Imaging 2017; 46:413-420. [DOI: 10.1002/jmri.25604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/05/2016] [Indexed: 01/19/2023] Open
Affiliation(s)
- Andrew J. Yoon
- Department of Medicine, Division of Cardiology, Keck School of Medicine of USC; University of Southern California; Los Angeles California USA
| | - Hung Phi Do
- Department of Physics and Astronomy; University of Southern California; Los Angeles California USA
| | - Steven Cen
- Department of Radiology, Keck School of Medicine of USC; University of Southern California; Los Angeles California USA
| | - Michael W. Fong
- Department of Medicine, Division of Cardiology, Keck School of Medicine of USC; University of Southern California; Los Angeles California USA
| | - Farhood Saremi
- Department of Radiology, Keck School of Medicine of USC; University of Southern California; Los Angeles California USA
| | - Mark L. Barr
- Department of Cardiothoracic Surgery, Keck School of Medicine of USC; University of Southern California; Los Angeles California USA
| | - Krishna S. Nayak
- Ming Hsieh Department of Electrical Engineering; University of Southern California; Los Angeles California USA
| |
Collapse
|
17
|
Kong L, Chen H, Yang Y, Chen L. A meta-analysis of arterial spin labelling perfusion values for the prediction of glioma grade. Clin Radiol 2016; 72:255-261. [PMID: 27932251 DOI: 10.1016/j.crad.2016.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 07/23/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Abstract
AIM To investigate the ability of arterial spin labelling (ASL) perfusion parameters to distinguish high-grade from low-grade gliomas. MATERIALS AND METHODS The PubMed and EMBASE databases were systematically searched for relevant articles published up to September 2015. Studies that evaluated both high- and low-grade gliomas using ASL were included. The random effect model was used to calculate the standardised mean difference (SMD) of maximum mean absolute tumour blood flow values (aTBFmax, aTBFmean) and maximum mean relative tumour blood flow (rTBFmax, rTBFmean) between high- and low-grade gliomas. RESULTS Nine studies encompassing 305 patients with high- and low-grade gliomas, met all inclusion and exclusion criteria and were included in the study. Compared with low-grade gliomas, high-grade gliomas had a significant increase in all ASL perfusion values: aTBFmax (SMD=0.70, 95% confidence interval [CI]: 0.22-1.19, p=0.0046); aTBFmean (SMD=0.86, 95% CI: 0.2-1.52, p=0.01); rTBFmax (SMD=1.08, 95% CI: 0.54-1.63, p=0.0001) and rTBFmean (SMD=0.88, 95% CI: 0.35-1.4, p=0.0011). CONCLUSIONS The current study results indicate that tumour blood flow from ASL differs significantly with respect to the glioma grade. Despite some limitations, there is evidence that ASL may be useful to distinguish high- and low-grade gliomas. Further larger-scale studies are necessary to examine the utility of ASL to distinguish tumour grade.
Collapse
Affiliation(s)
- L Kong
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - H Chen
- Department of Anesthesiology, Nanjing General Hospital of Nanjing Military Command, Nanjing 210002, China
| | - Y Yang
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - L Chen
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei 230031, China.
| |
Collapse
|
18
|
|
19
|
Chen G, Lei D, Ren J, Zuo P, Suo X, Wang DJJ, Wang M, Zhou D, Gong Q. Patterns of postictal cerebral perfusion in idiopathic generalized epilepsy: a multi-delay multi-parametric arterial spin labelling perfusion MRI study. Sci Rep 2016; 6:28867. [PMID: 27374369 PMCID: PMC4931466 DOI: 10.1038/srep28867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/06/2016] [Indexed: 02/05/2023] Open
Abstract
The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective.
Collapse
Affiliation(s)
- Guangxiang Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.,Department of Radiology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jiechuan Ren
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Panli Zuo
- Siemens Healthcare, MR Collaborations NE Asia, Beijing, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | | | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital &the People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
20
|
Arterial Spin Labeling Techniques 2009-2014. J Med Imaging Radiat Sci 2016; 47:98-107. [PMID: 31047171 DOI: 10.1016/j.jmir.2015.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/03/2015] [Accepted: 08/18/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE Arterial spin labeling (ASL) techniques have been implemented across a diverse range of clinical and experimental applications. This review aims to evaluate the current feasibility of ASL in clinical neuroradiology based on recent improvements to ASL sequences and highlight areas for potential clinical applications. METHODS AND MATERIALS In December 2014, a literature search was conducted on PubMed Central, EMBASE, and Scopus using the search terms: "arterial spin labeling, neuroradiology," for studies published between 2009 and 2014 (inclusive). Of 483 studies matching the inclusion criteria, the number of studies using continuous, pseudocontinuous, pulsed, and velocity-selective ASL sequences was 42, 209, 226, and 3, respectively. Studies were classified based on several common clinical applications according to the type of ASL sequence used. Studies using pulsed ASL and pseudo-continuous ASL were grouped based on common sequences. RESULTS The number of clinical studies was 264. Numerous studies applied ASL to stroke management (43 studies), drug testing (21 studies), neurodegenerative diseases (40 studies), and psychiatric disorders (26 studies). CONCLUSIONS This review discusses several factors hindering the implementation of clinical ASL and ASL-related radiofrequency safety issues encountered in clinical practice. However, a limited number of search terms were used. Further development of robust sequences with multislice imaging capabilities and reduced radiofrequency energy deposition will hopefully improve the clinical acceptance of ASL.
Collapse
|
21
|
Labriffe M, Ter Minassian A, Pasco-Papon A, N’Guyen S, Aubé C. Feasibility and validity of monitoring subarachnoid hemorrhage by a noninvasive MRI imaging perfusion technique: Pulsed Arterial Spin Labeling (PASL). J Neuroradiol 2015; 42:358-67. [DOI: 10.1016/j.neurad.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/17/2015] [Accepted: 04/01/2015] [Indexed: 02/03/2023]
|
22
|
Fällmar D, Lilja J, Velickaite V, Danfors T, Lubberink M, Ahlgren A, van Osch MJ, Kilander L, Larsson EM. Visual Assessment of Brain Perfusion MRI Scans in Dementia: A Pilot Study. J Neuroimaging 2015; 26:324-30. [DOI: 10.1111/jon.12296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 11/27/2022] Open
Affiliation(s)
- David Fällmar
- Department of Surgical Sciences/Radiology; Uppsala University; Uppsala Sweden
| | - Johan Lilja
- Department of Surgical Sciences/Nuclear Medicine and PET; Uppsala University; Uppsala Sweden
| | - Vilma Velickaite
- Department of Surgical Sciences/Radiology; Uppsala University; Uppsala Sweden
| | - Torsten Danfors
- Department of Surgical Sciences/Nuclear Medicine and PET; Uppsala University; Uppsala Sweden
| | - Mark Lubberink
- Department of Surgical Sciences/Nuclear Medicine and PET; Uppsala University; Uppsala Sweden
| | - André Ahlgren
- Department of Medical Radiation Physics; Lund University; Lund Sweden
| | - Matthias J.P. van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology; Leiden University Medical Center; Leiden the Netherlands
| | - Lena Kilander
- Department of Public Health and Caring Sciences/Geriatrics; Uppsala University; Uppsala Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences/Radiology; Uppsala University; Uppsala Sweden
| |
Collapse
|
23
|
García-Figueiras R, Padhani AR, Beer AJ, Baleato-González S, Vilanova JC, Luna A, Oleaga L, Gómez-Caamaño A, Koh DM. Imaging of Tumor Angiogenesis for Radiologists—Part 1: Biological and Technical Basis. Curr Probl Diagn Radiol 2015; 44:407-24. [DOI: 10.1067/j.cpradiol.2015.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 01/09/2023]
|
24
|
Griffith B, Jain R. Perfusion imaging in neuro-oncology: basic techniques and clinical applications. Radiol Clin North Am 2015; 53:497-511. [PMID: 25953286 DOI: 10.1016/j.rcl.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Perfusion imaging is a method for assessing the flow of blood occurring at the tissue level and can be accomplished by both CT and MR perfusion techniques. The use of perfusion imaging has increased substantially in the past decade, particularly in neuro-oncologic imaging, where it is has been used for brain tumor grading and directing biopsies or targeted therapy, as well as for the evaluation of treatment response and disease progression. This article discusses the basic principles and techniques of perfusion imaging, as well as its applications in neuro-oncology.
Collapse
Affiliation(s)
- Brent Griffith
- Department of Radiology, Henry Ford Health System, Detroit, MI, USA.
| | - Rajan Jain
- NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
25
|
Hsu FC, Raffield LM, Hugenschmidt CE, Cox A, Xu J, Carr JJ, Freedman BI, Maldjian JA, Williamson JD, Bowden DW. Relationships between Cognitive Performance, Neuroimaging and Vascular Disease: The DHS-MIND Study. Neuroepidemiology 2015; 45:1-11. [PMID: 26185004 DOI: 10.1159/000435775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus increases the risk of cognitive decline and dementia, and elevated burdens of vascular disease are hypothesized to contribute to this risk. These relationships were examined in the Diabetes Heart Study-MIND using a battery of cognitive tests, neuroimaging measures and subclinical cardiovascular disease (CVD) burden assessed by coronary artery calcified (CAC) plaque. We hypothesized that CAC would attenuate the association between neuroimaging measures and cognition performance. METHODS Associations were examined using marginal models in this family-based cohort of 572 European Americans from 263 families. All models were adjusted for age, gender, education, type 2 diabetes and hypertension, with some neuroimaging measures additionally adjusted for intracranial volume. RESULTS Higher total brain volume was associated with better performance on the Digit Symbol Substitution Task and Semantic Fluency (both p ≤ 7.0 × 10(-4)). Higher gray matter volume was associated with better performance on the Modified Mini-Mental State Examination and Semantic Fluency (both p ≤ 9.0 × 10(-4)). Adjusting for CAC caused minimal changes to the results. CONCLUSIONS Relationships exist between neuroimaging measures and cognitive performance in a type 2 diabetes-enriched European American cohort. Associations were minimally attenuated after adjusting for subclinical CVD. Additional work is needed to understand how subclinical CVD burden interacts with other factors and impacts relationships between neuroimaging and cognitive testing measures.
Collapse
Affiliation(s)
- Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, N.C., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fazlollahi A, Bourgeat P, Liang X, Meriaudeau F, Connelly A, Salvado O, Calamante F. Reproducibility of multiphase pseudo-continuous arterial spin labeling and the effect of post-processing analysis methods. Neuroimage 2015; 117:191-201. [PMID: 26026814 DOI: 10.1016/j.neuroimage.2015.05.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022] Open
Abstract
Arterial spin labeling (ASL) is an emerging MRI technique for non-invasive measurement of cerebral blood flow (CBF). Compared to invasive perfusion imaging modalities, ASL suffers from low sensitivity due to poor signal-to-noise ratio (SNR), susceptibility to motion artifacts and low spatial resolution, all of which limit its reliability. In this work, the effects of various state of the art image processing techniques for addressing these ASL limitations are investigated. A processing pipeline consisting of motion correction, ASL motion correction imprecision removal, temporal and spatial filtering, partial volume effect correction, and CBF quantification was developed and assessed. To further improve the SNR for pseudo-continuous ASL (PCASL) by accounting for errors in tagging efficiency, the data from multiphase (MP) acquisitions were analyzed using a novel weighted-averaging scheme. The performances of each step in terms of SNR and reproducibility were evaluated using test-retest ASL data acquired from 12 young healthy subjects. The proposed processing pipeline was shown to improve the within-subject coefficient of variation and regional reproducibility by 17% and 16%, respectively, compared to CBF maps computed following motion correction but without the other processing steps. The CBF measurements of MP-PCASL compared to PCASL had on average 23% and 10% higher SNR and reproducibility, respectively.
Collapse
Affiliation(s)
- Amir Fazlollahi
- CSIRO Digital Productivity Flagship, The Australian e-Health Research Centre, Herston, QLD, Australia; Le2I, University of Burgundy, Le Creusot, France.
| | - Pierrick Bourgeat
- CSIRO Digital Productivity Flagship, The Australian e-Health Research Centre, Herston, QLD, Australia
| | - Xiaoyun Liang
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | | | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Olivier Salvado
- CSIRO Digital Productivity Flagship, The Australian e-Health Research Centre, Herston, QLD, Australia
| | - Fernando Calamante
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Chen J, Zhao B, Bu C, Xie G. Relationship between the hemodynamic changes on multi-Td pulsed arterial spin labeling images and the degrees of cerebral artery stenosis. Magn Reson Imaging 2014; 32:1277-83. [DOI: 10.1016/j.mri.2014.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 07/11/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022]
|
28
|
Raffield LM, Cox AJ, Hugenschmidt CE, Freedman BI, Langefeld CD, Williamson JD, Hsu FC, Maldjian JA, Bowden DW. Heritability and genetic association analysis of neuroimaging measures in the Diabetes Heart Study. Neurobiol Aging 2014; 36:1602.e7-15. [PMID: 25523635 DOI: 10.1016/j.neurobiolaging.2014.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/15/2014] [Indexed: 12/24/2022]
Abstract
Patients with type 2 diabetes are at increased risk of age-related cognitive decline and dementia. Neuroimaging measures such as white matter lesion volume, brain volume, and fractional anisotropy may reflect the pathogenesis of these cognitive declines, and genetic factors may contribute to variability in these measures. This study examined multiple neuroimaging measures in 465 participants from 238 families with extensive genotype data in the type 2 diabetes enriched Diabetes Heart Study-Mind cohort. Heritability of these phenotypes and their association with candidate single-nucleotide polymorphisms (SNPs), and SNP data from genome- and exome-wide arrays were explored. All neuroimaging measures analyzed were significantly heritable (ĥ(2) = 0.55-0.99 in unadjusted models). Seventeen candidate SNPs (from 16 genes/regions) associated with neuroimaging phenotypes in prior studies showed no significant evidence of association. A missense variant (rs150706952, A432V) in PLEKHG4B from the exome-wide array was significantly associated with white matter mean diffusivity (p = 3.66 × 10(-7)) and gray matter mean diffusivity (p = 2.14 × 10(-7)). This analysis suggests genetic factors contribute to variation in neuroimaging measures in a population enriched for metabolic disease and other associated comorbidities.
Collapse
Affiliation(s)
- Laura M Raffield
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amanda J Cox
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christina E Hugenschmidt
- Department of Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barry I Freedman
- Department of Internal Medicine-Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jeff D Williamson
- Department of Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joseph A Maldjian
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
29
|
Svolos P, Kousi E, Kapsalaki E, Theodorou K, Fezoulidis I, Kappas C, Tsougos I. The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: a review and future perspectives. Cancer Imaging 2014; 14:20. [PMID: 25609475 PMCID: PMC4331825 DOI: 10.1186/1470-7330-14-20] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 12/31/2022] Open
Abstract
The role of conventional Magnetic Resonance Imaging (MRI) in the detection of cerebral tumors has been well established. However its excellent soft tissue visualization and variety of imaging sequences are in many cases non-specific for the assessment of brain tumor grading. Hence, advanced MRI techniques, like Diffusion-Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI) and Dynamic-Susceptibility Contrast Imaging (DSCI), which are based on different contrast principles, have been used in the clinical routine to improve diagnostic accuracy. The variety of quantitative information derived from these techniques provides significant structural and functional information in a cellular level, highlighting aspects of the underlying brain pathophysiology. The present work, reviews physical principles and recent results obtained using DWI/DTI and DSCI, in tumor characterization and grading of the most common cerebral neoplasms, and discusses how the available MR quantitative data can be utilized through advanced methods of analysis, in order to optimize clinical decision making.
Collapse
|
30
|
Do HP, Jao TR, Nayak KS. Myocardial arterial spin labeling perfusion imaging with improved sensitivity. J Cardiovasc Magn Reson 2014; 16:15. [PMID: 24467918 PMCID: PMC3913326 DOI: 10.1186/1532-429x-16-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myocardial arterial spin labeling (ASL) is a noninvasive MRI based technique that is capable of measuring myocardial blood flow (MBF) in humans. It suffers from poor sensitivity to MBF due to high physiological noise (PN). This study aims to determine if the sensitivity of myocardial ASL to MBF can be improved by reducing image acquisition time, via parallel imaging. METHODS Myocardial ASL scans were performed in 7 healthy subjects at rest using flow-sensitive alternating inversion recovery (FAIR) tagging and balanced steady state free precession (SSFP) imaging. Sensitivity encoding (SENSE) with a reduction factor of 2 was used to shorten each image acquisition from roughly 300 ms per heartbeat to roughly 150 ms per heartbeat. A paired Student's t-test was performed to compare measurements of myocardial blood flow (MBF) and physiological noise (PN) from the reference and accelerated methods. RESULTS The measured PN (mean ± standard deviation) was 0.20 ± 0.08 ml/g/min for the reference method and 0.08 ± 0.05 ml/g/min for the accelerated method, corresponding to a 60% reduction. PN measured from the accelerated method was found to be significantly lower than that of the reference method (p=0.0059). There was no significant difference between MBF measured from the accelerated and reference ASL methods (p=0.7297). CONCLUSIONS In this study, significant PN reduction was achieved by shortening the acquisition window using parallel imaging with no significant impact on the measured MBF. This indicates an improvement in sensitivity to MBF and may also enable the imaging of subjects with higher heart rates and imaging during systole.
Collapse
Affiliation(s)
- Hung Phi Do
- Department of Physics and Astronomy, University of Southern California, 3740 McClintock Ave, EEB 400, Los Angeles, CA 90089-2564, USA
| | - Terrence R Jao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Wong EC. An introduction to ASL labeling techniques. J Magn Reson Imaging 2014; 40:1-10. [PMID: 24424918 DOI: 10.1002/jmri.24565] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/16/2013] [Indexed: 11/10/2022] Open
Abstract
Arterial spin labeling (ASL) methods allow for quantitative mapping of tissue perfusion in absolute units, without the use of contrast agents. In this technique, the magnetization of arterial blood water is labeled by magnetic inversion or saturation, and the delivery of labeled blood water to tissues is observed. In this review three classes of labeling methods for ASL are described and compared: continuous, pulsed, and velocity-selective. The quantification of perfusion from ASL data is discussed, and methods for the extraction of new types of information using ASL and related techniques, such as mapping of vascular territories or venous oxygenation, are described.
Collapse
Affiliation(s)
- Eric C Wong
- Departments of Radiology and Psychiatry, University of California, San Diego, La Jolla, California
| |
Collapse
|
32
|
Liu Z, Liao H, Yin J, Li Y. Using R2* values to evaluate brain tumours on magnetic resonance imaging: Preliminary results. Eur Radiol 2013; 24:693-702. [DOI: 10.1007/s00330-013-3057-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
|
33
|
Kim T, Shin W, Zhao T, Beall EB, Lowe MJ, Bae KT. Whole brain perfusion measurements using arterial spin labeling with multiband acquisition. Magn Reson Med 2013; 70:1653-61. [PMID: 23878098 DOI: 10.1002/mrm.24880] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 11/07/2022]
Abstract
PURPOSE The multiband (MB) excitation and reconstruction technique was both developed and evaluated for accelerated data acquisition of arterial spin labeling (ASL) to cover whole brain perfusion maps. THEORY AND METHODS MB excitation was incorporated into a pulsed ASL (PASL) technique and compared with conventional single-band excitation PASL from healthy subjects, using a 32-channel head receiver coil at 3 T. The MB de-aliasing performance and effectiveness in perfusion measurement were measured with varying MB acceleration factors and gaps between MB excitations. RESULTS The MB PASL perfusion maps were in good agreement with the conventional single-band PASL maps at matched slices. The imaging coverage could be effectively extended with the MB technique by a factor up to 5. A gap as small as 3 cm between MB excitations resulted in a comparable ASL signal loss and temporal-signal-to-noise ratio with single-band PASL. CONCLUSION The MB ASL technique is an effective method to evaluate whole brain perfusion because it minimizes the temporal spread of labeled spins across slices, resulting in more accurate perfusion measurements.
Collapse
Affiliation(s)
- Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|