1
|
Leach BI, Lister D, Adams SR, Bykowski J, Schwartz AB, McConville P, Dimant H, Ahrens ET. Cryo-Fluorescence Tomography as a Tool for Visualizing Whole-Body Inflammation Using Perfluorocarbon Nanoemulsion Tracers. Mol Imaging Biol 2024; 26:888-898. [PMID: 39023693 DOI: 10.1007/s11307-024-01926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE We explore the use of intravenously delivered fluorescent perfluorocarbon (PFC) nanoemulsion tracers and multi-spectral cryo-fluorescence tomography (CFT) for whole-body tracer imaging in murine inflammation models. CFT is an emerging technique that provides high-resolution, three-dimensional mapping of probe localization in intact animals and tissue samples, enabling unbiased validation of probe biodistribution and minimizes reliance on laborious histological methods employing discrete tissue panels, where disseminated populations of PFC-labeled cells may be overlooked. This methodology can be used to streamline the development of new generations of non-invasive, cellular-molecular imaging probes for in vivo imaging. PROCEDURES Mixtures of nanoemulsions with different fluorescent emission wavelengths were administered intravenously to naïve mice and models of acute inflammation, colitis, and solid tumor. Mice were euthanized 24 h post-injection, frozen en bloc, and imaged at high resolution (~ 50 µm voxels) using CFT at multiple wavelengths. RESULTS PFC nanoemulsions were visualized using CFT within tissues of the reticuloendothelial system and inflammatory lesions, consistent with immune cell (macrophage) labeling, as previously reported in in vivo magnetic resonance and nuclear imaging studies. The CFT signals show pronounced differences among fluorescence wavelengths and tissues, presumably due to autofluorescence, differential fluorescence quenching, and scattering of incident and emitted light. CONCLUSIONS CFT is an effective and complementary methodology to in vivo imaging for validating PFC nanoemulsion biodistribution at high spatial localization, bridging the resolution gap between in vivo imaging and histology.
Collapse
Affiliation(s)
- Benjamin I Leach
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Stephen R Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Julie Bykowski
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Amy B Schwartz
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | - Eric T Ahrens
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Ali S, Bolinger AA, Zhou J. Highlights on Fluorine-containing Drugs Approved by U.S. FDA in 2023. Curr Top Med Chem 2024; 24:843-849. [PMID: 38445700 PMCID: PMC11418091 DOI: 10.2174/0115680266300245240223070242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Fluorine continues to show its potential applications in drug discovery and development, as reflected by twelve drugs being fluorinated out of the fifty-five approved by the FDA in 2023. This concise review highlights the discovery of each of these fluorine-containing drugs in the past year, including its brand name, date of approval, composition, sponsors, indication, and mechanism of action. The relevant future trend is also briefly discussed.
Collapse
Affiliation(s)
- Saghir Ali
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, United States
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, United States
| |
Collapse
|
3
|
Ali S, Zhou J. Highlights on U.S. FDA-approved fluorinated drugs over the past five years (2018-2022). Eur J Med Chem 2023; 256:115476. [PMID: 37207534 PMCID: PMC10247436 DOI: 10.1016/j.ejmech.2023.115476] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
The objective of this review is to provide an update on the fluorine-containing drugs approved by U.S. Food and Drug Administration in the span of past five years (2018-2022). The agency accepted a total of fifty-eight fluorinated entities to diagnose, mitigate and treat a plethora of diseases. Among them, thirty drugs are for therapy of various types of cancers, twelve for infectious diseases, eleven for CNS disorders, and six for some other diseases. These are categorized and briefly discussed based on their therapeutic areas. In addition, this review gives a glimpse about their trade name, date of approval, active ingredients, company developers, indications, and drug mechanisms. We anticipate that this review may inspire the drug discovery and medicinal chemistry community in both industrial and academic settings to explore the fluorinated molecules leading to the discovery of new drugs in the near future.
Collapse
Affiliation(s)
- Saghir Ali
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX, 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX, 77555, United States.
| |
Collapse
|
4
|
Kakaei N, Amirian R, Azadi M, Mohammadi G, Izadi Z. Perfluorocarbons: A perspective of theranostic applications and challenges. Front Bioeng Biotechnol 2023; 11:1115254. [PMID: 37600314 PMCID: PMC10436007 DOI: 10.3389/fbioe.2023.1115254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/15/2023] [Indexed: 08/22/2023] Open
Abstract
Perfluorocarbon (PFC) are biocompatible compounds, chemically and biologically inert, and lacks toxicity as oxygen carriers. PFCs nanoemulsions and nanoparticles (NPs) are highly used in diagnostic imaging and enable novel imaging technology in clinical imaging modalities to notice and image pathological and physiological alterations. Therapeutics with PFCs such as the innovative approach to preventing thrombus formation, PFC nanodroplets utilized in ultrasonic medication delivery in arthritis, or PFC-based NPs such as Perfluortributylamine (PFTBA), Pentafluorophenyl (PFP), Perfluorohexan (PFH), Perfluorooctyl bromide (PFOB), and others, recently become renowned for oxygenating tumors and enhancing the effects of anticancer treatments as oxygen carriers for tumor hypoxia. In this review, we will discuss the recent advancements that have been made in PFC's applications in theranostic (therapeutics and diagnostics) as well as assess the benefits and drawbacks of these applications.
Collapse
Affiliation(s)
- Nasrin Kakaei
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Azadi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Duan Z, Liu C, Tang J, Zhang R, Peng D, Lu R, Cao Z, Wu D. Fluorinated hydrogel nanoparticles with regulable fluorine contents and T2 relaxation times as 19F MRI contrast agents. RSC Adv 2023; 13:22335-22345. [PMID: 37497094 PMCID: PMC10366653 DOI: 10.1039/d3ra02827e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Medical imaging contrast agents that are able to provide detailed biological information have attracted increasing attention. Among the new emerging imaging contrast agents, 19F magnetic resonance imaging contrast agents (19F MRI CAs) are extremely promising for their weak background disturbing signal from the body. However, to prepare 19F MRI CAs with a long T2 relaxation time and excellent biocompatibility in a simple and highly effective strategy is still a challenge. Herein, we report a new type of 19F MRI hydrogel nanocontrast agents (19F MRI HNCAs) synthesized by a surfactant-free emulsion polymerization with commercial fluorinated monomers. The T2 relaxation time of 19F MRI HNCA-1 was found to be 25-40 ms, guaranteeing its good imaging ability in vitro. In addition, according to an investigation into the relationship between the fluorine content and 19F MRI signal intensity, the 19F MRI signal intensity was not only determined by the fluorine content in 19F MRI HNCAs but also by the hydration microenvironment around the fluorine atoms. Moreover, 19F MRI HNCAs demonstrated excellent biocompatibility and imaging capability inside cells. The primary exploration demonstrated that 19F MRI HNCAs as a new type of 19F MRI contrast agent hold potential for imaging lesion sites and tracking cells in vivo by 19F MRI technology.
Collapse
Affiliation(s)
- Ziwei Duan
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Changjiang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Ruling Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Danfeng Peng
- Shenzhen International Institute for Biomedical Research Shenzhen 518109 China
| | - Ruitao Lu
- Shenzhen International Institute for Biomedical Research Shenzhen 518109 China
| | - Zong Cao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| |
Collapse
|
6
|
Alhaidari LM, Spain SG. Synthesis of 5-Fluorouracil Polymer Conjugate and 19F NMR Analysis of Drug Release for MRI Monitoring. Polymers (Basel) 2023; 15:polym15071778. [PMID: 37050392 PMCID: PMC10097235 DOI: 10.3390/polym15071778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
To monitor the release of fluorinated drugs from polymeric carriers, a novel 19F MRI enzyme-responsive contrast agent was developed and tested. This contrast agent was prepared by conjugation of 5-fluorouracil (5-FU) to hyperbranched poly(N,N-dimethylacrylamide) (HB-PDMA) via an enzyme-degradable peptide linker. Due to the different molecular sizes, the release of 5-FU from the 5-FU polymer conjugate resulted in a sufficiently substantial difference in spin-spin T2 19F NMR/MRI relaxation time that enabled differentiating between attached and released drug states. The 5-FU polymer conjugate exhibited a broad signal and short T2 relaxation time under 19F NMR analysis. Incubation with the enzyme induced the release of 5-FU, accompanied by an extension of T2 relaxation times and an enhancement in the 19F MRI signal. This approach is promising for application in the convenient monitoring of 5-FU drug release and can be used to monitor the release of other fluorinated drugs.
Collapse
Affiliation(s)
- Laila M. Alhaidari
- Department of Chemistry, Faculty of Science, University of Majmaah, Majmaah 11952, Saudi Arabia
| | - Sebastian G. Spain
- Department of Chemistry, Dainton Building, University of Sheffield, Sheffield S3 7HF, UK
| |
Collapse
|
7
|
Sancho-Albero M, Ayaz N, Sebastian V, Chirizzi C, Encinas-Gimenez M, Neri G, Chaabane L, Luján L, Martin-Duque P, Metrangolo P, Santamaría J, Baldelli Bombelli F. Superfluorinated Extracellular Vesicles for In Vivo Imaging by 19F-MRI. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8974-8985. [PMID: 36780137 PMCID: PMC9951174 DOI: 10.1021/acsami.2c20566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 06/01/2023]
Abstract
Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication and have great potential as efficient delivery vectors. However, a better understanding of EV in vivo behavior is hampered by the limitations of current imaging tools. In addition, chemical labels present the risk of altering the EV membrane features and, thus, in vivo behavior. 19F-MRI is a safe bioimaging technique providing selective images of exogenous probes. Here, we present the first example of fluorinated EVs containing PERFECTA, a branched molecule with 36 magnetically equivalent 19F atoms. A PERFECTA emulsion is given to the cells, and PERFECTA-containing EVs are naturally produced. PERFECTA-EVs maintain the physicochemical features, morphology, and biological fingerprint as native EVs but exhibit an intense 19F-NMR signal and excellent 19F relaxation times. In vivo 19F-MRI and tumor-targeting capabilities of stem cell-derived PERFECTA-EVs are also proved. We propose PERFECTA-EVs as promising biohybrids for imaging biodistribution and delivery of EVs throughout the body.
Collapse
Affiliation(s)
- María Sancho-Albero
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50009 Zaragoza, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Nazeeha Ayaz
- Laboratory
of Supramolecular and Bio-Nanomaterials (SupraBioNano Lab), Department
of Chemistry, Materials and Chemical Engineering, “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy
| | - Victor Sebastian
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50009 Zaragoza, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Cristina Chirizzi
- Laboratory
of Supramolecular and Bio-Nanomaterials (SupraBioNano Lab), Department
of Chemistry, Materials and Chemical Engineering, “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy
- Experimental
Neurology (INSPE) and Experimental Imaging Center (CIS), Neuroscience
Division, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Miguel Encinas-Gimenez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50009 Zaragoza, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Giulia Neri
- Laboratory
of Supramolecular and Bio-Nanomaterials (SupraBioNano Lab), Department
of Chemistry, Materials and Chemical Engineering, “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy
| | - Linda Chaabane
- Experimental
Neurology (INSPE) and Experimental Imaging Center (CIS), Neuroscience
Division, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Lluís Luján
- Department
of Animal Pathology, University of Zaragoza, 50009 Zaragoza, Spain
- Instituto
Universitario de Investigación Mixto Agroalimentario de Aragón
(IA2), University of Zaragoza, 50009 Zaragoza, Spain
| | - Pilar Martin-Duque
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Instituto
Aragonés de Ciencias de la Salud (IACS) /IIS Aragón, Zaragoza 5009, Spain
- Fundación
Araid, 50018 Zaragoza, Spain
| | - Pierangelo Metrangolo
- Laboratory
of Supramolecular and Bio-Nanomaterials (SupraBioNano Lab), Department
of Chemistry, Materials and Chemical Engineering, “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy
| | - Jesús Santamaría
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50009 Zaragoza, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Francesca Baldelli Bombelli
- Laboratory
of Supramolecular and Bio-Nanomaterials (SupraBioNano Lab), Department
of Chemistry, Materials and Chemical Engineering, “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy
| |
Collapse
|
8
|
Zhu L, Li Y, Jiang M, Ke C, Long H, Qiu M, Zhang L, Ye C, Zhou X, Jiang ZX, Chen S. Self-Assembly of Precisely Fluorinated Albumin for Dual Imaging-Guided Synergistic Chemo-Photothermal-Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2665-2678. [PMID: 36604154 DOI: 10.1021/acsami.2c19161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although albumin has been extensively used in nanomedicine, it is still challenging to fluorinate albumin into fluorine-19 magnetic resonance imaging (19F MRI)-traceable theranostics because existing strategies lead to severe 19F signal splitting, line broadening, and low 19F MRI sensitivity. To this end, 34-cysteine-selectively fluorinated bovine serum albumins (BSAs) with a sharp singlet 19F peak have been developed as 19F MRI-sensitive and self-assembled frameworks for cancer theranostics. It was found that fluorinated albumin with a non-binding fluorocarbon and a long linker is crucial for avoiding 19F signal splitting and line broadening. With the fluorinated BSAs, paclitaxel (PTX) and IR-780 were self-assembled into stable, monodisperse, and multifunctional nanoparticles in a framework-promoted self-emulsion way. The high tumor accumulation, efficient cancer cell uptake, and laser-triggered PTX sharp release of the BSA nanoparticles enabled 19F MRI-near infrared fluorescence imaging (NIR FLI)-guided synergistic chemotherapy (Chemo), photothermal and photodynamic therapy of xenograft MCF-7 cancer with a high therapeutical index in mice. This study developed a rational synthesis of 19F MRI-sensitive albumin and a framework-promoted self-emulsion of multifunctional BSA nanoparticles, which would promote the development of protein-based high-performance biomaterials for imaging, diagnosis, therapy, and beyond.
Collapse
Affiliation(s)
- Lijun Zhu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Yu Li
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Mou Jiang
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Changsheng Ke
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Hanxiong Long
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Maosong Qiu
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Lei Zhang
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Chaohui Ye
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Xin Zhou
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
9
|
Tang T, Zhu Q, Liu S, Dai H, Li Y, Tang C, Chen K, Jiang M, Zhu L, Zhou X, Chen S, Zheng Z, Jiang ZX. 19F MRI-fluorescence imaging dual-modal cell tracking with partially fluorinated nanoemulsions. Front Bioeng Biotechnol 2022; 10:1049750. [DOI: 10.3389/fbioe.2022.1049750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
As a noninvasive “hot-spot” imaging technology, fluorine-19 magnetic resonance imaging (19F MRI) has been extensively used in cell tracking. However, the peculiar physicochemical properties of perfluorocarbons (PFCs), the most commonly used 19F MRI agents, sometimes cause low sensitivity, poor cell uptake, and misleading results. In this study, a partially fluorinated agent, perfluoro-tert-butyl benzyl ether, was used to formulate a 19F MRI-fluorescence imaging (FLI) dual-modal nanoemulsion for cell tracking. Compared with PFCs, the partially fluorinated agent showed considerably improved physicochemical properties, such as lower density, shorter longitudinal relaxation times, and higher solubility to fluorophores, while maintaining high 19F MRI sensitivity. After being formulated into stable, monodisperse, and paramagnetic Fe3+-promoted nanoemulsions, the partially fluorinated agent was used in 19F MRI-FLI dual imaging tracking of lung cancer A549 cells and macrophages in an inflammation mouse model.
Collapse
|
10
|
Dong Z, Liang P, Guan G, Yin B, Wang Y, Yue R, Zhang X, Song G. Overcoming Hypoxia‐Induced Ferroptosis Resistance via a
19
F/
1
H‐MRI Traceable Core‐Shell Nanostructure. Angew Chem Int Ed Engl 2022; 61:e202206074. [DOI: 10.1002/anie.202206074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Peng Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
11
|
Chen J, Pal P, Ahrens ET. Enhanced detection of paramagnetic fluorine-19 magnetic resonance imaging agents using zero echo time sequence and compressed sensing. NMR IN BIOMEDICINE 2022; 35:e4725. [PMID: 35262991 PMCID: PMC10655826 DOI: 10.1002/nbm.4725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Fluorine-19 (19 F) magnetic resonance imaging (MRI) is an emerging technique offering specific detection of labeled cells in vivo. Lengthy acquisition times and modest signal-to-noise ratio (SNR) makes three-dimensional spin-density-weighted 19 F imaging challenging. Recent advances in tracer paramagnetic metallo-perfluorocarbon (MPFC) nanoemulsion probes have shown multifold SNR improvements due to an accelerated 19 F T1 relaxation rate and a commensurate gain in imaging speed and averages. However, 19 F T2 -reduction and increased linewidth limit the amount of metal additive in MPFC probes, thus constraining the ultimate SNR. To overcome these barriers, we describe a compressed sampling (CS) scheme, implemented using a "zero" echo time (ZTE) sequence, with data reconstructed via a sparsity-promoting algorithm. Our CS-ZTE scheme acquires k-space data using an undersampled spherical radial pattern and signal averaging. Image reconstruction employs off-the-shelf sparse solvers to solve a joint total variation and l 1 -norm regularized least square problem. To evaluate CS-ZTE, we performed simulations and acquired 19 F MRI data at 11.7 T in phantoms and mice receiving MPFC-labeled dendritic cells. For MPFC-labeled cells in vivo, we show SNR gains of ~6.3 × with 8-fold undersampling. We show that this enhancement is due to three mechanisms including undersampling and commensurate increase in signal averaging in a fixed scan time, denoising attributes from the CS algorithm, and paramagnetic reduction of T1 . Importantly, 19 F image intensity analyses yield accurate estimates of absolute quantification of 19 F spins. Overall, the CS-ZTE method using MPFC probes achieves ultrafast imaging, a substantial boost in detection sensitivity, accurate 19 F spin quantification, and minimal image artifacts.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA
| | - Piya Pal
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA
| | - Eric T. Ahrens
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Gawne P, Man F, Blower PJ, T. M. de Rosales R. Direct Cell Radiolabeling for in Vivo Cell Tracking with PET and SPECT Imaging. Chem Rev 2022; 122:10266-10318. [PMID: 35549242 PMCID: PMC9185691 DOI: 10.1021/acs.chemrev.1c00767] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 02/07/2023]
Abstract
The arrival of cell-based therapies is a revolution in medicine. However, its safe clinical application in a rational manner depends on reliable, clinically applicable methods for determining the fate and trafficking of therapeutic cells in vivo using medical imaging techniques─known as in vivo cell tracking. Radionuclide imaging using single photon emission computed tomography (SPECT) or positron emission tomography (PET) has several advantages over other imaging modalities for cell tracking because of its high sensitivity (requiring low amounts of probe per cell for imaging) and whole-body quantitative imaging capability using clinically available scanners. For cell tracking with radionuclides, ex vivo direct cell radiolabeling, that is, radiolabeling cells before their administration, is the simplest and most robust method, allowing labeling of any cell type without the need for genetic modification. This Review covers the development and application of direct cell radiolabeling probes utilizing a variety of chemical approaches: organic and inorganic/coordination (radio)chemistry, nanomaterials, and biochemistry. We describe the key early developments and the most recent advances in the field, identifying advantages and disadvantages of the different approaches and informing future development and choice of methods for clinical and preclinical application.
Collapse
Affiliation(s)
- Peter
J. Gawne
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Francis Man
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
- Institute
of Pharmaceutical Science, School of Cancer
and Pharmaceutical Sciences, King’s College London, London, SE1 9NH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| |
Collapse
|
13
|
Joseph JM, Gigliobianco MR, Firouzabadi BM, Censi R, Di Martino P. Nanotechnology as a Versatile Tool for 19F-MRI Agent's Formulation: A Glimpse into the Use of Perfluorinated and Fluorinated Compounds in Nanoparticles. Pharmaceutics 2022; 14:382. [PMID: 35214114 PMCID: PMC8874484 DOI: 10.3390/pharmaceutics14020382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simultaneously being a non-radiative and non-invasive technique makes magnetic resonance imaging (MRI) one of the highly sought imaging techniques for the early diagnosis and treatment of diseases. Despite more than four decades of research on finding a suitable imaging agent from fluorine for clinical applications, it still lingers as a challenge to get the regulatory approval compared to its hydrogen counterpart. The pertinent hurdle is the simultaneous intrinsic hydrophobicity and lipophobicity of fluorine and its derivatives that make them insoluble in any liquids, strongly limiting their application in areas such as targeted delivery. A blossoming technique to circumvent the unfavorable physicochemical characteristics of perfluorocarbon compounds (PFCs) and guarantee a high local concentration of fluorine in the desired body part is to encapsulate them in nanosystems. In this review, we will be emphasizing different types of nanocarrier systems studied to encapsulate various PFCs and fluorinated compounds, headway to be applied as a contrast agent (CA) in fluorine-19 MRI (19F MRI). We would also scrutinize, especially from studies over the last decade, the different types of PFCs and their specific applications and limitations concerning the nanoparticle (NP) system used to encapsulate them. A critical evaluation for future opportunities would be speculated.
Collapse
Affiliation(s)
- Joice Maria Joseph
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | | | | | - Roberta Censi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
- Dipartimento di Farmacia, Università “G. D’Annunzio” Chieti e Pescara, 66100 Chieti, Italy
| |
Collapse
|
14
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
15
|
Švec P, Petrov OV, Lang J, Štěpnička P, Groborz O, Dunlop D, Blahut J, Kolouchová K, Loukotová L, Sedláček O, Heizer T, Tošner Z, Šlouf M, Beneš H, Hoogenboom R, Hrubý M. Fluorinated Ferrocene Moieties as a Platform for Redox-Responsive Polymer 19F MRI Theranostics. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavel Švec
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Oleg V. Petrov
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Jan Lang
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | | | - Ondřej Groborz
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - David Dunlop
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
- J. Heyrovský Institute of Physical Chemistry, CAS, Dolejškova 2155/3, Prague 8 182 23, Czech Republic
| | | | - Kristýna Kolouchová
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Lenka Loukotová
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Ondřej Sedláček
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | | | | | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
16
|
Shalaby N, Dubois VP, Ronald J. Molecular imaging of cellular immunotherapies in experimental and therapeutic settings. Cancer Immunol Immunother 2021; 71:1281-1294. [PMID: 34657195 PMCID: PMC9122865 DOI: 10.1007/s00262-021-03073-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Cell-based cancer immunotherapies are becoming a routine part of the armamentarium against cancer. While remarkable successes have been seen, including durable remissions, not all patients will benefit from these therapies and many can suffer from life-threatening side effects. These differences in efficacy and safety across patients and across tumor types (e.g., blood vs. solid), are thought to be due to differences in how well the immune cells traffic to their target tissue (e.g., tumor, lymph nodes, etc.) whilst avoiding non-target tissues. Across patient variability can also stem from whether the cells interact with (i.e., communicate with) their intended target cells (e.g., cancer cells), as well as if they proliferate and survive long enough to yield potent and long-lasting therapeutic effects. However, many cell-based therapies are monitored by relatively simple blood tests that lack any spatial information and do not reflect how many immune cells have ended up at particular tissues. The ex vivo labeling and imaging of infused therapeutic immune cells can provide a more precise and dynamic understanding of whole-body immune cell biodistribution, expansion, viability, and activation status in individual patients. In recent years numerous cellular imaging technologies have been developed that may provide this much-needed information on immune cell fate. For this review, we summarize various ex vivo labeling and imaging approaches that allow for tracking of cellular immunotherapies for cancer. Our focus is on clinical imaging modalities and summarize the progression from experimental to therapeutic settings. The imaging information provided by these technologies can potentially be used for many purposes including improved real-time understanding of therapeutic efficacy and potential side effects in individual patients after cell infusion; the ability to more readily compare new therapeutic cell designs to current designs for various parameters such as improved trafficking to target tissues and avoidance of non-target tissues; and the long-term ability to identify patient populations that are likely to be positive responders and at low-risk of side effects.
Collapse
Affiliation(s)
- Nourhan Shalaby
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Robarts Research Institute, London, Ontario, Canada
| | - Veronica Phyllis Dubois
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Robarts Research Institute, London, Ontario, Canada
| | - John Ronald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada. .,Robarts Research Institute, London, Ontario, Canada. .,Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
17
|
Helfer BM, Ponomarev V, Patrick PS, Blower PJ, Feitel A, Fruhwirth GO, Jackman S, Pereira Mouriès L, Park MVDZ, Srinivas M, Stuckey DJ, Thu MS, van den Hoorn T, Herberts CA, Shingleton WD. Options for imaging cellular therapeutics in vivo: a multi-stakeholder perspective. Cytotherapy 2021; 23:757-773. [PMID: 33832818 PMCID: PMC9344904 DOI: 10.1016/j.jcyt.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Cell-based therapies have been making great advances toward clinical reality. Despite the increase in trial activity, few therapies have successfully navigated late-phase clinical trials and received market authorization. One possible explanation for this is that additional tools and technologies to enable their development have only recently become available. To support the safety evaluation of cell therapies, the Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee, a multisector collaborative committee, polled the attendees of the 2017 International Society for Cell & Gene Therapy conference in London, UK, to understand the gaps and needs that cell therapy developers have encountered regarding safety evaluations in vivo. The goal of the survey was to collect information to inform stakeholders of areas of interest that can help ensure the safe use of cellular therapeutics in the clinic. This review is a response to the cellular imaging interests of those respondents. The authors offer a brief overview of available technologies and then highlight the areas of interest from the survey by describing how imaging technologies can meet those needs. The areas of interest include imaging of cells over time, sensitivity of imaging modalities, ability to quantify cells, imaging cellular survival and differentiation and safety concerns around adding imaging agents to cellular therapy protocols. The Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee believes that the ability to understand therapeutic cell fate is vital for determining and understanding cell therapy efficacy and safety and offers this review to aid in those needs. An aim of this article is to share the available imaging technologies with the cell therapy community to demonstrate how these technologies can accomplish unmet needs throughout the translational process and strengthen the understanding of cellular therapeutics.
Collapse
Affiliation(s)
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - P Stephen Patrick
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alexandra Feitel
- Formerly, Health and Environmental Sciences Institute, US Environmental Protection Agency, Washington, DC, USA
| | - Gilbert O Fruhwirth
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shawna Jackman
- Charles River Laboratories, Shrewsbury, Massachusetts, USA
| | | | - Margriet V D Z Park
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, the Netherlands; Cenya Imaging BV, Amsterdam, the Netherlands
| | - Daniel J Stuckey
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Mya S Thu
- Visicell Medical Inc, La Jolla, California, USA
| | | | | | | |
Collapse
|
18
|
Satija S, Sharma P, Kaur H, Dhanjal DS, Chopra RS, Khurana N, Vyas M, Sharma N, Tambuwala MM, Bakshi HA, Charbe NB, Zacconi FC, Chellappan DK, Dua K, Mehta M. Perfluorocarbons therapeutics in modern cancer nanotechnology for hypoxia-induced anti-tumor therapy. Curr Pharm Des 2021; 27:4376-4387. [PMID: 34459378 DOI: 10.2174/1381612827666210830100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
With an estimated failure rate of about 90%, immunotherapies that are intended for the treatment of solid tumors have caused an anomalous rise in the mortality rate over the past decades. It is apparent that resistance towards such therapies primarily occurs due to elevated levels of HIF-1 (Hypoxia-induced factor) in tumor cells, which are caused by disrupted microcirculation and diffusion mechanisms. With the advent of nanotechnology, several innovative advances were brought to the fore; and, one such promising direction is the use of perfluorocarbon nanoparticles in the management of solid tumors. Perfluorocarbon nanoparticles enhance the response of hypoxia-based agents (HBAs) within the tumor cells and have been found to augment the entry of HBAs into the tumor micro-environment. The heightened penetration of HBAs causes chronic hypoxia, thus aiding in the process of cell quiescence. In addition, this technology has also been applied in photodynamic therapy, where oxygen self-enriched photosensitizers loaded perfluorocarbon nanoparticles are employed. The resulting processes initiate a cascade, depleting tumour oxygen and turning it into a reactive oxygen species eventually to destroy the tumour cell. This review elaborates on the multiple applications of nanotechnology based perfluorocarbon formulations that are being currently employed in the treatment of tumour hypoxia.
Collapse
Affiliation(s)
- Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab. India
| | - Prabal Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab. India
| | - Harpreet Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab. India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and BioSciences, Lovely Professional University, Phagwara-144411, Punjab. India
| | - Reena Singh Chopra
- School of Bioengineering and BioSciences, Lovely Professional University, Phagwara-144411, Punjab. India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab. India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab. India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab. India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland. United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland. United Kingdom
| | - Nitin B Charbe
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 1010 West Avenue B, MSC 131, Kingsville, Texas, 78363. United States
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña McKenna 4860, 7820436 Macul, Santiago. Chile
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur. Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007. Australia
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab. India
| |
Collapse
|
19
|
Zambito G, Deng S, Haeck J, Gaspar N, Himmelreich U, Censi R, Löwik C, Di Martino P, Mezzanotte L. Fluorinated PLGA-PEG-Mannose Nanoparticles for Tumor-Associated Macrophage Detection by Optical Imaging and MRI. Front Med (Lausanne) 2021; 8:712367. [PMID: 34513879 PMCID: PMC8429784 DOI: 10.3389/fmed.2021.712367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) promote cancer growth and metastasis, but their role in tumor development needs to be fully understood due to the dynamic changes of tumor microenvironment (TME). Here, we report an approach to visualize TAMs by optical imaging and by Fluorine-19 (19F) magnetic resonance imaging (MRI) that is largely applied to track immune cells in vivo. TAMs are targeted with PLGA-PEG-mannose nanoparticles (NPs) encapsulating perfluoro-15-crown-5-ether (PFCE) as MRI contrast agent. These particles are preferentially recognized and phagocytized by TAMs that overexpress the mannose receptor (MRC1/CD206). The PLGA-PEG-mannose NPs are not toxic and they were up-taken by macrophages as confirmed by in vitro confocal microscopy. At 48 h after intravenous injection of PLGA-PEG-mannose NPs, 4T1 xenograft mice were imaged and fluorine-19 nuclear magnetic resonance confirmed nanoparticle retention at the tumor site. Because of the lack of 19F background in the body, observed 19F signals are robust and exhibit an excellent degree of specificity. In vivo imaging of TAMs in the TME by 19F MRI opens the possibility for detection of cancer at earlier stage and for prompt therapeutic interventions in solid tumors.
Collapse
Affiliation(s)
- Giorgia Zambito
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands
- Medres Medical Research GmBH, Cologne, Germany
| | - Siyuan Deng
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Joost Haeck
- Applied Molecular Imaging Facility of Erasmus MC (AMIE) Core Facility, Erasmus Medical Center, Rotterdam, Netherlands
| | - Natasa Gaspar
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands
- Percuros B.V., Enschede, Netherlands
| | - Uwe Himmelreich
- Biomedical MR Unit, Molecular Small Animal Imaging Center (MoSAIC), University of Leuven (KU Leuven), Leuven, Belgium
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Clemens Löwik
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
20
|
Rho J, Stares E, Adams SR, Lister D, Leach B, Ahrens ET. Paramagnetic Fluorinated Nanoemulsions for in vivo F-19 MRI. Mol Imaging Biol 2021; 22:665-674. [PMID: 31482414 DOI: 10.1007/s11307-019-01415-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE We aim to develop perfluorocarbon-based nanoemulsions with improved sensitivity for detection of inflammatory macrophages in situ using F-19 MRI. Towards this goal, we evaluate the feasibility of nanoemulsion formulation incorporating a metal chelate in the fluorous phase which shortens the F-19 longitudinal relaxation rate and image acquisition time. PROCEDURES Perfluorinated linear polymers were conjugated to metal-binding tris-diketonate, blended with unconjugated polymers, and emulsified in water. Phospholipid-based surfactant was used to stabilize nanoemulsion and provide biocompatibility. Nanoemulsions were metalated with the addition of ferric salt to the buffer. Physical stability of surfactant and nanoemulsion was evaluated by mass spectrometry and dynamic light scattering measurements. Nanoemulsions were injected intravenously into a murine granuloma inflammation model, and in vivo19F/1H MRI at 11.7 T was performed. RESULTS We demonstrated stability and biocompatibility of lipid-based paramagnetic nanoemulsions. We investigated potential oxidation of lipid in the presence of metal chelate. As a proof of concept, we performed non-invasive monitoring of macrophage burden in a murine inflammation model following intravenous injection of nanoemulsion using in vivo F-19 MRI. CONCLUSION Lipid-based nanoemulsion probes of perfluorocarbon synthesized with iron-binding fluorinated β-diketones can be formulated for intravenous delivery and inflammation detection in vivo.
Collapse
Affiliation(s)
- Junsung Rho
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr. #0695, La Jolla, CA, 92093-0695, USA
| | - Emma Stares
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr. #0695, La Jolla, CA, 92093-0695, USA
| | - Stephen R Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Deanne Lister
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr. #0695, La Jolla, CA, 92093-0695, USA
| | - Benjamin Leach
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr. #0695, La Jolla, CA, 92093-0695, USA
| | - Eric T Ahrens
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr. #0695, La Jolla, CA, 92093-0695, USA.
| |
Collapse
|
21
|
Kupče Ē, Mote KR, Webb A, Madhu PK, Claridge TDW. Multiplexing experiments in NMR and multi-nuclear MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 124-125:1-56. [PMID: 34479710 DOI: 10.1016/j.pnmrs.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 05/22/2023]
Abstract
Multiplexing NMR experiments by direct detection of multiple free induction decays (FIDs) in a single experiment offers a dramatic increase in the spectral information content and often yields significant improvement in sensitivity per unit time. Experiments with multi-FID detection have been designed with both homonuclear and multinuclear acquisition, and the advent of multiple receivers on commercial spectrometers opens up new possibilities for recording spectra from different nuclear species in parallel. Here we provide an extensive overview of such techniques, designed for applications in liquid- and solid-state NMR as well as in hyperpolarized samples. A brief overview of multinuclear MRI is also provided, to stimulate cross fertilization of ideas between the two areas of research (NMR and MRI). It is shown how such techniques enable the design of experiments that allow structure elucidation of small molecules from a single measurement. Likewise, in biomolecular NMR experiments multi-FID detection allows complete resonance assignment in proteins. Probes with multiple RF microcoils routed to multiple NMR receivers provide an alternative way of increasing the throughput of modern NMR systems, effectively reducing the cost of NMR analysis and increasing the information content at the same time. Solid-state NMR experiments have also benefited immensely from both parallel and sequential multi-FID detection in a variety of multi-dimensional pulse schemes. We are confident that multi-FID detection will become an essential component of future NMR methodologies, effectively increasing the sensitivity and information content of NMR measurements.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Andrew Webb
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Perunthiruthy K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
22
|
Imaging of Inflammation in Spinal Cord Injury: Novel Insights on the Usage of PFC-Based Contrast Agents. Biomedicines 2021; 9:biomedicines9040379. [PMID: 33916774 PMCID: PMC8065995 DOI: 10.3390/biomedicines9040379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/04/2022] Open
Abstract
Labeling of macrophages with perfluorocarbon (PFC)-based compounds allows the visualization of inflammatory processes by 19F-magnetic resonance imaging (19F-MRI), due to the absence of endogenous background. Even if PFC-labeling of monocytes/macrophages has been largely investigated and used, information is lacking about the impact of these agents over the polarization towards one of their cell subsets and on the best way to image them. In the present work, a PFC-based nanoemulsion was developed to monitor the course of inflammation in a model of spinal cord injury (SCI), a pathology in which the understanding of immunological events is of utmost importance to select the optimal therapeutic strategies. The effects of PFC over macrophage polarization were studied in vitro, on cultured macrophages, and in vivo, in a mouse SCI model, by testing and comparing various cell tracking protocols, including single and multiple administrations, the use of MRI or Point Resolved Spectroscopy (PRESS), and application of pre-saturation of Kupffer cells. The blood half-life of nanoemulsion was also investigated by 19F Magnetic Resonance Spectroscopy (MRS). In vitro and in vivo results indicate the occurrence of a switch towards the M2 (anti-inflammatory) phenotype, suggesting a possible theranostic function of these nanoparticles. The comparative work presented here allows the reader to select the most appropriate protocol according to the research objectives (quantitative data acquisition, visual monitoring of macrophage recruitment, theranostic purpose, rapid MRI acquisition, etc.). Finally, the method developed here to determine the blood half-life of the PFC nanoemulsion can be extended to other fluorinated compounds.
Collapse
|
23
|
Darçot E, Yerly J, Hilbert T, Colotti R, Najdenovska E, Kober T, Stuber M, van Heeswijk RB. Compressed sensing with signal averaging for improved sensitivity and motion artifact reduction in fluorine-19 MRI. NMR IN BIOMEDICINE 2021; 34:e4418. [PMID: 33002268 DOI: 10.1002/nbm.4418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Fluorine-19 (19 F) MRI of injected perfluorocarbon emulsions (PFCs) allows for the non-invasive quantification of inflammation and cell tracking, but suffers from a low signal-to-noise ratio and extended scan time. To address this limitation, we tested the hypotheses that a 19 F MRI pulse sequence that combines a specific undersampling regime with signal averaging has both increased sensitivity and robustness against motion artifacts compared with a non-averaged fully sampled pulse sequence, when both datasets are reconstructed with compressed sensing. As a proof of principle, numerical simulations and phantom experiments were performed on selected variable ranges to characterize the point spread function of undersampling patterns, as well as the vulnerability to noise of undersampling and reconstruction parameters with paired numbers of x signal averages and acceleration factor x (NAx-AFx). The numerical simulations demonstrated that a probability density function that uses 25% of the samples to fully sample the k-space central area allowed for an optimal balance between limited blurring and artifact incoherence. At all investigated noise levels, the Dice similarity coefficient (DSC) strongly depended on the regularization parameters and acceleration factor. In phantoms, the motion robustness of an NA8-AF8 undersampling pattern versus NA1-AF1 was evaluated with simulated and real motion patterns. Differences were assessed with the DSC, which was consistently higher for the NA8-AF8 compared with the NA1-AF1 strategy, for both simulated and real cyclic motion patterns (P < 0.001). Both strategies were validated in vivo in mice (n = 2) injected with perfluoropolyether. Here, the images displayed a sharper delineation of the liver with the NA8-AF8 strategy than with the NA1-AF1 strategy. In conclusion, we validated the hypotheses that in 19 F MRI the combination of undersampling and averaging improves both the sensitivity and the robustness against motion artifacts.
Collapse
Affiliation(s)
- Emeline Darçot
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Lausanne and Geneva, Switzerland
| | - Tom Hilbert
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Advanced Clinical Imaging Technology (HC CMEA SUI DI PI), Siemens Healthcare AG, Lausanne, Switzerland
- Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roberto Colotti
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Elena Najdenovska
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Lausanne and Geneva, Switzerland
| | - Tobias Kober
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Advanced Clinical Imaging Technology (HC CMEA SUI DI PI), Siemens Healthcare AG, Lausanne, Switzerland
- Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Lausanne and Geneva, Switzerland
| | - Ruud B van Heeswijk
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Lausanne and Geneva, Switzerland
| |
Collapse
|
24
|
Wu L, Liu F, Liu S, Xu X, Liu Z, Sun X. Perfluorocarbons-Based 19F Magnetic Resonance Imaging in Biomedicine. Int J Nanomedicine 2020; 15:7377-7395. [PMID: 33061385 PMCID: PMC7537992 DOI: 10.2147/ijn.s255084] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Fluorine-19 (19F) magnetic resonance (MR) molecular imaging is a promising noninvasive and quantitative molecular imaging approach with intensive research due to the high sensitivity and low endogenous background signal of the 19F atom in vivo. Perfluorocarbons (PFCs) have been used as blood substitutes since 1970s. More recently, a variety of PFC nanoparticles have been designed for the detection and imaging of physiological and pathological changes. These molecular imaging probes have been developed to label cells, target specific epitopes in tumors, monitor the prognosis and therapy efficacy and quantitate characterization of tumors and changes in tumor microenvironment noninvasively, therefore, significantly improving the prognosis and therapy efficacy. Herein, we discuss the recent development and applications of 19F MR techniques with PFC nanoparticles in biomedicine, with particular emphasis on ligand-targeted and quantitative 19F MR imaging approaches for tumor detection, oxygenation measurement, smart stimulus response and therapy efficacy monitoring, et al.
Collapse
Affiliation(s)
- Lina Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Fang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Shuang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xiuan Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Zhaoxi Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| |
Collapse
|
25
|
Sedlacek O, Jirak D, Vit M, Ziołkowska N, Janouskova O, Hoogenboom R. Fluorinated Water-Soluble Poly(2-oxazoline)s as Highly Sensitive 19F MRI Contrast Agents. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ondrej Sedlacek
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova, 2030, 128 40 Prague 2, Czech Republic
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Biophysics and Informatics, 1st Medicine Faculty, Charles University, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Martin Vit
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Faculty of Mechatronics Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Natalia Ziołkowska
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Biophysics and Informatics, 1st Medicine Faculty, Charles University, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Olga Janouskova
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
26
|
Zhang H, Ding W, Li S, Ya S, Li F, Qiu B. On-chip analysis of magnetically labeled cells with integrated cell sorting and counting techniques. Talanta 2020; 220:121351. [PMID: 32928389 DOI: 10.1016/j.talanta.2020.121351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 02/08/2023]
Abstract
In studies on cell therapies, cells often need to be magnetically labeled and then tracked using magnetic resonance imaging (MRI) techniques. To achieve good imaging performance on infused cells, the analysis of the sorted, labeled cells before infusion is necessary. Herein, we developed a microfluidic chip to quantitatively analyze magnetically labeled cells. The chip was equipped with a magnetophoresis-based cell sorting function and an impedance-based cell counting function. Using RAW264.7 macrophages, we confirmed the two functions of the chip, obtained the number and the magnetic loading distribution of the sorted, labeled cells, and ultimately demonstrated the broad applications of the chip in rapidly selecting a proper flow rate for the buffer solution in the cell sorting process, determining the total average magnetic loading of the labeled cells for the cell labeling process, and offering a necessary reference for the processing of the sorted cells for high performance in vivo imaging. This work provides an integrated lab-on-a-chip design for quantitatively analyzing magnetically labeled cells and thus can promote MRI-based cell-tracking studies.
Collapse
Affiliation(s)
- Hang Zhang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Weiping Ding
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Shibo Li
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shengnan Ya
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Fenfen Li
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| |
Collapse
|
27
|
Liu J, Fraire JC, De Smedt SC, Xiong R, Braeckmans K. Intracellular Labeling with Extrinsic Probes: Delivery Strategies and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000146. [PMID: 32351015 DOI: 10.1002/smll.202000146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/29/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Extrinsic probes have outstanding properties for intracellular labeling to visualize dynamic processes in and of living cells, both in vitro and in vivo. Since extrinsic probes are in many cases cell-impermeable, different biochemical, and physical approaches have been used to break the cell membrane barrier for direct delivery into the cytoplasm. In this Review, these intracellular delivery strategies are discussed, briefly explaining the mechanisms and how they are used for live-cell labeling applications. Methods that are discussed include three biochemical agents that are used for this purpose-purpose-different nanocarriers, cell penetrating peptides and the pore-foraming bacterial toxin streptolysin O. Most successful intracellular label delivery methods are, however, based on physical principles to permeabilize the membrane and include electroporation, laser-induced photoporation, micro- and nanoinjection, nanoneedles or nanostraws, microfluidics, and nanomachines. The strengths and weaknesses of each strategy are discussed with a systematic comparison provided. Finally, the extrinsic probes that are reported for intracellular labeling so-far are summarized, together with the delivery strategies that are used and their performance. This combined information should provide for a useful guide for choosing the most suitable delivery method for the desired probes.
Collapse
Affiliation(s)
- Jing Liu
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent, B-9000, Belgium
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent, B-9000, Belgium
| |
Collapse
|
28
|
Koshkina O, White PB, Staal AHJ, Schweins R, Swider E, Tirotta I, Tinnemans P, Fokkink R, Veltien A, van Riessen NK, van Eck ERH, Heerschap A, Metrangolo P, Baldelli Bombelli F, Srinivas M. Nanoparticles for "two color" 19F magnetic resonance imaging: Towards combined imaging of biodistribution and degradation. J Colloid Interface Sci 2020; 565:278-287. [PMID: 31978790 PMCID: PMC7058420 DOI: 10.1016/j.jcis.2019.12.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 12/17/2019] [Indexed: 01/10/2023]
Abstract
The use of polymeric nanoparticles (NPs) as therapeutics has been steadily increasing over past decades. In vivo imaging of NPs is necessary to advance the therapeutic performance. 19F Magnetic Resonance Imaging (19F MRI) offers multiple advantages for in vivo imaging. However, design of a probe for both biodistribution and degradation has not been realized yet. We developed polymeric NPs loaded with two fluorocarbons as promising imaging tools to monitor NP biodistribution and degradation by 19F MRI. These 200 nm NPs consist of poly(lactic-co-glycolic acid) (PLGA) loaded with perfluoro-15-crown-5 ether (PFCE) and PERFECTA. PERFECTA/PFCE-PLGA NPs have a fractal sphere structure, in which both fluorocarbons are distributed in the polymeric matrix of the fractal building blocks, which differs from PFCE-PLGA NPs and is unique for fluorocarbon-loaded colloids. This structure leads to changes of magnetic resonance properties of both fluorocarbons after hydrolysis of NPs. PERFECTA/PFCE-PLGA NPs are colloidally stable in serum and biocompatible. Both fluorocarbons show a single resonance in 19F MRI that can be imaged separately using different excitation pulses. In the future, these findings may be used for biodistribution and degradation studies of NPs by 19F MRI in vivo using "two color" labeling leading to improvement of drug delivery agents.
Collapse
Affiliation(s)
- Olga Koshkina
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26/28, 6525 GA Nijmegen, the Netherlands.
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Alexander H J Staal
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26/28, 6525 GA Nijmegen, the Netherlands
| | - Ralf Schweins
- Institut Laue - Langevin, DS/LSS, 71 Avenue des Martyrs, 38000 Grenoble
| | - Edyta Swider
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26/28, 6525 GA Nijmegen, the Netherlands
| | - Ilaria Tirotta
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Paul Tinnemans
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Remco Fokkink
- Department of Agrotechnology and Food Sciences, Physical Chemistry and Soft Matter, Wageningen University, 6708 WE Wageningen, Netherlands
| | - Andor Veltien
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - N Koen van Riessen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26/28, 6525 GA Nijmegen, the Netherlands
| | - Ernst R H van Eck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy.
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26/28, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
29
|
Jayapaul J, Schröder L. Nanoparticle-Based Contrast Agents for 129Xe HyperCEST NMR and MRI Applications. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9498173. [PMID: 31819739 PMCID: PMC6893250 DOI: 10.1155/2019/9498173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
Spin hyperpolarization techniques have enabled important advancements in preclinical and clinical MRI applications to overcome the intrinsic low sensitivity of nuclear magnetic resonance. Functionalized xenon biosensors represent one of these approaches. They combine two amplification strategies, namely, spin exchange optical pumping (SEOP) and chemical exchange saturation transfer (CEST). The latter one requires host structures that reversibly bind the hyperpolarized noble gas. Different nanoparticle approaches have been implemented and have enabled molecular MRI with 129Xe at unprecedented sensitivity. This review gives an overview of the Xe biosensor concept, particularly how different nanoparticles address various critical aspects of gas binding and exchange, spectral dispersion for multiplexing, and targeted reporter delivery. As this concept is emerging into preclinical applications, comprehensive sensor design will be indispensable in translating the outstanding sensitivity potential into biomedical molecular imaging applications.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
30
|
Lambert E, Gorantla VS, Janjic JM. Pharmaceutical design and development of perfluorocarbon nanocolloids for oxygen delivery in regenerative medicine. Nanomedicine (Lond) 2019; 14:2697-2712. [PMID: 31657273 DOI: 10.2217/nnm-2019-0260] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Perfluorocarbons (PFCs) have been investigated as oxygen carriers for several decades in varied biomedical applications. PFCs are chemically and biologically inert, temperature and storage stable, pose low to no infectious risk, can be commercially manufactured, and have well established gas transport properties. In this review, we highlight design and development strategies for their successful application in regenerative medicine, transplantation and organ preservation. Effective tissue preservation strategies are key to improving outcomes of extremity salvage and organ transplantation. Maintaining tissue integrity requires adequate oxygenation to support aerobic metabolism. The use of whole blood for oxygen delivery is fraught with limitations of poor shelf stability, infectious risk, religious exclusions and product shortages. Other agents also face clinical challenges in their implementation. As a solution, we discuss new ways of designing and developing PFC-based artificial oxygen carriers by implementing modern pharmaceutical quality by design and scale up manufacturing methodologies.
Collapse
Affiliation(s)
- Eric Lambert
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.,Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
| | - Vijay S Gorantla
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA.,AIRMED Program, 59th Medical Wing, United States Air Force, United States Army Institute of Surgical Research, San Antonio, TX 78234, USA
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.,Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA.,AIRMED Program, 59th Medical Wing, United States Air Force, United States Army Institute of Surgical Research, San Antonio, TX 78234, USA
| |
Collapse
|
31
|
Hingorani DV, Chapelin F, Stares E, Adams SR, Okada H, Ahrens ET. Cell penetrating peptide functionalized perfluorocarbon nanoemulsions for targeted cell labeling and enhanced fluorine-19 MRI detection. Magn Reson Med 2019; 83:974-987. [PMID: 31631402 DOI: 10.1002/mrm.27988] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE A bottleneck in developing cell therapies for cancer is assaying cell biodistribution, persistence, and survival in vivo. Ex vivo cell labeling using perfluorocarbon (PFC) nanoemulsions, paired with 19 F MRI detection, is a non-invasive approach for cell product detection in vivo. Lymphocytes are small and weakly phagocytic limiting PFC labeling levels and MRI sensitivity. To boost labeling, we designed PFC nanoemulsion imaging probes displaying a cell-penetrating peptide, namely the transactivating transcription sequence (TAT) of the human immunodeficiency virus. We report optimized synthesis schemes for preparing TAT co-surfactant to complement the common surfactants used in PFC nanoemulsion preparations. METHODS We performed ex vivo labeling of primary human chimeric antigen receptor (CAR) T cells with nanoemulsion. Intracellular labeling was validated using electron microscopy and confocal imaging. To detect signal enhancement in vivo, labeled CAR T cells were intra-tumorally injected into mice bearing flank glioma tumors. RESULTS By incorporating TAT into the nanoemulsion, a labeling efficiency of ~1012 fluorine atoms per CAR T cell was achieved that is a >8-fold increase compared to nanoemulsion without TAT while retaining high cell viability (~84%). Flow cytometry phenotypic assays show that CAR T cells are unaltered after labeling with TAT nanoemulsion, and in vitro tumor cell killing assays display intact cytotoxic function. The 19 F MRI signal detected from TAT-labeled CAR T cells was 8 times higher than cells labeled with PFC without TAT. CONCLUSION The peptide-PFC nanoemulsion synthesis scheme presented can significantly enhance cell labeling and imaging sensitivity and is generalizable for other targeted imaging probes.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Radiology, University of California San Diego, California
| | - Fanny Chapelin
- Department of Bioengineering, University of California San Diego, California
| | - Emma Stares
- Department of Radiology, University of California San Diego, California
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, California
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, California
| | - Eric T Ahrens
- Department of Radiology, University of California San Diego, California
| |
Collapse
|
32
|
Emerging quantitative MR imaging biomarkers in inflammatory arthritides. Eur J Radiol 2019; 121:108707. [PMID: 31707169 DOI: 10.1016/j.ejrad.2019.108707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/14/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE To review quantitative magnetic resonance imaging (qMRI) methods for imaging inflammation in connective tissues and the skeleton in inflammatory arthritis. This review is designed for a broad audience including radiologists, imaging technologists, rheumatologists and other healthcare professionals. METHODS We discuss the use of qMRI for imaging skeletal inflammation from both technical and clinical perspectives. We consider how qMRI can be targeted to specific aspects of the pathological process in synovium, cartilage, bone, tendons and entheses. Evidence for the various techniques from studies of both adults and children with inflammatory arthritis is reviewed and critically appraised. RESULTS qMRI has the potential to objectively identify, characterize and quantify inflammation of the connective tissues and skeleton in both adult and pediatric patients. Measurements of tissue properties derived using qMRI methods can serve as imaging biomarkers, which are potentially more reproducible and informative than conventional MRI methods. Several qMRI methods are nearing transition into clinical practice and may inform diagnosis and treatment decisions, with the potential to improve patient outcomes. CONCLUSIONS qMRI enables specific assessment of inflammation in synovium, cartilage, bone, tendons and entheses, and can facilitate a more consistent, personalized approach to diagnosis, characterisation and monitoring of disease.
Collapse
|
33
|
Wang C, Adams SR, Xu H, Zhu W, Ahrens ET. β‑Diketonate-Iron(III) Complex: A Versatile Fluorine-19 MRI Signal Enhancement Agent. ACS APPLIED BIO MATERIALS 2019; 2:3836-3842. [PMID: 33981964 DOI: 10.1021/acsabm.9b00455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorine-19 magnetic resonance imaging (MRI) has gained considerable momentum as a promising imaging modality for in vivo tracking of cellular therapies and as a diagnostic for inflammatory disease. To further the utility of this technique, we increase imaging probe sensitivity by merging paramagnetic metal chelates with aqueous perfluorocarbon (PFC) nanoemulsions. We prepared a highly fluorinated ferric tris(β-diketonate) chelate (MW = 1265.2 g/mol) at gram scale. This iron chelate is soluble in multiple PFC oils used for MRI and readily reduces the 19F longitudinal relaxation time (T 1) to <100 ms with modest line broadening and displays superior properties for 19F MRI applications. The sensitivity enhancement by Fe(III) laden PFC nanoemulsion was confirmed in MRI phantom studies, where reduced T 1 speeds data acquisition thereby increasing the 19F image sensitivity per time via signal averaging. Additionally, 19F relaxivity of nanoemulsions incorporating other metal ions, including Gd, Er, Ho, Dy, Mn, Cr, and Ni, were evaluated. High-moment lanthanide ions, such as Gd(III), display severe line broadening, but other ions [e.g., Ho(III)] induce pseudocontact chemical shifts (up to 0.5 ppm) of 19F in nanoemulsion, which makes them potentially useful for multichromatic 19F imaging. Formulated nanoemulsions have a shelf life >200 days. Free β-diketonate or its iron complex in formed PFC nanoemulsion did not induce cytotoxicity in intracellularly labeled macrophages. Overall, ferric tris(β-diketonate) chelate provides a scalable approach for boosting sensitivity of PFC-based 19F MRI probes. More generally, it can functionalize PFC oil, whose chemical modification remains challenging.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Stephen R Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Hongyan Xu
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Wenlian Zhu
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Eric T Ahrens
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
34
|
Ghuman H, Hitchens TK, Modo M. A systematic optimization of 19F MR image acquisition to detect macrophage invasion into an ECM hydrogel implanted in the stroke-damaged brain. Neuroimage 2019; 202:116090. [PMID: 31408717 DOI: 10.1016/j.neuroimage.2019.116090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023] Open
Abstract
19F-MR imaging of perfluorocarbon (PFC)-labeled macrophages can provide a unique insight into their participation and spatio-temporal dynamics of inflammatory events, such as the biodegradation of an extracellular matrix (ECM) hydrogel implanted into a stroke cavity. To determine the most efficient acquisition strategy for 19F-MR imaging, five commonly used sequences were optimized using a design of experiment (DoE) approach and compared based on their signal-to-noise ratio (SNR). The fast imaging with steady-state precession (FISP) sequence produced the most efficient detection of a 19F signal followed by the rapid acquisition with relaxation enhancement (RARE) sequence. The multi-slice multi-echo (MSME), fast low angle shot (FLASH), and zero echo time (ZTE) sequences were significantly less efficient. Imaging parameters (matrix/voxel size; slice thickness, number of averages) determined the accuracy (i.e. trueness and precision) of object identification by reducing partial volume effects, as determined by analysis of the point spread function (PSF). A 96 × 96 matrix size (0.35 mm3) produced the lowest limit of detection (LOD) for RARE (2.85 mM PFPE; 119 mM 19F) and FISP (0.43 mM PFPE; 18.1 mM 19F), with an SNR of 2 as the detection threshold. Imaging of a brain phantom with PFC-labeled macrophages invading an ECM hydrogel further illustrated the impact of these parameter changes. The systematic optimization of sequence and imaging parameters provides the framework for an accurate visualization of 19F-labeled macrophage distribution and density in the brain. This will enhance our understanding of the contribution of periphery-derived macrophages in bioscaffold degradation and its role in brain tissue regeneration.
Collapse
Affiliation(s)
- Harmanvir Ghuman
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Identification of Aquatic Organisms Using a Magneto-Optical Element. SENSORS 2019; 19:s19153254. [PMID: 31344849 PMCID: PMC6695713 DOI: 10.3390/s19153254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022]
Abstract
In recent advanced information society, it is important to individually identify products or living organisms automatically and quickly. However, with the current identifying technology such as RFID tag or biometrics, it is difficult to apply to amphibians such as frogs or newts because of its size, stability, weakness under a wet environment and so on. Thus, this research aims to establish a system that can trace small amphibians easily even in a wet environment and keep stable sensing for a long time. The magnetism was employed for identification because it was less influenced by water for a long time. Here, a novel magnetization-free micro-magnetic tag is proposed and fabricated with low cost for installation to a living target sensed by Magneto-Optical sensor for high throughput sensing. The sensing ability of the proposed method, which was evaluated by image analysis, indicated that it was less than half of the target value (1 mm) both in the water and air. The FEM analysis showed that it is approximately twice the actual identification ability under ideal conditions, which suggests that the actual sensing ability can be extended by further improvement of the sensing system. The developed magnetization-free micro-magnetic tag can contribute to keep up the increasing demand to identify a number of samples under a wet environment especially with the development of gene technology.
Collapse
|
36
|
Fluorinated MRI contrast agents and their versatile applications in the biomedical field. Future Med Chem 2019; 11:1157-1175. [DOI: 10.4155/fmc-2018-0463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MRI has been recognized as one of the most applied medical imaging techniques in clinical practice. However, the presence of background signal coming from water protons in surrounding tissues makes sometimes the visualization of local contrast agents difficult. To remedy this, fluorine has been introduced as a reliable perspective, thanks to its magnetic properties being relatively close to those of protons. In this review, we aim to give an overall description of fluorine incorporation in contrast agents for MRI. The different kinds of fluorinated probes such as perfluorocarbons, fluorinated dendrimers, polymers and paramagnetic probes will be described, as will their imaging applications such as chemical exchange saturation transfer (CEST) imaging, physico-chemical changes detection, drug delivery, cell tracking and inflammation or tumors detection.
Collapse
|
37
|
Liang S, Louchami K, Holvoet B, Verbeke R, Deroose CM, Manshian B, Soenen SJ, Lentacker I, Himmelreich U. Tri-modal In vivo Imaging of Pancreatic Islets Transplanted Subcutaneously in Mice. Mol Imaging Biol 2019; 20:940-951. [PMID: 29671177 DOI: 10.1007/s11307-018-1192-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Transplantation of pancreatic islets (PIs) is a promising therapeutic approach for type 1 diabetes. The main obstacle for this strategy is that the outcome of islet engraftment depends on the engraftment site. It was our aim to develop a strategy for using non-invasive imaging techniques to assess the location and fate of transplanted PIs longitudinally in vivo. PROCEDURES In order to overcome the limitations of individual imaging techniques and cross-validate findings by different modalities, we have combined fluorine magnetic resonance imaging (F-19 MRI), fluorescence imaging (FLI), and bioluminescent imaging (BLI) for studying subcutaneously transplanted PIs and beta cell-like cells (INS-1E cell line) in vivo. We optimized the transduction (using lentiviral vectors) and labeling procedures (using perfluoro crown ether nanoparticles with a fluorescence dye) for PIs and INS-1E cell imaging. RESULTS The feasibility of using the proposed imaging methods for PI assessment was demonstrated both in vitro and in vivo. Our data suggested that F-19 MRI is suitable for high-resolution localization of transplanted cells and PIs; FLI is essential for confirmation of contrast localization by histology; and BLI is a reliable method to assess cell viability and survival after transplantation. No significant side effects on cell viability and function have been observed. CONCLUSIONS The proposed tri-modal imaging platform is a valuable approach for the assessment of engrafted PIs in vivo. It is potentially suitable for comparing different transplantation sites and evaluating novel strategies for improving PI transplantation technique in the future.
Collapse
Affiliation(s)
- Sayuan Liang
- Biomedical MRI, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium.,Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium.,Philips Research China, Shanghai, China
| | - Karim Louchami
- Biomedical MRI, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium.,Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Bryan Holvoet
- Nuclear Medicine & Molecular Imaging, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | - Rein Verbeke
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Christophe M Deroose
- Nuclear Medicine & Molecular Imaging, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | - Bella Manshian
- Biomedical MRI, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | - Stefaan J Soenen
- Biomedical MRI, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | - Ine Lentacker
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium.
| |
Collapse
|
38
|
A dual 1H/19F birdcage coil for small animals at 7 T MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:79-87. [DOI: 10.1007/s10334-018-00733-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
|
39
|
Munkhbat O, Canakci M, Zheng S, Hu W, Osborne B, Bogdanov AA, Thayumanavan S. 19F MRI of Polymer Nanogels Aided by Improved Segmental Mobility of Embedded Fluorine Moieties. Biomacromolecules 2019; 20:790-800. [PMID: 30563327 PMCID: PMC6449047 DOI: 10.1021/acs.biomac.8b01383] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using fluorinated probes for 19F MRI imaging is an emerging field with potential utility in cellular imaging and cell tracking in vivo, which complements conventional 1H MRI. An attractive feature of 19F-based imaging is that this is a bio-orthogonal nucleus and the naturally abundant isotope is NMR active. A significant hurdle however in the 19F MRI arises from the tendency of organic macromolecules, with multiple fluorocarbon substitutions, to aggregate in the aqueous phase. This aggregation results in significant loss of sensitivity, because the T2 relaxation times of these aggregated 19F species tend to be significantly lower. In this report, we have developed a strategy to covalently trap nanoscopic states with an optimal degree of 19F substitutions, followed by significant enhancement in T2 relaxation times through increased segmental mobility of the side chain substituents facilitated by the stimulus-responsive elements in the polymeric nanogel. In addition to NMR relaxation time based evaluations, the ability to obtain such signals are also evaluated in mouse models. The propensity of these nanoscale assemblies to encapsulate hydrophobic drug molecules and the availability of surfaces for convenient introduction of fluorescent labels suggest the potential of these nanoscale architectures for use in multimodal imaging and therapeutic applications.
Collapse
Affiliation(s)
- Oyuntuya Munkhbat
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Mine Canakci
- Molecular and Cellular Biology Program , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Shaokuan Zheng
- Department of Radiology and the Laboratory of Molecular Imaging Probes and The Chemical Biology Interface Program , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Weiguo Hu
- Department of Polymer Science and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Barbara Osborne
- Molecular and Cellular Biology Program , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- The Center for Bioactive Delivery, Institute for Applied Life Sciences , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Alexei A Bogdanov
- Department of Radiology and the Laboratory of Molecular Imaging Probes and The Chemical Biology Interface Program , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - S Thayumanavan
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- Molecular and Cellular Biology Program , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- The Center for Bioactive Delivery, Institute for Applied Life Sciences , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
40
|
Waiczies S, Rosenberg JT, Kuehne A, Starke L, Delgado PR, Millward JM, Prinz C, Dos Santos Periquito J, Pohlmann A, Waiczies H, Niendorf T. Fluorine-19 MRI at 21.1 T: enhanced spin-lattice relaxation of perfluoro-15-crown-5-ether and sensitivity as demonstrated in ex vivo murine neuroinflammation. MAGMA (NEW YORK, N.Y.) 2019; 32:37-49. [PMID: 30421250 PMCID: PMC6514110 DOI: 10.1007/s10334-018-0710-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Fluorine MR would benefit greatly from enhancements in signal-to-noise ratio (SNR). This study examines the sensitivity gain of 19F MR that can be practically achieved when moving from 9.4 to 21.1 T. MATERIALS AND METHODS We studied perfluoro-15-crown-5-ether (PFCE) at both field strengths (B0), as a pure compound, in the form of nanoparticles (NP) as employed to study inflammation in vivo, as well as in inflamed tissue. Brains, lymph nodes (LNs) and spleens were obtained from mice with experimental autoimmune encephalomyelitis (EAE) that had been administered PFCE NPs. All samples were measured at both B0 with 2D-RARE and 2D-FLASH using 19F volume radiofrequency resonators together. T1 and T2 of PFCE were measured at both B0 strengths. RESULTS Compared to 9.4 T, an SNR gain of > 3 was observed for pure PFCE and > 2 for PFCE NPs at 21.1 T using 2D-FLASH. A dependency of 19F T1 and T2 relaxation on B0 was demonstrated. High spatially resolved 19F MRI of EAE brains and LNs at 21.1 T revealed signals not seen at 9.4 T. DISCUSSION Enhanced SNR and T1 shortening indicate the potential benefit of in vivo 19F MR at higher B0 to study inflammatory processes with greater detail.
Collapse
Affiliation(s)
- Sonia Waiczies
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany.
| | - Jens T Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | | | - Ludger Starke
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Paula Ramos Delgado
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Jason M Millward
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Christian Prinz
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Joao Dos Santos Periquito
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Andreas Pohlmann
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | | | - Thoralf Niendorf
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
- MRI TOOLS GmbH, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
41
|
Jirak D, Galisova A, Kolouchova K, Babuka D, Hruby M. Fluorine polymer probes for magnetic resonance imaging: quo vadis? MAGMA (NEW YORK, N.Y.) 2019; 32:173-185. [PMID: 30498886 PMCID: PMC6514090 DOI: 10.1007/s10334-018-0724-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
Over the last few years, the development and relevance of 19F magnetic resonance imaging (MRI) for use in clinical practice has emerged. MRI using fluorinated probes enables the achievement of a specific signal with high contrast in MRI images. However, to ensure sufficient sensitivity of 19F MRI, fluorine probes with a high content of chemically equivalent fluorine atoms are required. The majority of 19F MRI agents are perfluorocarbon emulsions, which have a broad range of applications in molecular imaging, although the content of fluorine atoms in these molecules is limited. In this review, we focus mainly on polymer probes that allow higher fluorine content and represent versatile platforms with properties tailorable to a plethora of biomedical in vivo applications. We discuss the chemical development, up to the first imaging applications, of these promising fluorine probes, including injectable polymers that form depots that are intended for possible use in cancer therapy.
Collapse
Affiliation(s)
- Daniel Jirak
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21, Prague 4, Czech Republic.
- Institute of Biophysics and Informatics, 1st Medicine Faculty, Charles University, Salmovská 1, 120 00, Prague, Czech Republic.
- Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
| | - Andrea Galisova
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21, Prague 4, Czech Republic
| | - Kristyna Kolouchova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského sq. 2, 162 06, Prague 6, Czech Republic
| | - David Babuka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského sq. 2, 162 06, Prague 6, Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského sq. 2, 162 06, Prague 6, Czech Republic
| |
Collapse
|
42
|
Jahromi AH, Wang C, Adams SR, Zhu W, Narsinh K, Xu H, Gray DL, Tsien RY, Ahrens ET. Fluorous-Soluble Metal Chelate for Sensitive Fluorine-19 Magnetic Resonance Imaging Nanoemulsion Probes. ACS NANO 2019; 13:143-151. [PMID: 30525446 PMCID: PMC6467752 DOI: 10.1021/acsnano.8b04881] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fluorine-19 MRI is an emerging cellular imaging approach, enabling lucid, quantitative "hot-spot" imaging with no background signal. The utility of 19F-MRI to detect inflammation and cell therapy products in vivo could be expanded by improving the intrinsic sensitivity of the probe by molecular design. We describe a metal chelate based on a salicylidene-tris(aminomethyl)ethane core, with solubility in perfluorocarbon (PFC) oils, and a potent accelerator of the 19F longitudinal relaxation time ( T1). Shortening T1 can increase the 19F image sensitivity per time and decrease the minimum number of detectable cells. We used the condensation between the tripodal ligand tris-1,1,1-(aminomethyl)ethane and salicylaldehyde to form the salicylidene-tris(aminomethyl)ethane chelating agent (SALTAME). We purified four isomers of SALTAME, elucidated structures using X-ray scattering and NMR, and identified a single isomer with high PFC solubility. Mn4+, Fe3+, Co3+, and Ga3+ cations formed stable and separable chelates with SALTAME, but only Fe3+ yielded superior T1 shortening with modest line broadening at 3 and 9.4 T. We mixed Fe3+ chelate with perfluorooctyl bromide (PFOB) to formulate a stable paramagnetic nanoemulsion imaging probe and assessed its biocompatibility in macrophages in vitro using proliferation, cytotoxicity, and phenotypic cell assays. Signal-to-noise modeling of paramagnetic PFOB shows that sensitivity enhancement of nearly 4-fold is feasible at clinical magnetic field strengths using a 19F spin-density-weighted gradient-echo pulse sequence. We demonstrate the utility of this paramagnetic nanoemulsion as an in vivo MRI probe for detecting inflammation macrophages in mice. Overall, these paramagnetic PFC compounds represent a platform for the development of sensitive 19F probes.
Collapse
Affiliation(s)
- Amin Haghighat Jahromi
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Chao Wang
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Stephen R. Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Wenlian Zhu
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Kazim Narsinh
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hongyan Xu
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Danielle L. Gray
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Roger Y. Tsien
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093, United States
| | - Eric T. Ahrens
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Corresponding Author: (E. T. Ahrens) Phone: (858) 246-0279.
| |
Collapse
|
43
|
Rothe M, Jahn A, Weiss K, Hwang JH, Szendroedi J, Kelm M, Schrader J, Roden M, Flögel U, Bönner F. In vivo 19F MR inflammation imaging after myocardial infarction in a large animal model at 3 T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:5-13. [DOI: 10.1007/s10334-018-0714-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/04/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
|
44
|
Preclinical 19F MRI cell tracking at 3 Tesla. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:123-132. [DOI: 10.1007/s10334-018-0715-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/06/2018] [Accepted: 10/27/2018] [Indexed: 01/11/2023]
|
45
|
Janjic JM, Gorantla VS. Novel Nanoimaging Strategies for Noninvasive Graft Monitoring in Vascularized Composite Allotransplantation. CURRENT TRANSPLANTATION REPORTS 2018. [DOI: 10.1007/s40472-018-0221-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Quantitative 19F MRI of perfluoro-15-crown-5-ether using uniformity correction of the spin excitation and signal reception. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:25-36. [DOI: 10.1007/s10334-018-0696-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 12/26/2022]
|
47
|
Yu M, Bouley BS, Xie D, Enriquez JS, Que EL. 19F PARASHIFT Probes for Magnetic Resonance Detection of H2O2 and Peroxidase Activity. J Am Chem Soc 2018; 140:10546-10552. [DOI: 10.1021/jacs.8b05685] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Meng Yu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Bailey S. Bouley
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Da Xie
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - José S. Enriquez
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Emily L. Que
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
48
|
Kolouchova K, Sedlacek O, Jirak D, Babuka D, Blahut J, Kotek J, Vit M, Trousil J, Konefał R, Janouskova O, Podhorska B, Slouf M, Hruby M. Self-Assembled Thermoresponsive Polymeric Nanogels for 19F MR Imaging. Biomacromolecules 2018; 19:3515-3524. [PMID: 30011367 DOI: 10.1021/acs.biomac.8b00812] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnetic resonance imaging using fluorinated contrast agents (19F MRI) enables to achive highcontrast in images due to the negligible fluorine background in living tissues. In this pilot study, we developed new biocompatible, temperature-responsive, and easily synthesized polymeric nanogels containing a sufficient concentration of magnetically equivalent fluorine atoms for 19F MRI purposes. The structure of the nanogels is based on amphiphilic copolymers containing two blocks, a hydrophilic poly[ N-(2-hydroxypropyl)methacrylamide] (PHPMA) or poly(2-methyl-2-oxazoline) (PMeOx) block, and a thermoresponsive poly[ N(2,2difluoroethyl)acrylamide] (PDFEA) block. The thermoresponsive properties of the PDFEA block allow us to control the process of nanogel self-assembly upon its heating in an aqueous solution. Particle size depends on the copolymer composition, and the most promising copolymers with longer thermoresponsive blocks form nanogels of suitable size for angiogenesis imaging or the labeling of cells (approximately 120 nm). The in vitro 19F MRI experiments reveal good sensitivity of the copolymer contrast agents, while the nanogels were proven to be noncytotoxic for several cell lines.
Collapse
Affiliation(s)
- Kristyna Kolouchova
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| | - Ondrej Sedlacek
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic.,Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281-S4 , 9000 Ghent , Belgium
| | - Daniel Jirak
- Institute for Clinical and Experimental Medicine , Vídeňská 9 , Prague 4 140 21 , Czech Republic.,Institute of Biophysics and Informatics, First Medicine Faculty , Charles University , Salmovská 1 , Prague 120 00 , Czech Republic
| | - David Babuka
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| | - Jan Blahut
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , Prague 2 128 00 , Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , Prague 2 128 00 , Czech Republic
| | - Martin Vit
- Institute for Clinical and Experimental Medicine , Vídeňská 9 , Prague 4 140 21 , Czech Republic.,TU Liberec, Faculty of mechatronics, informatics and interdisciplinary studies , Studentská 1402/2 , Liberec 1 461 17 , Czech Republic
| | - Jiri Trousil
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic.,Department of Analytical Chemistry, Faculty of Science , Charles University , Hlavova 8 , Prague 2 128 43 , Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| | - Olga Janouskova
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| | - Bohumila Podhorska
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| | - Miroslav Slouf
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry AS CR , v.v.i., Heyrovského sq. 2 , Prague 6 162 06 , Czech Republic
| |
Collapse
|
49
|
Peterson KL, Srivastava K, Pierre VC. Fluorinated Paramagnetic Complexes: Sensitive and Responsive Probes for Magnetic Resonance Spectroscopy and Imaging. Front Chem 2018; 6:160. [PMID: 29876342 PMCID: PMC5974164 DOI: 10.3389/fchem.2018.00160] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022] Open
Abstract
Fluorine magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) of chemical and physiological processes is becoming more widespread. The strength of this technique comes from the negligible background signal in in vivo19F MRI and the large chemical shift window of 19F that enables it to image concomitantly more than one marker. These same advantages have also been successfully exploited in the design of responsive 19F probes. Part of the recent growth of this technique can be attributed to novel designs of 19F probes with improved imaging parameters due to the incorporation of paramagnetic metal ions. In this review, we provide a description of the theories and strategies that have been employed successfully to improve the sensitivity of 19F probes with paramagnetic metal ions. The Bloch-Wangsness-Redfield theory accurately predicts how molecular parameters such as internuclear distance, geometry, rotational correlation times, as well as the nature, oxidation state, and spin state of the metal ion affect the sensitivity of the fluorine-based probes. The principles governing the design of responsive 19F probes are subsequently described in a "how to" guide format. Examples of such probes and their advantages and disadvantages are highlighted through a synopsis of the literature.
Collapse
Affiliation(s)
- Katie L Peterson
- Department of Chemistry, Bemidji State University, Bemidji, MN, United States
| | - Kriti Srivastava
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Valérie C Pierre
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
50
|
Ashur I, Allouche-Arnon H, Bar-Shir A. Calcium Fluoride Nanocrystals: Tracers for In Vivo 19
F Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Idan Ashur
- Department of Organic Chemistry; The Weizmann Institute of Science; 7610001 Rehovot Israel
| | - Hyla Allouche-Arnon
- Department of Organic Chemistry; The Weizmann Institute of Science; 7610001 Rehovot Israel
| | - Amnon Bar-Shir
- Department of Organic Chemistry; The Weizmann Institute of Science; 7610001 Rehovot Israel
| |
Collapse
|