1
|
Fazelzadeh Haghighi M, Jafari Khamirani H, Fallahi J, Monfared AA, Ashrafi Dehkordi K, Tabei SMB. Novel insight into FCSK-congenital disorder of glycosylation through a CRISPR-generated cell model. Mol Genet Genomic Med 2024; 12:e2445. [PMID: 38722107 PMCID: PMC11080630 DOI: 10.1002/mgg3.2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND FCSK-congenital disorder of glycosylation (FCSK-CDG) is a recently discovered rare autosomal recessive genetic disorder with defective fucosylation due to mutations in the fucokinase encoding gene, FCSK. Despite the essential role of fucokinase in the fucose salvage pathway and severe multisystem manifestations of FCSK-CDG patients, it is not elucidated which cells or which types of fucosylation are affected by its deficiency. METHODS In this study, CRISPR/Cas9 was employed to construct an FCSK-CDG cell model and explore the molecular mechanisms of the disease by lectin flow cytometry and real-time PCR analyses. RESULTS Comparison of cellular fucosylation by lectin flow cytometry in the created CRISPR/Cas9 FCSK knockout and the same unedited cell lines showed no significant change in the amount of cell surface fucosylated glycans, which is consistent with the only documented previous study on different cell types. It suggests a probable effect of this disease on secretory glycoproteins. Investigating O-fucosylation by analysis of the NOTCH3 gene expression as a potential target revealed a significant decrease in the FCSK knockout cells compared with the same unedited ones, proving the effect of fucokinase deficiency on EGF-like repeats O-fucosylation. CONCLUSION This study expands insight into the FCSK-CDG molecular mechanism; to the best of our knowledge, it is the first research conducted to reveal a gene whose expression level alters due to this disease.
Collapse
Affiliation(s)
- Maryam Fazelzadeh Haghighi
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | | | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Ali Arabi Monfared
- Central Research LaboratoryShiraz University of Medical SciencesShirazIran
| | - Korosh Ashrafi Dehkordi
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical GeneticsShiraz University of Medical SciencesShirazIran
- Maternal‐Fetal Medicine Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
2
|
Fan Y, McMath AL, Donovan SM. Review on the Impact of Milk Oligosaccharides on the Brain and Neurocognitive Development in Early Life. Nutrients 2023; 15:3743. [PMID: 37686775 PMCID: PMC10490528 DOI: 10.3390/nu15173743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Milk Oligosaccharides (MOS), a group of complex carbohydrates found in human and bovine milk, have emerged as potential modulators of optimal brain development for early life. This review provides a comprehensive investigation of the impact of milk oligosaccharides on brain and neurocognitive development of early life by synthesizing current literature from preclinical models and human observational studies. The literature search was conducted in the PubMed search engine, and the inclusion eligibility was evaluated by three reviewers. Overall, we identified 26 articles for analysis. While the literature supports the crucial roles of fucosylated and sialylated milk oligosaccharides in learning, memory, executive functioning, and brain structural development, limitations were identified. In preclinical models, the supplementation of only the most abundant MOS might overlook the complexity of naturally occurring MOS compositions. Similarly, accurately quantifying MOS intake in human studies is challenging due to potential confounding effects such as formula feeding. Mechanistically, MOS is thought to impact neurodevelopment through modulation of the microbiota and enhancement of neuronal signaling. However, further advancement in our understanding necessitates clinical randomized-controlled trials to elucidate the specific mechanisms and long-term implications of milk oligosaccharides exposure. Understanding the interplay between milk oligosaccharides and cognition may contribute to early nutrition strategies for optimal cognitive outcomes in children.
Collapse
Affiliation(s)
- Yuting Fan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Arden L. McMath
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| |
Collapse
|
3
|
Bradberry MM, Peters-Clarke TM, Shishkova E, Chapman ER, Coon JJ. N-glycoproteomics of brain synapses and synaptic vesicles. Cell Rep 2023; 42:112368. [PMID: 37036808 PMCID: PMC10560701 DOI: 10.1016/j.celrep.2023.112368] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/13/2023] [Accepted: 03/23/2023] [Indexed: 04/11/2023] Open
Abstract
At mammalian neuronal synapses, synaptic vesicle (SV) glycoproteins are essential for robust neurotransmission. Asparagine (N)-linked glycosylation is required for delivery of the major SV glycoproteins synaptophysin and SV2A to SVs. Despite this key role for N-glycosylation, the molecular compositions of SV N-glycans are largely unknown. In this study, we combined organelle isolation techniques and high-resolution mass spectrometry to characterize N-glycosylation at synapses and SVs from mouse brain. Detecting over 2,500 unique glycopeptides, we found that SVs harbor a distinct population of oligomannose and highly fucosylated N-glycans. Using complementary fluorescence methods, we identify at least one highly fucosylated N-glycan enriched in SVs compared with synaptosomes. High fucosylation was characteristic of SV proteins, plasma membrane proteins, and cell adhesion molecules with key roles in synaptic function and development. Our results define the N-glycoproteome of a specialized neuronal organelle and inform timely questions in the glycobiology of synaptic pruning and neuroinflammation.
Collapse
Affiliation(s)
- Mazdak M Bradberry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Evgenia Shishkova
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
4
|
Tosh N, Watson J, Lukas D, Tremewan R, Beard J, Galloway G, Haselhorst T, Young R, Crompton D, Mountford C. Two-dimensional correlated spectroscopy records reduced neurotransmission in blast-exposed artillery soldiers after live fire training. NMR IN BIOMEDICINE 2023:e4934. [PMID: 36940008 DOI: 10.1002/nbm.4934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
There is a requirement for an objective method to determine a safe level of low-level military occupational blast, having recognised it can lead to neurological damage. The purpose of the current study was to evaluate the effect of artillery firing training on the neurochemistry of frontline soldiers using two-dimensional (2D) COrrelated SpectroscopY (2D COSY) in a 3-T clinical MR scanner. Ten men considered to be of sound health were evaluated before and after a week-long live firing exercise in two ways. Prior to the live fire exercise, all participants were screened by a clinical psychologist using a combination of clinical interviews and psychometric tests, and were then scanned with 3-T MRI. The protocols included T1- and T2-weighted images for diagnostic reporting and anatomical localisation and 2D COSY to record any neurochemical effects from the firing. No changes to the structural MRI were recorded. Nine substantive and statistically significant changes in the neurochemistry were recorded as a consequence of firing training. Glutamine and glutamate, glutathione, and two of the seven fucose-α (1-2)-glycans were significantly increased. N-acetyl aspartate, myo-inositol + creatine, and glycerol were also increased. Significant decreases were recorded for the glutathione cysteine moiety and tentatively assigned glycan with a 1-6 linkage (F2: 4.00, F1: 1.31 ppm). These molecules are part of three neurochemical pathways at the terminus of the neurons providing evidence of early markers of disruption to neurotransmission. Using this technology, the extent of deregulation can now be monitored for each frontline defender on a personalised basis. The capacity to monitor early a disruption in neurotransmitters, using the 2D COSY protocol, can observe the effect of firing and may be used to prevent or limit these events.
Collapse
Affiliation(s)
- Nathan Tosh
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
- Radiology Department, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Julia Watson
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
- Radiology Department, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Darren Lukas
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Rosanna Tremewan
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jason Beard
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Graham Galloway
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | | | - Ross Young
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Crompton
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Glycomics Institute, Southport, Queensland, Australia
| | - Carolyn Mountford
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
- Radiology Department, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Glycomics Institute, Southport, Queensland, Australia
| |
Collapse
|
5
|
Watson J, Lukas D, Vickers ER, Galloway G, Mountford CE. Case Report: Capacity to Objectively Monitor the Response of a Chronic Pain Patient to Treatment. FRONTIERS IN NEUROIMAGING 2022; 1:831216. [PMID: 37555159 PMCID: PMC10406213 DOI: 10.3389/fnimg.2022.831216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/29/2022] [Indexed: 08/10/2023]
Abstract
Response to pain therapy is currently by patient self-report. We demonstrate that by evaluating the neurochemistry of a patient, using two-dimensional Correlated SpectroscopY (2D COSY) in a 3T MRI scanner, response to therapy can be recorded. A chronic temporomandibular joint (TMJ) pain patient was evaluated by a pain physician specializing in temporomandibular disorders (TMD), and by 2D COSY, before, and 6 days after treatment with Botulinum Toxin A. Prior to treatment the self-reported pain score was 8/10 and reduced to 0/10 within 24 h of treatment. The neurochemistry of the patient prior to treatment was typical of chronic pain. In particular, the Fuc-α(1-2) glycans were affected. Following treatment, the substrates, α-L Fucose, were elevated and the Fuc-α(1-2) glycans repopulated. The depletion of the molecule assigned the glutathione cysteine moiety, with chronic pain, is indicative of a Glutathione redox imbalance linked to neurodegeneration. This new approach to monitor pain could help discriminate the relative contributions in the complex interplay of the sensory and affective (emotional suffering) components of pain leading to appropriate individualized pharmaceutical drug regimens.
Collapse
Affiliation(s)
- Julia Watson
- Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Department of Radiology, Woolloongabba, QLD, Australia
- Department of Imaging Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Darren Lukas
- Institute for Glycomics, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| | | | - Graham Galloway
- Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Imaging Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Carolyn E. Mountford
- Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Department of Radiology, Woolloongabba, QLD, Australia
- Department of Imaging Technology, Translational Research Institute, Woolloongabba, QLD, Australia
- Institute for Glycomics, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| |
Collapse
|
6
|
Feichtinger RG, Hüllen A, Koller A, Kotzot D, Grote V, Rapp E, Hofbauer P, Brugger K, Thiel C, Mayr JA, Wortmann SB. A spoonful of L-fucose-an efficient therapy for GFUS-CDG, a new glycosylation disorder. EMBO Mol Med 2021; 13:e14332. [PMID: 34468083 PMCID: PMC8422078 DOI: 10.15252/emmm.202114332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
Congenital disorders of glycosylation are a genetically and phenotypically heterogeneous family of diseases affecting the co- and posttranslational modification of proteins. Using exome sequencing, we detected biallelic variants in GFUS (NM_003313.4) c.[632G>A];[659C>T] (p.[Gly211Glu];[Ser220Leu]) in a patient presenting with global developmental delay, mild coarse facial features and faltering growth. GFUS encodes GDP-L-fucose synthase, the terminal enzyme in de novo synthesis of GDP-L-fucose, required for fucosylation of N- and O-glycans. We found reduced GFUS protein and decreased GDP-L-fucose levels leading to a general hypofucosylation determined in patient's glycoproteins in serum, leukocytes, thrombocytes and fibroblasts. Complementation of patient fibroblasts with wild-type GFUS cDNA restored fucosylation. Making use of the GDP-L-fucose salvage pathway, oral fucose supplementation normalized fucosylation of proteins within 4 weeks as measured in serum and leukocytes. During the follow-up of 19 months, a moderate improvement of growth was seen, as well as a clear improvement of cognitive skills as measured by the Kaufmann ABC and the Nijmegen Pediatric CDG Rating Scale. In conclusion, GFUS-CDG is a new glycosylation disorder for which oral L-fucose supplementation is promising.
Collapse
Affiliation(s)
- René G Feichtinger
- University Children’s HospitalSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Andreas Hüllen
- Department PediatricsCentre for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Andreas Koller
- Research Program for Experimental OphthalmologyDepartment of Ophthalmology and OptometrySalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Dieter Kotzot
- Clinical Genetics UnitSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Valerian Grote
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess EngineeringMagdeburgGermany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess EngineeringMagdeburgGermany
- glyXera GmbHMagdeburgGermany
| | - Peter Hofbauer
- Department of ProductionLandesapotheke SalzburgHospital PharmacySalzburgAustria
| | - Karin Brugger
- University Children’s HospitalSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Christian Thiel
- Department PediatricsCentre for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Johannes A Mayr
- University Children’s HospitalSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Saskia B Wortmann
- University Children’s HospitalSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
- Department of PediatricsAmalia Children’s HospitalRadboud Center for Mitochondrial MedicineRadboudumcNijmegenThe Netherlands
| |
Collapse
|
7
|
Cudalbu C, Behar KL, Bhattacharyya PK, Bogner W, Borbath T, de Graaf RA, Gruetter R, Henning A, Juchem C, Kreis R, Lee P, Lei H, Marjańska M, Mekle R, Murali-Manohar S, Považan M, Rackayová V, Simicic D, Slotboom J, Soher BJ, Starčuk Z, Starčuková J, Tkáč I, Williams S, Wilson M, Wright AM, Xin L, Mlynárik V. Contribution of macromolecules to brain 1 H MR spectra: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4393. [PMID: 33236818 PMCID: PMC10072289 DOI: 10.1002/nbm.4393] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 05/08/2023]
Abstract
Proton MR spectra of the brain, especially those measured at short and intermediate echo times, contain signals from mobile macromolecules (MM). A description of the main MM is provided in this consensus paper. These broad peaks of MM underlie the narrower peaks of metabolites and often complicate their quantification but they also may have potential importance as biomarkers in specific diseases. Thus, separation of broad MM signals from low molecular weight metabolites enables accurate determination of metabolite concentrations and is of primary interest in many studies. Other studies attempt to understand the origin of the MM spectrum, to decompose it into individual spectral regions or peaks and to use the components of the MM spectrum as markers of various physiological or pathological conditions in biomedical research or clinical practice. The aim of this consensus paper is to provide an overview and some recommendations on how to handle the MM signals in different types of studies together with a list of open issues in the field, which are all summarized at the end of the paper.
Collapse
Affiliation(s)
- Cristina Cudalbu
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland
| | - Kevin L Behar
- Magnetic Resonance Research Center and Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | | | - Wolfgang Bogner
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Tamas Borbath
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- Faculty of Science, Eberhard-Karls Universität Tübingen, Tübingen, Germany
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anke Henning
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, Germany
| | - Christoph Juchem
- Departments of Biomedical Engineering and Radiology, Columbia University, New York, USA
| | - Roland Kreis
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| | - Phil Lee
- Department of Radiology, Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hongxia Lei
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ralf Mekle
- Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Saipavitra Murali-Manohar
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- Faculty of Science, Eberhard-Karls Universität Tübingen, Tübingen, Germany
| | - Michal Považan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Veronika Rackayová
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dunja Simicic
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johannes Slotboom
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern and Inselspital, Bern, Switzerland
| | - Brian J Soher
- Center for Advanced MR Development, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Zenon Starčuk
- Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| | - Jana Starčuková
- Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| | - Ivan Tkáč
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen Williams
- Division of Informatics, Imaging and Data Science, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Andrew Martin Wright
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls Universität Tübingen, Tübingen, Germany
| | - Lijing Xin
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland
| | - Vladimír Mlynárik
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| |
Collapse
|
8
|
Arm J, Al-Iedani O, Ribbons K, Lea R, Lechner-Scott J, Ramadan S. Biochemical Correlations with Fatigue in Multiple Sclerosis Detected by MR 2D Localized Correlated Spectroscopy. J Neuroimaging 2021; 31:508-516. [PMID: 33615583 DOI: 10.1111/jon.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Fatigue is the common symptom in patients with multiple sclerosis (MS), yet its pathophysiological mechanism is poorly understood. We investigated the metabolic changes in fatigue in a group of relapsing-remitting MS (RRMS) patients using MR two-dimensional localized correlated spectroscopy (2D L-COSY). METHODS Sixteen RRMS and 16 healthy controls were included in the study. Fatigue impact was assessed with the Modified Fatigue Impact Scale (MFIS). MR 2D L-COSY data were collected from the posterior cingulate cortex. Nonparametric statistical analysis was used to calculate the changes in creatine scaled metabolic ratios and their correlations with fatigue scores. RESULTS Compared to healthy controls, the RRMS group showed significantly higher fatigue and lower metabolic ratios for tyrosine, glutathione, homocarnosine (GSH+Hca), fucose-3, glutamine+glutamate (Glx), glycerophosphocholine (GPC), total choline, and N-acetylaspartate (NAA-2), while increased levels for isoleucine and glucose (P ≤ .05). Only GPC showed positive correlation with all fatigue domains (r = .537, P ≤ .05). On the other hand, Glx-upper, NAA-2, GSH+Hca, and fucose-3 showed negative correlations with all fatigue domains (r = -.345 to -.580, P ≤ .05). While tyrosine showed positive correlation with MFIS (r = .499, P ≤ .05), cognitive fatigue was negatively correlated with total GSH (r = -.530, P ≤ .05). No correlations were found between lesion load or brain volumes with fatigue score. CONCLUSIONS Our results suggest that fatigue in MS is strongly correlated with an imbalance in neurometabolites but not structural brain measurements.
Collapse
Affiliation(s)
- Jameen Arm
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Oun Al-Iedani
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Karen Ribbons
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia
| | - Rod Lea
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia.,Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia.,Department of Neurology, John Hunter Hospital, New Lambton Heights, Newcastle, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia
| |
Collapse
|
9
|
Gaunitz S, Tjernberg LO, Schedin-Weiss S. The N-glycan profile in cortex and hippocampus is altered in Alzheimer disease. J Neurochem 2020; 159:292-304. [PMID: 32986846 PMCID: PMC8596851 DOI: 10.1111/jnc.15202] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022]
Abstract
Protein glycosylation is crucial for the central nervous system and brain functions, including processes that are defective in Alzheimer disease (AD) such as neurogenesis, synaptic function, and memory formation. Still, the roles of glycans in the development of AD are relatively unexplored. Glycomics studies of cerebrospinal fluid (CSF) have previously shown altered glycosylation pattern in patients with different stages of cognitive impairment, including AD, compared to healthy controls. As a consequence, we hypothesized that the glycan profile is altered in the brain of patients with AD and analyzed the asparagine‐linked (N‐linked) glycan profile in hippocampus and cortex in AD and control brain. Glycans were enzymatically liberated from brain glycoproteins and analyzed by liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). Eleven glycans showed significantly different levels in hippocampus compared to cortex in both control and AD brain. Two glycans in cortex and four in hippocampus showed different levels in AD compared to control brain. All glycans that differed between controls and AD brain had similar structures with one sialic acid, at least one fucose and a confirmed or potential bisecting N‐acetylglucosamine (GlcNAc). The glycans that were altered in AD brain differed from those that were altered in AD CSF. One glycan found to be present in significantly lower levels in both hippocampus and cortex in AD compared to control contained a structurally and functionally interesting epitope that we assign as a terminal galactose decorated with fucose and sialic acid. Altogether, these studies suggest that protein glycosylation is an important component in the development of AD and warrants further studies.
Collapse
Affiliation(s)
- Stefan Gaunitz
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
10
|
Tosh N, Quadrelli S, Galloway G, Mountford C. Two New Fucose-α (1-2)-Glycans Assigned In The Healthy Human Brain Taking The Number To Seven. Sci Rep 2019; 9:18806. [PMID: 31827116 PMCID: PMC6906471 DOI: 10.1038/s41598-019-54933-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023] Open
Abstract
Fucosylated glycans are involved in the molecular mechanisms that underpin neuronal development, learning and memory. The capacity to study the fucose-α(1-2)-glycan residues noninvasively in the human brain, is integral to understanding their function and deregulation. Five fucose crosspeaks were assigned to fucosylated glycans using in vivo two-dimensional magnetic resonance Correlated SpectroscopY (2D L-COSY) of the brain. Recent improvements encompassed on the 3T Prisma (Siemens, Erlangen) with a 64-channel head and neck coil have allowed two new assignments. These are Fuc VI (F2:4.44, F1:1.37 ppm) and Fuc VII (F2: 4.29, F1:1.36 ppm). The Fuc VI crosspeak, close to the water resonance, is resolved due to decreased T1 noise. Fuc VII crosspeak, located between Fuc I and III, is available for inspection due to increased spectral resolution. Spectra recorded from 33 healthy men and women showed a maximum variation of up to 0.02 ppm in chemical shifts for all crosspeaks.
Collapse
Affiliation(s)
- Nathan Tosh
- Translational Research Institute, Woolloongabba, Queensland, 4024, Australia.,School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Scott Quadrelli
- Translational Research Institute, Woolloongabba, Queensland, 4024, Australia.,Princess Alexandra Hospital, Department of Radiology, Woolloongabba, Queensland, 4024, Australia
| | - Graham Galloway
- Translational Research Institute, Woolloongabba, Queensland, 4024, Australia
| | - Carolyn Mountford
- Translational Research Institute, Woolloongabba, Queensland, 4024, Australia.
| |
Collapse
|
11
|
Quadrelli S, Ribbons K, Arm J, Al-Iedani O, Lechner-Scott J, Lea R, Ramadan S. 2D in-vivo L-COSY spectroscopy identifies neurometabolite alterations in treated multiple sclerosis. Ther Adv Neurol Disord 2019; 12:1756286419877081. [PMID: 31666809 PMCID: PMC6801886 DOI: 10.1177/1756286419877081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 08/15/2019] [Indexed: 11/16/2022] Open
Abstract
Background We have applied in vivo two-dimensional (2D) localized correlation spectroscopy (2D L-COSY), in treated relapsing relapsing-remitting multiple sclerosis (RRMS) to identify novel biomarkers in normal-appearing brain parenchyma. Methods 2D L-COSY magnetic resonance spectroscopy (MRS) spectra were prospectively acquired from the posterior cingulate cortex (PCC) in 45 stable RRMS patients undergoing treatment with Fingolimod, and 40 age and sex-matched healthy control (HC) participants. Average metabolite ratios and clinical symptoms including, disability, cognition, fatigue, and mental health parameters were measured, and compared using parametric and nonparametric tests. Whole brain volume and MRS voxel morphometry were evaluated using SIENAX and the SPM LST toolbox. Results Despite the mean whole brain lesion volume being low in this RRMS group (6.8 ml) a significant reduction in PCC metabolite to tCr ratios were identified for multiple N-acetylaspartate (NAA) signatures, gamma-aminobutyric acid (GABA), glutamine and glutamate (Glx), threonine, and isoleucine/lipid. Of the clinical symptoms measured, visuospatial function, attention, and memory were correlated with NAA signatures, Glx, and isoleucine/lipid in the brain. Conclusions 2D L-COSY has the potential to detect metabolic alterations in the normal-appearing MS brain. Despite examining only a localised region, we could detect metabolic variability associated with symptoms.
Collapse
Affiliation(s)
- Scott Quadrelli
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Karen Ribbons
- Department of Neurology, John Hunter Hospital, Newcastle, NSW, Australia
| | - Jameen Arm
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Oun Al-Iedani
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | | | - Rodney Lea
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
12
|
Kuntz S, Kunz C, Borsch C, Vazquez E, Buck R, Reutzel M, Eckert GP, Rudloff S. Metabolic Fate and Distribution of 2´-Fucosyllactose: Direct Influence on Gut Microbial Activity but not on Brain. Mol Nutr Food Res 2019; 63:e1900035. [PMID: 31125176 PMCID: PMC6618057 DOI: 10.1002/mnfr.201900035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/07/2019] [Indexed: 01/24/2023]
Abstract
SCOPE 2´-Fucosyllactose (2´FL) is an abundant oligosaccharide in human milk. It is hypothesized that its brain enrichment is associated with improved learning. Accumulation of 2´FL in organs, biological fluids, and feces is assessed in wild-type and germ-free mice. METHODS AND RESULTS 13 C-labelled 2´FL is applied to NMRI wild-type mice intravenously (0.2 g kg-1 ) or orally (1 g kg-1 ), while controls receive saline. Biological samples are collected (0.5-15 h) and 13 C-enrichment is measured by elemental analysis isotope ratio mass spectrometry (EA-IRMS). After oral application, 2´FL is primarily eliminated in the feces. 13 C-enrichment in organs including the brain follows the same pattern as in plasma with a maximum peak after 5 h. However, 13 C-enrichment is only detected when the 13 C-2´FL bolus reaches the colon. In contrast, in germ-free mice, the 13 C-bolus remains in the intestinal content and is expelled via the feces. Furthermore, intravenously applied 13 C-2´FL is eliminated via urine; no 13 C-enrichment of organs is observed, suggesting that intact 2´FL is not retained. CONCLUSIONS 13 C-enrichment in brain and other organs after oral application of 13 C-2´FL in wild-type mice indicates cleaved fucose or other gut microbial 2´FL metabolites may be incorporated, as opposed to intact 2´FL.
Collapse
Affiliation(s)
- Sabine Kuntz
- Institute of Nutritional SciencesJustus‐Liebig University Giessen35392GiessenGermany
| | - Clemens Kunz
- Institute of Nutritional SciencesJustus‐Liebig University Giessen35392GiessenGermany
| | - Christian Borsch
- Institute of Nutritional SciencesJustus‐Liebig University Giessen35392GiessenGermany
| | | | - Rachael Buck
- Discovery R&D, Abbott NutritionColumbusOH43219USA
| | - Martina Reutzel
- Institute of PharmacologyGoethe‐University Frankfurt60438Frankfurt am MainGermany
| | - Gunter Peter Eckert
- Institute of Nutritional SciencesJustus‐Liebig University Giessen35392GiessenGermany
- Institute of PharmacologyGoethe‐University Frankfurt60438Frankfurt am MainGermany
| | - Silvia Rudloff
- Institute of Nutritional SciencesJustus‐Liebig University Giessen35392GiessenGermany
- Department of PediatricsJustus‐Liebig University Giessen35392GiessenGermany
| |
Collapse
|
13
|
Quadrelli S, Tosh N, Urquhart A, Trickey K, Tremewan R, Galloway G, Rich L, Lea R, Malycha P, Mountford C. Post-traumatic stress disorder affects fucose-α(1-2)-glycans in the human brain: preliminary findings of neuro deregulation using in vivo two-dimensional neuro MR spectroscopy. Transl Psychiatry 2019; 9:27. [PMID: 30659168 PMCID: PMC6338732 DOI: 10.1038/s41398-018-0365-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 10/06/2018] [Accepted: 12/09/2018] [Indexed: 11/19/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is triggered by experiencing terrifying event(s) for which there is currently no objective test for a definitive diagnosis. We report a pilot study where two-dimensional (2D) neuro magnetic resonance spectroscopy (MRS), collected at 3 T in a clinical scanner with a 64-channel head coil, identifies neuro deregulation in the PTSD cohort. The control subjects (n = 10) were compared with PTSD participants with minimal co-morbidities (n = 10). The 2D MRS identified statistically significant increases in the total spectral region containing both free substrate fucose and fucosylated glycans of 31% (P = 0.0013), two of multiple fucosylated glycans (Fuc IV and VI) were elevated by 48% (P = 0.002), and 41% (P = 0.02), respectively, imidazole was increased by 12% (P = 0.002), and lipid saturation was increased by 12.5% (P = 0.009). This is the first evidence of fucosylated glycans, reported in animals to be involved in learning and memory, to be affected in humans with PTSD.
Collapse
Affiliation(s)
- Scott Quadrelli
- 0000000406180938grid.489335.0Translational Research Institute, Woolloongabba, QLD 4024 Australia ,0000 0000 8831 109Xgrid.266842.cCenter for MR in Health, University of Newcastle, Newcastle, NSW 2308 Australia ,0000000089150953grid.1024.7Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000 Australia ,0000 0004 0380 2017grid.412744.0Radiology Department, Princess Alexandra Hospital, Woolloongabba, QLD 4024 Australia
| | - Nathan Tosh
- 0000000406180938grid.489335.0Translational Research Institute, Woolloongabba, QLD 4024 Australia ,0000000089150953grid.1024.7Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Aaron Urquhart
- 0000000406180938grid.489335.0Translational Research Institute, Woolloongabba, QLD 4024 Australia
| | - Katie Trickey
- 0000000406180938grid.489335.0Translational Research Institute, Woolloongabba, QLD 4024 Australia
| | - Rosanna Tremewan
- 0000000406180938grid.489335.0Translational Research Institute, Woolloongabba, QLD 4024 Australia
| | - Graham Galloway
- 0000000406180938grid.489335.0Translational Research Institute, Woolloongabba, QLD 4024 Australia
| | - Lisa Rich
- 0000000406180938grid.489335.0Translational Research Institute, Woolloongabba, QLD 4024 Australia
| | - Rodney Lea
- 0000000089150953grid.1024.7Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Peter Malycha
- 0000000406180938grid.489335.0Translational Research Institute, Woolloongabba, QLD 4024 Australia
| | - Carolyn Mountford
- Translational Research Institute, Woolloongabba, QLD, 4024, Australia. .,Center for MR in Health, University of Newcastle, Newcastle, NSW, 2308, Australia.
| |
Collapse
|
14
|
Arm J, Al-iedani O, Lea R, Lechner-Scott J, Ramadan S. Diurnal variability of cerebral metabolites in healthy human brain with 2D localized correlation spectroscopy (2D L-COSY). J Magn Reson Imaging 2019; 50:592-601. [DOI: 10.1002/jmri.26642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jameen Arm
- School of Health Sciences, Faculty of Health and Medicine; University of Newcastle; Callaghan NSW Australia
| | - Oun Al-iedani
- School of Health Sciences, Faculty of Health and Medicine; University of Newcastle; Callaghan NSW Australia
- Hunter Medical Research Institute; New Lambton Heights, Newcastle Australia
| | - Rod Lea
- Hunter Medical Research Institute; New Lambton Heights, Newcastle Australia
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology; Brisbane Australia
| | - Jeannette Lechner-Scott
- Department of Neurology; John Hunter Hospital; New Lambton Heights, Newcastle Australia
- School of Medicine and Public Health, Faculty of Health and Medicine; University of Newcastle; Callaghan NSW Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine; University of Newcastle; Callaghan NSW Australia
- Hunter Medical Research Institute; New Lambton Heights, Newcastle Australia
| |
Collapse
|
15
|
Diurnal stability and long-term repeatability of neurometabolites using single voxel 1H magnetic resonance spectroscopy. Eur J Radiol 2018; 108:107-113. [DOI: 10.1016/j.ejrad.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/15/2018] [Indexed: 11/16/2022]
|
16
|
Characterization of Three Small Proteins in Brucella abortus Linked to Fucose Utilization. J Bacteriol 2018; 200:JB.00127-18. [PMID: 29967118 DOI: 10.1128/jb.00127-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022] Open
Abstract
Elucidating the function of proteins <50 amino acids in length is no small task. Nevertheless, small proteins can play vital roles in the lifestyle of bacteria and influence the virulence of pathogens; thus, the investigation of the small proteome is warranted. Recently, our group identified the Brucella abortus protein VtlR as a transcriptional activator of four genes, one of which is the well-studied small regulatory RNA AbcR2, while the other three genes encode hypothetical small proteins, two of which are highly conserved among the order Rhizobiales This study provides evidence that all three genes encode authentic small proteins and that all three are highly expressed under oxidative stress, low-pH, and stationary-phase growth conditions. Fractionation of the cells revealed that the proteins are localized to the membranes of B. abortus We demonstrate that the small proteins under the transcriptional control of VtlR are not accountable for attenuation observed with the B. abortusvtlR deletion strain. However, there is an association between VtlR-regulated genes and growth inhibition in the presence of the sugar l-fucose. Subsequent transcriptomic analyses revealed that B. abortus initiates the transcription of a locus encoding a putative sugar transport and utilization system when the bacteria are cultured in the presence of l-fucose. Altogether, our observations characterize the role of the VtlR-controlled small proteins BAB1_0914, BAB2_0512, and BAB2_0574 in the biology of B. abortus, particularly in the capacity of the bacteria to utilize l-fucose.IMPORTANCE Despite being one of the most common zoonoses worldwide, there is currently no human vaccine to combat brucellosis. Therefore, a better understanding of the pathogenesis and biology of Brucella spp., the causative agent of brucellosis, is essential for the discovery of novel therapeutics against these highly infectious bacteria. In this study, we further characterize the virulence-associated transcriptional regulator VtlR in Brucella abortus Our findings not only shed light on our current understanding of a virulence related genetic system in Brucella spp. but also increase our knowledge of small proteins in the field of bacteriology.
Collapse
|
17
|
Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochem J 2018; 475:2511-2545. [PMID: 30115748 DOI: 10.1042/bcj20180283] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to examine the roles of l-fucose and the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin sulfate/dermatan sulfate (CS/DS) with selected functional molecules in neural tissues. Cell surface glycans and GAGs have evolved over millions of years to become cellular mediators which regulate fundamental aspects of cellular survival. The glycocalyx, which surrounds all cells, actuates responses to growth factors, cytokines and morphogens at the cellular boundary, silencing or activating downstream signaling pathways and gene expression. In this review, we have focused on interactions mediated by l-fucose, KS and CS/DS in the central and peripheral nervous systems. Fucose makes critical contributions in the area of molecular recognition and information transfer in the blood group substances, cytotoxic immunoglobulins, cell fate-mediated Notch-1 interactions, regulation of selectin-mediated neutrophil extravasation in innate immunity and CD-34-mediated new blood vessel development, and the targeting of neuroprogenitor cells to damaged neural tissue. Fucosylated glycoproteins regulate delivery of synaptic neurotransmitters and neural function. Neural KS proteoglycans (PGs) were examined in terms of cellular regulation and their interactive properties with neuroregulatory molecules. The paradoxical properties of CS/DS isomers decorating matrix and transmembrane PGs and the positive and negative regulatory cues they provide to neurons are also discussed.
Collapse
|
18
|
Arm J, Al-iedani O, Quadrelli S, Ribbons K, Lea R, Lechner-Scott J, Ramadan S. Reliability of neurometabolite detection with two-dimensional localized correlation spectroscopy at 3T. J Magn Reson Imaging 2018; 48:1559-1569. [DOI: 10.1002/jmri.26036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Jameen Arm
- School of Health Sciences, Faculty of Health and Medicine; University of Newcastle; Callaghan NSW Australia
- Hunter Medical Research Institute; Kookaburra Circuit; New Lambton Heights NSW Australia
| | - Oun Al-iedani
- School of Health Sciences, Faculty of Health and Medicine; University of Newcastle; Callaghan NSW Australia
- Hunter Medical Research Institute; Kookaburra Circuit; New Lambton Heights NSW Australia
| | - Scott Quadrelli
- School of Health Sciences, Faculty of Health and Medicine; University of Newcastle; Callaghan NSW Australia
- Princess Alexandra Hospital; Woolloongabba / University of Queensland, Faculty of Medicine; Brisbane Australia
| | - Karen Ribbons
- Hunter Medical Research Institute; Kookaburra Circuit; New Lambton Heights NSW Australia
- School of Medicine and Public Health, Faculty of Health and Medicine; University of Newcastle; Callaghan NSW Australia
- Department of Neurology; John Hunter Hospital; Lookout Road, New Lambton Heights NSW Australia
| | - Rod Lea
- Hunter Medical Research Institute; Kookaburra Circuit; New Lambton Heights NSW Australia
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences; Queensland University of Technology; Brisbane Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute; Kookaburra Circuit; New Lambton Heights NSW Australia
- School of Medicine and Public Health, Faculty of Health and Medicine; University of Newcastle; Callaghan NSW Australia
- Department of Neurology; John Hunter Hospital; Lookout Road, New Lambton Heights NSW Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine; University of Newcastle; Callaghan NSW Australia
- Hunter Medical Research Institute; Kookaburra Circuit; New Lambton Heights NSW Australia
| |
Collapse
|
19
|
Quadrelli S, Mountford C, Ramadan S. Hitchhiker's Guide to Voxel Segmentation for Partial Volume Correction of In Vivo Magnetic Resonance Spectroscopy. MAGNETIC RESONANCE INSIGHTS 2016; 9:1-8. [PMID: 27147822 PMCID: PMC4849426 DOI: 10.4137/mri.s32903] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/08/2016] [Accepted: 03/13/2016] [Indexed: 12/24/2022]
Abstract
Partial volume effects have the potential to cause inaccuracies when quantifying metabolites using proton magnetic resonance spectroscopy (MRS). In order to correct for cerebrospinal fluid content, a spectroscopic voxel needs to be segmented according to different tissue contents. This article aims to detail how automated partial volume segmentation can be undertaken and provides a software framework for researchers to develop their own tools. While many studies have detailed the impact of partial volume correction on proton magnetic resonance spectroscopy quantification, there is a paucity of literature explaining how voxel segmentation can be achieved using freely available neuroimaging packages.
Collapse
Affiliation(s)
- Scott Quadrelli
- Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia; Faculty of Health and Medicine, School of Health Sciences, The University of Newcastle, Callaghan, NSW, Australia; Translational Research Institute, Woolloongabba, QLD, Australia
| | | | - Saadallah Ramadan
- Faculty of Health and Medicine, School of Health Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|