1
|
Mercer GV, Stapleton D, Barrett C, Ringer LCM, Lambe S, Critch A, Newman G, Pelley A, Biswas RG, Wolff W, Kock FC, Soong R, Simpson AJ, Cahill LS. Identifying placental metabolic biomarkers of preterm birth using nuclear magnetic resonance of intact tissue samples. Placenta 2023; 143:80-86. [PMID: 37864887 DOI: 10.1016/j.placenta.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
INTRODUCTION Our understanding of the etiology of preterm birth (PTB) is incomplete; however, recent evidence has found a strong association between placental dysfunction and PTB. Altered placental metabolism may precede placental dysfunction and therefore the study of placental metabolic profiles could identify early biomarkers of PTB. In this study, we evaluated the placental metabolome in PTB in intact tissue samples using nuclear magnetic resonance (NMR) and spectral editing. METHODS Placental tissue samples were collected from nine term pregnancies and nine preterm pregnancies (<37 weeks' gestation). 1H NMR experiments on unprocessed tissue samples were performed using a high field magnet (500 MHz spectrometer) and a comprehensive multiphase NMR probe. The relative concentrations of 23 metabolites were corrected for gestational age and compared between groups. RESULTS The relative concentration of valine, glutamate and creatine were significantly decreased while alanine, choline and glucose were elevated in placentas from PTB pregnancies compared to controls (p < 0.05). Multivariate analysis using principal component analysis showed the PTB and control groups were significantly separated (p < 0.0001) and pathway analysis identified perturbations in the glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis and valine, leucine and isoleucine biosynthesis pathways. CONCLUSION PTB is associated with significant alterations in placental metabolism. This study helps improve our understanding of the etiology of PTB. It also highlights the potential for small molecule metabolites to serve as placental metabolic biomarkers to aid in the prediction and diagnosis of PTB. The results can be translated to clinical use via in utero magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Grace V Mercer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Darcie Stapleton
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Catherine Barrett
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lauren C M Ringer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Stacy Lambe
- Department of Obstetrics and Gynaecology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Amanda Critch
- Department of Obstetrics and Gynaecology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Gabrielle Newman
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ashley Pelley
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Rajshree Ghosh Biswas
- Environmental NMR Center, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - William Wolff
- Environmental NMR Center, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - André J Simpson
- Environmental NMR Center, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada; Discipline of Radiology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
2
|
Schneider CM, Steeves KL, Mercer GV, George H, Paranavitana L, Simpson MJ, Simpson AJ, Cahill LS. Placental metabolite profiles in late gestation for healthy mice. Metabolomics 2022; 18:10. [PMID: 34993719 DOI: 10.1007/s11306-021-01868-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION During pregnancy, appropriate placental metabolism is essential for fetuses to reach their growth potential. However, metabolic mechanisms during pregnancy remain poorly understood. Determination of the levels of placental metabolites in healthy pregnancy and how they change throughout gestation is critical for understanding placental function. OBJECTIVE To determine the effects of gestational age on placental metabolites using healthy pregnant mice. METHODS In the present study, we collected placental tissue samples from healthy pregnant mice at three timepoints in late gestation (n = 16 placentas per gestational age). Metabolite profiles were determined using 1H high-resolution magic angle spinning magnetic resonance spectroscopy (HRMAS MRS). RESULTS Using HRMAS MRS, we identified 14 metabolites in murine placental tissue samples. The relative concentration of 12 of the 14 metabolites remains unchanged throughout late gestation. Lysine was found to decrease significantly (p = 0.04) and glucose showed an inverted U-shape relationship (p = 0.03) with gestational age. CONCLUSION This study demonstrated the feasibility of HRMAS MRS to determine relative metabolite concentrations in murine placental tissue. These findings establish baseline levels of placental tissue metabolite profiles and will serve as reference ranges for future studies using mouse models of fetal distress.
Collapse
Affiliation(s)
- Céline M Schneider
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John's, NL, A1B 3X7, Canada
| | - Katherine L Steeves
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John's, NL, A1B 3X7, Canada
| | - Grace V Mercer
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John's, NL, A1B 3X7, Canada
| | - Hannah George
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John's, NL, A1B 3X7, Canada
| | - Leah Paranavitana
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John's, NL, A1B 3X7, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
3
|
Andescavage N, Limperopoulos C. Emerging placental biomarkers of health and disease through advanced magnetic resonance imaging (MRI). Exp Neurol 2021; 347:113868. [PMID: 34562472 DOI: 10.1016/j.expneurol.2021.113868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022]
Abstract
Placental dysfunction is a major cause of fetal demise, fetal growth restriction, and preterm birth, as well as significant maternal morbidity and mortality. Infant survivors of placental dysfunction are at elevatedrisk for lifelong neuropsychiatric morbidity. However, despite the significant consequences of placental disease, there are no clinical tools to directly and non-invasively assess and measure placental function in pregnancy. In this work, we will review advanced MRI techniques applied to the study of the in vivo human placenta in order to better detail placental structure, architecture, and function. We will discuss the potential of these measures to serve as optimal biomarkers of placental dysfunction and review the evidence of these tools in the discrimination of health and disease in pregnancy. Efforts to advance our understanding of in vivo placental development are necessary if we are to optimize healthy pregnancy outcomes and prevent brain injury in successive generations. Current management of many high-risk pregnancies cannot address placental maldevelopment or injury, given the standard tools available to clinicians. Once accurate biomarkers of placental development and function are constructed, the subsequent steps will be to introduce maternal and fetal therapeutics targeting at optimizing placental function. Applying these biomarkers in future studies will allow for real-time assessments of safety and efficacy of novel interventions aimed at improving maternal-fetal well-being.
Collapse
Affiliation(s)
- Nickie Andescavage
- Developing Brain Institute, Department of Radiology, Children's National, Washington DC, USA; Department of Neonatology, Children's National, Washington DC, USA
| | | |
Collapse
|
4
|
The application of in utero magnetic resonance imaging in the study of the metabolic and cardiovascular consequences of the developmental origins of health and disease. J Dev Orig Health Dis 2020; 12:193-202. [PMID: 33308364 PMCID: PMC8162788 DOI: 10.1017/s2040174420001154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Observing fetal development in utero is vital to further the understanding of later-life diseases. Magnetic resonance imaging (MRI) offers a tool for obtaining a wealth of information about fetal growth, development, and programming not previously available using other methods. This review provides an overview of MRI techniques used to investigate the metabolic and cardiovascular consequences of the developmental origins of health and disease (DOHaD) hypothesis. These methods add to the understanding of the developing fetus by examining fetal growth and organ development, adipose tissue and body composition, fetal oximetry, placental microstructure, diffusion, perfusion, flow, and metabolism. MRI assessment of fetal growth, organ development, metabolism, and the amount of fetal adipose tissue could give early indicators of abnormal fetal development. Noninvasive fetal oximetry can accurately measure placental and fetal oxygenation, which improves current knowledge on placental function. Additionally, measuring deficiencies in the placenta’s transport of nutrients and oxygen is critical for optimizing treatment. Overall, the detailed structural and functional information provided by MRI is valuable in guiding future investigations of DOHaD.
Collapse
|
5
|
McIntyre KR, Hayward CE, Sibley CP, Greenwood SL, Dilworth MR. Evidence of adaptation of maternofetal transport of glutamine relative to placental size in normal mice, and in those with fetal growth restriction. J Physiol 2019; 597:4975-4990. [PMID: 31400764 PMCID: PMC6790568 DOI: 10.1113/jp278226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Key points Fetal growth restriction (FGR) is a major risk factor for stillbirth and has significant impact upon lifelong health. A small, poorly functioning placenta, as evidenced by reduced transport of nutrients to the baby, underpins FGR. It remains unclear how a small but normal placenta differs from the small FGR placenta in terms of ability to transfer nutrients to the fetus. Placental transport of glutamine and glutamate, key amino acids for fetal growth, was assessed in normal mice and those with FGR. Glutamine and glutamate transport was greater in the lightest versus heaviest placenta in a litter of normally grown mice. Placentas of mice with FGR had increased transport capacity in mid‐pregnancy, but this adaptation was insufficient in late pregnancy. Placental adaptations, in terms of increased nutrient transport (per gram) to compensate for small size, appear to achieve appropriate fetal growth in normal pregnancy. Failure of this adaptation might contribute to FGR.
Abstract Fetal growth restriction (FGR), a major risk factor for stillbirth, and neonatal and adulthood morbidity, is associated with reduced placental size and decreased placental nutrient transport. In mice, a small, normal placenta increases its nutrient transport, thus compensating for its reduced size and maintaining normal fetal growth. Whether this adaptation occurs for glutamine and glutamate, two key amino acids for placental metabolism and fetal growth, is unknown. Additionally, an assessment of placental transport of glutamine and glutamate between FGR and normal pregnancy is currently lacking. We thus tested the hypothesis that the transport of glutamine and glutamate would be increased (per gram of tissue) in a small normal placenta [C57BL6/J (wild‐type, WT) mice], but that this adaptation fails in the small dysfunctional placenta in FGR [insulin‐like growth factor 2 knockout (P0) mouse model of FGR]. In WT mice, comparing the lightest versus heaviest placenta in a litter, unidirectional maternofetal clearance (Kmf) of 14C‐glutamine and 14C‐glutamate (glutamineKmf and glutamateKmf) was significantly higher at embryonic day (E) 18.5, in line with increased expression of LAT1, a glutamine transporter protein. In P0 mice, glutamineKmf and glutamateKmf were higher (P0 versus wild‐type littermates, WTL) at E15.5. At E18.5, glutamineKmf remained elevated whereas glutamateKmf was similar between groups. In summary, we provide evidence that glutamineKmf and glutamateKmf adapt according to placental size in WT mice. The placenta of the growth‐restricted P0 fetus also elevates transport capacity to compensate for size at E15.5, but this adaptation is insufficient at E18.5; this may contribute to decreased fetal growth. Fetal growth restriction (FGR) is a major risk factor for stillbirth and has significant impact upon lifelong health. A small, poorly functioning placenta, as evidenced by reduced transport of nutrients to the baby, underpins FGR. It remains unclear how a small but normal placenta differs from the small FGR placenta in terms of ability to transfer nutrients to the fetus. Placental transport of glutamine and glutamate, key amino acids for fetal growth, was assessed in normal mice and those with FGR. Glutamine and glutamate transport was greater in the lightest versus heaviest placenta in a litter of normally grown mice. Placentas of mice with FGR had increased transport capacity in mid‐pregnancy, but this adaptation was insufficient in late pregnancy. Placental adaptations, in terms of increased nutrient transport (per gram) to compensate for small size, appear to achieve appropriate fetal growth in normal pregnancy. Failure of this adaptation might contribute to FGR.
Collapse
Affiliation(s)
- Kirsty R McIntyre
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christina E Hayward
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Colin P Sibley
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Mark R Dilworth
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
6
|
Apparent Diffusion Coefficient of the Placenta and Fetal Organs in Intrauterine Growth Restriction. J Comput Assist Tomogr 2019; 43:507-512. [PMID: 30762655 DOI: 10.1097/rct.0000000000000844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE This study aimed to assess apparent diffusion coefficient (ADC) of the placenta and fetal organs in intrauterine growth restriction (IUGR). MATERIALS AND METHODS A prospective study of 30 consecutive pregnant women (aged 21-38 years with mean age of 31.5 years and a mean gestational week of 35 ± 2.3) with IUGR and 15 age-matched pregnant women was conducted. All patients and controls underwent diffusion-weighted magnetic resonance imaging. The ADCs of the placenta and fetal brain, kidney, and lung were calculated and correlated with neonates needing intensive care unit (ICU) admission. RESULTS There was a significant difference in ADC of the placenta and fetal brain, lung, and kidney (P = 0.001, 0.001, 0.04, and 0.04, respectively) between the patients and the controls. The cutoff ADCs of the placenta and fetal brain, lung, and kidney used to detect IUGR were 1.45, 1.15, 1.80, and 1.40 × 10 mm/s, respectively, with areas under the curve (AUCs) of 0.865, 0.858, 0.812, and 0.650, respectively, and accuracy values of 75%, 72.5%, 72.5%, and 70%, respectively. Combined ADC of the placenta and fetal organs used to detect IUGR revealed an AUC of 1.00 and an accuracy of 100%. There was a significant difference in ADC of the placenta and fetal brain, lung, and kidney between neonates needing admission and those not needing ICU admission (P = 0.001, 0.001, 0.002, and 0.002, respectively). The cutoff ADCs of the placenta and fetal brain, lung, and kidney used to define neonates needing ICU were 1.35, 1.25, 1.95, and 1.15 × 10 mm/s with AUCs of 0.955, 0.880, 0.884, and 0.793, respectively, and accuracy values of 86.7%, 46.7%, 76.7%, and 70%, respectively. Combined placental and fetal brain ADC used to define neonates needing ICU revealed an AUC of 0.968 and an accuracy of 93.3%. CONCLUSION Combined ADC of the placenta and fetal organs can detect IUGR, and combined ADC of the placenta and fetal brain can define fetuses needing ICU.
Collapse
|
7
|
Delhaes F, Giza SA, Koreman T, Eastabrook G, McKenzie CA, Bedell S, Regnault TRH, de Vrijer B. Altered maternal and placental lipid metabolism and fetal fat development in obesity: Current knowledge and advances in non-invasive assessment. Placenta 2018; 69:118-124. [PMID: 29907450 DOI: 10.1016/j.placenta.2018.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
Abnormal maternal lipid profiles, a hallmark of increased maternal adiposity, are associated with pregnancy complications such as preeclampsia and gestational diabetes, and offspring long-term metabolic health is impacted as the consequence of altered fetal growth, physiology and often iatrogenic prematurity. The metabolic changes associated with maternal obesity and/or the consumption of a high-fat diet effecting maternal lipid profiles and metabolism have also been documented to specifically affect placental function and may underlie changes in fetal development and life course disease risk. The placenta plays a critical role in mediating nutritional signals between the fetus and the mother. As obesity rates in women of reproductive age continue to increase, it is becoming evident that inclusion of new technologies that allow for a better understanding of early changes in placental lipid transport and metabolism, non-invasively in maternal circulation, maternal tissues, placenta, fetal circulation and fetal tissues are needed to aid timely clinical diagnosis and treatment for obesity-associated diseases. This review describes pregnancy lipid homeostasis, with specific reference to changes arising from altered maternal body composition on placental and fetal lipid transport and metabolism. Current technologies for lipid assessments, such as metabolomics and lipidomics may be impacted by labour or mode of delivery and are only reflective of a single time point. This review further addresses how established and novel technologies for assessing lipids and their metabolism non-invasively and during the course of pregnancy may guide future research into the effect of maternal metabolic health on pregnancy outcome, placenta and fetus.
Collapse
Affiliation(s)
- Flavien Delhaes
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Stephanie A Giza
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Tianna Koreman
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Genevieve Eastabrook
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Charles A McKenzie
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Samantha Bedell
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
8
|
Denison FC, Macnaught G, Semple SIK, Terris G, Walker J, Anblagan D, Serag A, Reynolds RM, Boardman JP. Brain Development in Fetuses of Mothers with Diabetes: A Case-Control MR Imaging Study. AJNR Am J Neuroradiol 2017; 38:1037-1044. [PMID: 28302607 PMCID: PMC7960386 DOI: 10.3174/ajnr.a5118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/20/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Offspring exposed to maternal diabetes are at increased risk of neurocognitive impairment, but its origins are unknown. With MR imaging, we investigated the feasibility of comprehensive assessment of brain metabolism (1H-MRS), microstructure (DWI), and macrostructure (structural MRI) in third-trimester fetuses in women with diabetes and determined normal ranges for the MR imaging parameters measured. MATERIALS AND METHODS Women with singleton pregnancies with diabetes (n = 26) and healthy controls (n = 26) were recruited prospectively for MR imaging studies between 34 and 38 weeks' gestation. RESULTS Data suitable for postprocessing were obtained from 79%, 71%, and 46% of women for 1H-MRS, DWI, and structural MRI, respectively. There was no difference in the NAA/Cho and NAA/Cr ratios (mean [SD]) in the fetal brain in women with diabetes compared with controls (1.74 [0.79] versus 1.79 [0.64], P = .81; and 0.78 [0.28] versus 0.94 [0.36], P = .12, respectively), but the Cho/Cr ratio was marginally lower (0.46 [0.11] versus 0.53 [0.10], P = .04). There was no difference in mean [SD] anterior white, posterior white, and deep gray matter ADC between patients and controls (1.16 [0.12] versus 1.16 [0.08], P = .96; 1.54 [0.16] versus 1.59 [0.20], P = .56; and 1.49 [0.23] versus 1.52 [0.23], P = .89, respectively) or volume of the cerebrum (243.0 mL [22.7 mL] versus 253.8 mL [31.6 mL], P = .38). CONCLUSIONS Acquiring multimodal MR imaging of the fetal brain at 3T from pregnant women with diabetes is feasible. Further study of fetal brain metabolism in maternal diabetes is warranted.
Collapse
Affiliation(s)
- F C Denison
- From the Medical Research Council Centre for Reproductive Health (F.C.D., D.A., A.S., J.P.B.), University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - G Macnaught
- Clinical Research Imaging Centre (G.M., S.I.K.S.)
| | - S I K Semple
- Clinical Research Imaging Centre (G.M., S.I.K.S.)
- University/British Heart Foundation Centre for Cardiovascular Science (S.I.K.S., R.M.R.)
| | - G Terris
- Simpson Centre for Reproductive Health (G.T., J.W.), Royal Infirmary, Edinburgh, UK
| | - J Walker
- Simpson Centre for Reproductive Health (G.T., J.W.), Royal Infirmary, Edinburgh, UK
| | - D Anblagan
- From the Medical Research Council Centre for Reproductive Health (F.C.D., D.A., A.S., J.P.B.), University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
- Centre for Clinical Brain Sciences (D.A., J.P.B.), University of Edinburgh, Edinburgh, UK
| | - A Serag
- From the Medical Research Council Centre for Reproductive Health (F.C.D., D.A., A.S., J.P.B.), University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - R M Reynolds
- University/British Heart Foundation Centre for Cardiovascular Science (S.I.K.S., R.M.R.)
| | - J P Boardman
- From the Medical Research Council Centre for Reproductive Health (F.C.D., D.A., A.S., J.P.B.), University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
- Centre for Clinical Brain Sciences (D.A., J.P.B.), University of Edinburgh, Edinburgh, UK
| |
Collapse
|