1
|
Bdaiwi AS, Willmering MM, Plummer JW, Hussain R, Roach DJ, Parra-Robles J, Niedbalski PJ, Woods JC, Walkup LL, Cleveland ZI. 129Xe Image Processing Pipeline: An open-source, graphical user interface application for the analysis of hyperpolarized 129Xe MRI. Magn Reson Med 2025; 93:1220-1237. [PMID: 39480807 DOI: 10.1002/mrm.30347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE Hyperpolarized 129Xe MRI presents opportunities to assess regional pulmonary microstructure and function. Ongoing advancements in hardware, sequences, and image processing have helped it become increasingly adopted for both research and clinical use. As the number of applications and users increase, standardization becomes crucial. To that end, this study developed an executable, open-source 129Xe image processing pipeline (XIPline) to provide a user-friendly, graphical user interface-based analysis pipeline to analyze and visualize 129Xe MR data, including scanner calibration, ventilation, diffusion-weighted, and gas exchange images. METHODS The customizable XIPline is designed in MATLAB to analyze data from all three major scanner platforms. Calibration data is processed to calculate optimal flip angle and determine129Xe frequency offset. Data processing includes loading, reconstructing, registering, segmenting, and post-processing images. Ventilation analysis incorporates three common algorithms to calculate ventilation defect percentage and novel techniques to assess defect distribution and ventilation texture. Diffusion analysis features ADC mapping, modified linear binning to account for ADC age-dependence, and common diffusion morphometry methods. Gas exchange processing uses a generalized linear binning for data acquired using 1-point Dixon imaging. RESULTS The XIPline workflow is demonstrated using analysis from representative calibration, ventilation, diffusion, and gas exchange data. CONCLUSION The application will reduce redundant effort when implementing new techniques across research sites by providing an open-source framework for developers. In its current form, it offers a robust and adaptable platform for 129Xe MRI analysis to ensure methodological consistency, transparency, and support for collaborative research across multiple sites and MRI manufacturers.
Collapse
Affiliation(s)
- Abdullah S Bdaiwi
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joseph W Plummer
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Riaz Hussain
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - David J Roach
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Juan Parra-Robles
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Peter J Niedbalski
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Bioengineering, University of Kansas, Lawrence, Kansas, USA
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Sharma M, Kirby M, McCormack DG, Parraga G. Machine Learning and CT Texture Features in Ex-smokers with no CT Evidence of Emphysema and Mildly Abnormal Diffusing Capacity. Acad Radiol 2024; 31:2567-2578. [PMID: 38161089 DOI: 10.1016/j.acra.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
RATIONALE AND OBJECTIVES Ex-smokers without spirometry or CT evidence of chronic obstructive pulmonary disease (COPD) but with mildly abnormal diffusing capacity of the lungs for carbon monoxide (DLCO) are at higher risk of developing COPD. It remains difficult to make clinical management decisions for such ex-smokers without other objective assessments consistent with COPD. Hence, our objective was to develop a machine-learning and CT texture-analysis pipeline to dichotomize ex-smokers with normal and abnormal DLCO (DLCO≥75%pred and DLCO<75%pred). MATERIALS AND METHODS In this retrospective study, 71 ex-smokers (50-85yrs) without COPD underwent spirometry, plethysmography, thoracic CT, and 3He MRI to generate ventilation defect percent (VDP) and apparent diffusion coefficients (ADC). PyRadiomics was utilized to extract 496 CT texture-features; Boruta and principal component analysis were used for feature selection and various models were investigated for classification. Machine-learning classifiers were evaluated using area under the receiver operator characteristic curve (AUC), sensitivity, specificity, and F1-measure. RESULTS Of 71 ex-smokers without COPD, 29 with mildly abnormal DLCO had significantly different MRI ADC (p < .001), residual-volume to total-lung-capacity ratio (p = .003), St. George's Respiratory Questionnaire (p = .029), and six-minute-walk distance (6MWD) (p < .001), but similar relative area of the lung < -950 Hounsfield-units (RA950) (p = .9) compared to 42 ex-smokers with normal DLCO. Logistic-regression machine-learning mixed-model trained on selected texture-features achieved the best classification accuracy of 87%. All clinical and imaging measurements were outperformed by high-high-pass filter high-gray-level-run-emphasis texture-feature (AUC=0.81), which correlated with DLCO (ρ = -0.29, p = .02), MRI ADC (ρ = 0.23, p = .048), and 6MWD (ρ = -0.25, p = .02). CONCLUSION In ex-smokers with no CT evidence of emphysema, machine-learning models exclusively trained on CT texture-features accurately classified ex-smokers with abnormal diffusing capacity, outperforming conventional quantitative CT measurements.
Collapse
Affiliation(s)
- Maksym Sharma
- Robarts Research Institute, Western University, 1151 Richmond St N, London, N6A 5B7, Canada (M.S., G.P.); Department of Medical Biophysics, Western University, London, Canada (M.S., G.P.)
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Toronto, Canada (M.K.)
| | | | - Grace Parraga
- Robarts Research Institute, Western University, 1151 Richmond St N, London, N6A 5B7, Canada (M.S., G.P.); Department of Medical Biophysics, Western University, London, Canada (M.S., G.P.); Division of Respirology, Department of Medicine (D.G.M., G.P.); School of Biomedical Engineering, Western University, London, Canada (G.P.).
| |
Collapse
|
3
|
Niknam M, Bouchard LS. Nuclear induction lineshape modeling via hybrid SDE and MD approach. J Chem Phys 2023; 159:124201. [PMID: 38127390 DOI: 10.1063/5.0163782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/10/2023] [Indexed: 12/23/2023] Open
Abstract
The temperature dependence of the nuclear free induction decay in the presence of a magnetic-field gradient was found to exhibit motional narrowing in gases upon heating, a behavior that is opposite to that observed in liquids. This has led to the revision of the theoretical framework to include a more detailed description of particle trajectories since decoherence mechanisms depend on histories. In the case of free diffusion and single components, the new model yields the correct temperature trends. The inclusion of boundaries in the current formalism is not straightforward. We present a hybrid SDE-MD (stochastic differential equation - molecular dynamics) approach whereby MD is used to compute an effective viscosity and the latter is fed to the SDE to predict the line shape. The theory is in agreement with the experiments. This two-scale approach, which bridges the gap between short (molecular collisions) and long (nuclear induction) timescales, paves the way for the modeling of complex environments with boundaries, mixtures of chemical species, and intermolecular potentials.
Collapse
Affiliation(s)
- Mohamad Niknam
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1059, USA and Center for Quantum Science and Engineering, UCLA, Los Angeles, California 90095-1059, USA
| | - Louis-S Bouchard
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1059, USA and Center for Quantum Science and Engineering, UCLA, Los Angeles, California 90095-1059, USA
| |
Collapse
|
4
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Perron S, Ouriadov A. Hyperpolarized 129Xe MRI at low field: Current status and future directions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107387. [PMID: 36731353 DOI: 10.1016/j.jmr.2023.107387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/07/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Magnetic Resonance Imaging (MRI) is dictated by the magnetization of the sample, and is thus a low-sensitivity imaging method. Inhalation of hyperpolarized (HP) noble gases, such as helium-3 and xenon-129, is a non-invasive, radiation-risk free imaging technique permitting high resolution imaging of the lungs and pulmonary functions, such as the lung microstructure, diffusion, perfusion, gas exchange, and dynamic ventilation. Instead of increasing the magnetic field strength, the higher spin polarization achievable from this method results in significantly higher net MR signal independent of tissue/water concentration. Moreover, the significantly longer apparent transverse relaxation time T2* of these HP gases at low magnetic field strengths results in fewer necessary radiofrequency (RF) pulses, permitting larger flip angles; this allows for high-sensitivity imaging of in vivo animal and human lungs at conventionally low (<0.5 T) field strengths and suggests that the low field regime is optimal for pulmonary MRI using hyperpolarized gases. In this review, theory on the common spin-exchange optical-pumping method of hyperpolarization and the field dependence of the MR signal of HP gases are presented, in the context of human lung imaging. The current state-of-the-art is explored, with emphasis on both MRI hardware (low field scanners, RF coils, and polarizers) and image acquisition techniques (pulse sequences) advancements. Common challenges surrounding imaging of HP gases and possible solutions are discussed, and the future of low field hyperpolarized gas MRI is posed as being a clinically-accessible and versatile imaging method, circumventing the siting restrictions of conventional high field scanners and bringing point-of-care pulmonary imaging to global facilities.
Collapse
Affiliation(s)
- Samuel Perron
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada.
| | - Alexei Ouriadov
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Hsia CCW, Bates JHT, Driehuys B, Fain SB, Goldin JG, Hoffman EA, Hogg JC, Levin DL, Lynch DA, Ochs M, Parraga G, Prisk GK, Smith BM, Tawhai M, Vidal Melo MF, Woods JC, Hopkins SR. Quantitative Imaging Metrics for the Assessment of Pulmonary Pathophysiology: An Official American Thoracic Society and Fleischner Society Joint Workshop Report. Ann Am Thorac Soc 2023; 20:161-195. [PMID: 36723475 PMCID: PMC9989862 DOI: 10.1513/annalsats.202211-915st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.
Collapse
|
7
|
Meng XF, Lin QY, Yin H, Li ZQ. Hyperpolarized 3 helium MRI measured apparent diffusion coefficient and its correlations with pulmonary functions tests in patients with chronic obstructive pulmonary disease: A meta-analysis. THE CLINICAL RESPIRATORY JOURNAL 2021; 15:1185-1193. [PMID: 34288505 DOI: 10.1111/crj.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND This study evaluates role of hyperpolarized 3 helium (3 He) MRI measured apparent diffusion coefficient (ADC) in examining pulmonary function of chronic obstructive pulmonary disease (COPD) patients. METHODS After literature search in electronic databases, studies were selected by following precise eligibility criteria. Meta-analyses were performed to estimate mean difference in ADC between COPD patients and healthy individuals and to seek correlations between lung ADC and pulmonary function. Metaregression analyses were performed to seek relationships between ADC and age, gender, BMI, cigarette pack-years, and pulmonary function tests. RESULTS Twenty-five studies (622 COPD patients and 469 healthy controls) were included. Lung ADC was 0.402 (95% confidence interval [CI]: 0.374, 0.429) in COPD patients and 0.228 (95% CI: 0.205, 0.252) in healthy individuals (mean difference 0.160 [95% CI: 0.127, 0.193]; p < 0.001). In metaregression, age (coefficient: 0.006; p = 0.004), pack-years (coefficient: 0.005; p = 0.018), forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio (coefficient: -1.815; p = 0.007), percent predicted diffusion capacity of carbon monoxide (DLCO) (coefficient: -0.004; p = 0.008), and percent predicted inspiratory capacity (coefficient: -0.004; p = 0.012) were significantly associated with ADC in COPD patients. In meta-analysis of correlation coefficients, ADC was significantly correlated with FEV1 (r = -0.62; p < 0.00001), FEV1/FVC (r = -0.80; p < 0.00001), DLCO (r = -0.85; p < 0.00001), functional residual capacity (r = 0.71; p < 0.00001), reserve volume (r = 0.53; p = 0.0001), and emphysema index (r = 0.89; p < 0.00001). CONCLUSION Hyperpolarized 3 He MRI measured ADC was higher in COPD patients than in healthy individuals and was inversely associated with FEV1, FEV1/FVC, DLCO, and inspiratory capacity.
Collapse
Affiliation(s)
- Xian-Feng Meng
- Department of Medical Imaging, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Qing-Yan Lin
- Department of Respiratory and Critical Care Medicine, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Honglei Yin
- Department of Respiratory and Critical Care Medicine, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Zeng-Qi Li
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Niedbalski PJ, Hall CS, Castro M, Eddy RL, Rayment JH, Svenningsen S, Parraga G, Zanette B, Santyr GE, Thomen RP, Stewart NJ, Collier GJ, Chan HF, Wild JM, Fain SB, Miller GW, Mata JF, Mugler JP, Driehuys B, Willmering MM, Cleveland ZI, Woods JC. Protocols for multi-site trials using hyperpolarized 129 Xe MRI for imaging of ventilation, alveolar-airspace size, and gas exchange: A position paper from the 129 Xe MRI clinical trials consortium. Magn Reson Med 2021; 86:2966-2986. [PMID: 34478584 DOI: 10.1002/mrm.28985] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
Hyperpolarized (HP) 129 Xe MRI uniquely images pulmonary ventilation, gas exchange, and terminal airway morphology rapidly and safely, providing novel information not possible using conventional imaging modalities or pulmonary function tests. As such, there is mounting interest in expanding the use of biomarkers derived from HP 129 Xe MRI as outcome measures in multi-site clinical trials across a range of pulmonary disorders. Until recently, HP 129 Xe MRI techniques have been developed largely independently at a limited number of academic centers, without harmonizing acquisition strategies. To promote uniformity and adoption of HP 129 Xe MRI more widely in translational research, multi-site trials, and ultimately clinical practice, this position paper from the 129 Xe MRI Clinical Trials Consortium (https://cpir.cchmc.org/XeMRICTC) recommends standard protocols to harmonize methods for image acquisition in HP 129 Xe MRI. Recommendations are described for the most common HP gas MRI techniques-calibration, ventilation, alveolar-airspace size, and gas exchange-across MRI scanner manufacturers most used for this application. Moreover, recommendations are described for 129 Xe dose volumes and breath-hold standardization to further foster consistency of imaging studies. The intention is that sites with HP 129 Xe MRI capabilities can readily implement these methods to obtain consistent high-quality images that provide regional insight into lung structure and function. While this document represents consensus at a snapshot in time, a roadmap for technical developments is provided that will further increase image quality and efficiency. These standardized dosing and imaging protocols will facilitate the wider adoption of HP 129 Xe MRI for multi-site pulmonary research.
Collapse
Affiliation(s)
- Peter J Niedbalski
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chase S Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rachel L Eddy
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan H Rayment
- Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Svenningsen
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Brandon Zanette
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giles E Santyr
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Robert P Thomen
- Departments of Radiology and Bioengineering, University of Missouri, Columbia, Missouri, USA
| | - Neil J Stewart
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ho-Fung Chan
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Sean B Fain
- Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - G Wilson Miller
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Jaime F Mata
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - John P Mugler
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Bastiaan Driehuys
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Departments of Pediatrics (Pulmonary Medicine) and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Departments of Pediatrics (Pulmonary Medicine) and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Usmani OS, Han MK, Kaminsky DA, Hogg J, Hjoberg J, Patel N, Hardin M, Keen C, Rennard S, Blé FX, Brown MN. Seven Pillars of Small Airways Disease in Asthma and COPD: Supporting Opportunities for Novel Therapies. Chest 2021; 160:114-134. [PMID: 33819471 DOI: 10.1016/j.chest.2021.03.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
Identification of pathologic changes in early and mild obstructive lung disease has shown the importance of the small airways and their contribution to symptoms. Indeed, significant small airways dysfunction has been found prior to any overt airway obstruction being detectable by conventional spirometry techniques. However, most therapies for the treatment of obstructive lung disease target the physiological changes and associated symptoms that result from chronic lung disease, rather than directly targeting the specific underlying causes of airflow disruption or the drivers of disease progression. In addition, although spirometry is the current standard for diagnosis and monitoring of response to therapy, the most widely used measure, FEV1 , does not align with the pathologic changes in early or mild disease and may not align with symptoms or exacerbation frequency in the individual patient. Newer functional and imaging techniques allow more effective assessment of small airways dysfunction; however, significant gaps in our understanding remain. Improving our knowledge of the role of small airways dysfunction in early disease in the airways, along with the identification of novel end points to measure subclinical changes in this region (ie, those not captured as symptoms or identified through standard FEV1), may lead to the development of novel therapies that directly combat early airways disease processes with a view to slowing disease progression and reversing damage. This expert opinion paper discusses small airways disease in the context of asthma and COPD and highlights gaps in current knowledge that impede earlier identification of obstructive lung disease and the development and standardization of novel small airways-specific end points for use in clinical trials.
Collapse
Affiliation(s)
- Omar S Usmani
- National Heart and Lung Institute, Imperial College London & Royal Brompton Hospital, London, UK.
| | - MeiLan K Han
- Division of Pulmonary and Critical Care, University of Michigan, Ann Arbor, MI
| | - David A Kaminsky
- Pulmonary and Critical Care, University of Vermont Larner College of Medicine, Burlington, VT
| | - James Hogg
- James Hogg Research Centre, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
| | | | | | | | - Christina Keen
- Research and Early Development, Respiratory, Inflammation, and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stephen Rennard
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE; Translational Science and Experimental Medicine, Respiratory, Inflammation, and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - François-Xavier Blé
- Translational Science and Experimental Medicine, Respiratory, Inflammation, and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mary N Brown
- Research and Early Development, Respiratory, Inflammation, and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Boston, MA
| |
Collapse
|
10
|
Buhl N. Analytic determination of lung microgeometry with gas diffusion magnetic resonance. Phys Rev E 2021; 103:052406. [PMID: 34134344 DOI: 10.1103/physreve.103.052406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/06/2021] [Indexed: 11/07/2022]
Abstract
Through inhalation of, e.g., hyperpolarized ^{3}He, it is possible to acquire gas diffusion magnetic resonance measurements that depend on the local geometry in the vast network of microscopic airways that form the respiratory zone of the human lung. Here, we demonstrate that this can be used to determine the dimensions (length and radius) of these airways noninvasively. Specifically, the above technique allows measurement of the weighted time-dependent diffusion coefficient (also called the apparent diffusion coefficient), which we here derive in analytic form using symmetries in the airway network. Agreement with experiment is found for the full span of published hyperpolarized ^{3}He diffusion magnetic resonance measurements (diffusion times from milliseconds to seconds) and published invasive airway dimension measurements.
Collapse
Affiliation(s)
- Niels Buhl
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
11
|
Niedbalski PJ, Cochran AS, Freeman MS, Guo J, Fugate EM, Davis CB, Dahlke J, Quirk JD, Varisco BM, Woods JC, Cleveland ZI. Validating in vivo hyperpolarized 129 Xe diffusion MRI and diffusion morphometry in the mouse lung. Magn Reson Med 2021; 85:2160-2173. [PMID: 33017076 PMCID: PMC8544163 DOI: 10.1002/mrm.28539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE Diffusion and lung morphometry imaging using hyperpolarized gases are promising tools to quantify pulmonary microstructure noninvasively in humans and in animal models. These techniques assume the motion encoded is exclusively diffusive gas displacement, but the impact of cardiac motion on measurements has never been explored. Furthermore, although diffusion morphometry has been validated against histology in humans and mice using 3 He, it has never been validated in mice for 129 Xe. Here, we examine the effect of cardiac motion on diffusion imaging and validate 129 Xe diffusion morphometry in mice. THEORY AND METHODS Mice were imaged using gradient-echo-based diffusion imaging, and apparent diffusion-coefficient (ADC) maps were generated with and without cardiac gating. Diffusion-weighted images were fit to a previously developed theoretical model using Bayesian probability theory, producing morphometric parameters that were compared with conventional histology. RESULTS Cardiac gating had no significant impact on ADC measurements (dual-gating: ADC = 0.020 cm2 /s, single-gating: ADC = 0.020 cm2 /s; P = .38). Diffusion-morphometry-generated maps of ADC (mean, 0.0165 ± 0.0001 cm2 /s) and acinar dimensions (alveolar sleeve depth [h] = 44 µm, acinar duct radii [R] = 99 µm, mean linear intercept [Lm ] = 74 µm) that agreed well with conventional histology (h = 45 µm, R = 108 µm, Lm = 63 µm). CONCLUSION Cardiac motion has negligible impact on 129 Xe ADC measurements in mice, arguing its impact will be similarly minimal in humans, where relative cardiac motion is reduced. Hyperpolarized 129 Xe diffusion morphometry accurately and noninvasively maps the dimensions of lung microstructure, suggesting it can quantify the pulmonary microstructure in mouse models of lung disease.
Collapse
Affiliation(s)
- Peter J. Niedbalski
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Alexander S. Cochran
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH
| | - Matthew S. Freeman
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH
| | - Jinbang Guo
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Elizabeth M. Fugate
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Cory B. Davis
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Physics, West Texas A&M University, Canyon, TX
| | - Jerry Dahlke
- Department of Radiology, Duke University School of Medicine, Durham, NC
| | - James D. Quirk
- Department of Radiology, Washington University, St. Louis, MO
| | - Brian M. Varisco
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Jason C. Woods
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Radiology, Washington University, St. Louis, MO
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Zackary I. Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
12
|
Buess A, Van Muylem A, Nonclercq A, Haut B. Modeling of the Transport and Exchange of a Gas Species in Lungs With an Asymmetric Branching Pattern. Application to Nitric Oxide. Front Physiol 2020; 11:570015. [PMID: 33362572 PMCID: PMC7758446 DOI: 10.3389/fphys.2020.570015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/21/2020] [Indexed: 01/25/2023] Open
Abstract
Over the years, various studies have been dedicated to the mathematical modeling of gas transport and exchange in the lungs. Indeed, the access to the distal region of the lungs with direct measurements is limited and, therefore, models are valuable tools to interpret clinical data and to give more insights into the phenomena taking place in the deepest part of the lungs. In this work, a new computational model of the transport and exchange of a gas species in the human lungs is proposed. It includes (i) a method to generate a lung geometry characterized by an asymmetric branching pattern, based on the values of several parameters that have to be given by the model user, and a method to possibly alter this geometry to mimic lung diseases, (ii) the calculation of the gas flow distribution in this geometry during inspiration or expiration (taking into account the increased resistance to the flow in airways where the flow is non-established), (iii) the evaluation of the exchange fluxes of the gaseous species of interest between the tissues composing the lungs and the lumen, and (iv) the computation of the concentration profile of the exchanged species in the lumen of the tracheobronchial tree. Even if the model is developed in a general framework, a particular attention is given to nitric oxide, as it is not only a gas species of clinical interest, but also a gas species that is both produced in the walls of the airways and consumed within the alveolar region of the lungs. First, the model is presented. Then, several features of the model, applied to lung geometry, gas flow and NO exchange and transport, are discussed, compared to existing works and notably used to give new insights into experimental data available in the literature, regarding diseases, such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Alexandra Buess
- Transfers, Interfaces and Processes, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Van Muylem
- Chest Department, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Nonclercq
- Bio-, Electro-, and Mechanical Systems (BEAMS), Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Benoit Haut
- Transfers, Interfaces and Processes, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
13
|
Thomen RP, Woods JC, Sturm PF, Jain V, Walkup LL, Higano NS, Quirk JD, Varisco BM. Lung microstructure in adolescent idiopathic scoliosis before and after posterior spinal fusion. PLoS One 2020; 15:e0240265. [PMID: 33031412 PMCID: PMC7544066 DOI: 10.1371/journal.pone.0240265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 11/19/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is associated with decreased respiratory quality of life and impaired diaphragm function. Recent hyperpolarized helium (HHe) MRI studies show alveolarization continues throughout adolescence, and mechanical forces are known to impact alveolarization. We therefore hypothesized that patients with AIS would have alterations in alveolar size, alveolar number, or alveolar septal dimensions compared to adolescents without AIS, and that posterior spinal fusion (PSF) might reverse these differences. We conducted a prospective observational trial using HHe MRI to test for changes in alveolar microstructure in control and AIS subjects at baseline and one year. After obtaining written informed consent from subjects’ legal guardians and assent from the subjects, we performed HHe and proton MRI in 14 AIS and 16 control subjects aged 8–21 years. The mean age of control subjects (12.9 years) was significantly less than AIS (14.9 years, p = 0.003). At baseline, there were no significant differences in alveolar size, number, or alveolar duct morphometry between AIS and control subjects or between the concave (compressed) and convex (expanded) lungs of AIS subjects. At one year after PSF AIS subjects had an increase in alveolar density in the formerly convex lung (p = 0.05), likely reflecting a change in thoracic anatomy, but there were no other significant changes in lung microstructure. Modeling of alveolar size over time demonstrated similar rates of alveolar growth in control and AIS subjects in both right and left lungs pre- and post-PSF. Although this study suffered from poor age-matching, we found no evidence that AIS or PSF impacts lung microstructure. Trial registration: Clinical trial registration number NCT03539770.
Collapse
Affiliation(s)
- Robert P. Thomen
- School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- Division of Radiology, University of Missouri, Columbia, Missouri, United States of America
| | - Jason C. Woods
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Pulmonary Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Peter F. Sturm
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Orthopaedics, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Viral Jain
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Orthopaedics, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Laura L. Walkup
- Pulmonary Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Nara S. Higano
- Pulmonary Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - James D. Quirk
- Mallincrodt Institute of Radiology, Washington University, St. Louis, MO, United States of America
- School of Medicine, Washington University, St. Louis, MO, United States of America
| | - Brian M. Varisco
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Critical Care Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
14
|
Tafti S, Garrison WJ, Mugler JP, Shim YM, Altes TA, Mata JF, de Lange EE, Cates GD, Ropp AM, Wang C, Miller GW. Emphysema Index Based on Hyperpolarized 3He or 129Xe Diffusion MRI: Performance and Comparison with Quantitative CT and Pulmonary Function Tests. Radiology 2020; 297:201-210. [PMID: 32779976 PMCID: PMC7526952 DOI: 10.1148/radiol.2020192804] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/31/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
Background Apparent diffusion coefficient (ADC) maps of inhaled hyperpolarized gases have shown promise in the characterization of emphysema in patients with chronic obstructive pulmonary disease (COPD), yet an easily interpreted quantitative metric beyond mean and standard deviation has not been established. Purpose To introduce a quantitative framework with which to characterize emphysema burden based on hyperpolarized helium 3 (3He) and xenon 129 (129Xe) ADC maps and compare its diagnostic performance with CT-based emphysema metrics and pulmonary function tests (PFTs). Materials and Methods Twenty-seven patients with mild, moderate, or severe COPD and 13 age-matched healthy control subjects participated in this retrospective study. Participants underwent CT and multiple b value diffusion-weighted 3He and 129Xe MRI examinations and standard PFTs between August 2014 and November 2017. ADC-based emphysema index was computed separately for each gas and b value as the fraction of lung voxels with ADC values greater than in the healthy group 99th percentile. The resulting values were compared with quantitative CT results (relative lung area <-950 HU) as the reference standard. Diagnostic performance metrics included area under the receiver operating characteristic curve (AUC). Spearman rank correlations and Wilcoxon rank sum tests were performed between ADC-, CT-, and PFT-based metrics, and intraclass correlation was performed between repeated measurements. Results Thirty-six participants were evaluated (mean age, 60 years ± 6 [standard deviation]; 20 women). ADC-based emphysema index was highly repeatable (intraclass correlation coefficient > 0.99) and strongly correlated with quantitative CT (r = 0.86, P < .001 for 3He; r = 0.85, P < .001 for 129Xe) with high AUC (≥0.93; 95% confidence interval [CI]: 0.85, 1.00). ADC emphysema indices were also correlated with percentage of predicted diffusing capacity of lung for carbon monoxide (r = -0.81, P < .001 for 3He; r = -0.80, P < .001 for 129Xe) and percentage of predicted residual lung volume divided by total lung capacity (r = 0.65, P < .001 for 3He; r = 0.61, P < .001 for 129Xe). Conclusion Emphysema index based on hyperpolarized helium 3 or xenon 129 diffusion MRI provides a repeatable measure of emphysema burden, independent of gas or b value, with similar diagnostic performance as quantitative CT or pulmonary function metrics. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Schiebler and Fain in this issue.
Collapse
Affiliation(s)
- Sina Tafti
- From the Departments of Physics (S.T., G.D.C.), Biomedical Engineering (W.J.G., J.P.M., G.W.M.), Radiology and Medical Imaging (J.P.M., J.F.M., E.E.d.L., A.M.R., G.W.M.), and Medicine (Y.M.S.), University of Virginia, Box 801339, Charlottesville, VA 22908; Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); and Department of Science and Engineering, University of Nottingham, Ningbo, China (C.W.)
| | - William J. Garrison
- From the Departments of Physics (S.T., G.D.C.), Biomedical Engineering (W.J.G., J.P.M., G.W.M.), Radiology and Medical Imaging (J.P.M., J.F.M., E.E.d.L., A.M.R., G.W.M.), and Medicine (Y.M.S.), University of Virginia, Box 801339, Charlottesville, VA 22908; Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); and Department of Science and Engineering, University of Nottingham, Ningbo, China (C.W.)
| | - John P. Mugler
- From the Departments of Physics (S.T., G.D.C.), Biomedical Engineering (W.J.G., J.P.M., G.W.M.), Radiology and Medical Imaging (J.P.M., J.F.M., E.E.d.L., A.M.R., G.W.M.), and Medicine (Y.M.S.), University of Virginia, Box 801339, Charlottesville, VA 22908; Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); and Department of Science and Engineering, University of Nottingham, Ningbo, China (C.W.)
| | - Y. Michael Shim
- From the Departments of Physics (S.T., G.D.C.), Biomedical Engineering (W.J.G., J.P.M., G.W.M.), Radiology and Medical Imaging (J.P.M., J.F.M., E.E.d.L., A.M.R., G.W.M.), and Medicine (Y.M.S.), University of Virginia, Box 801339, Charlottesville, VA 22908; Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); and Department of Science and Engineering, University of Nottingham, Ningbo, China (C.W.)
| | - Talissa A. Altes
- From the Departments of Physics (S.T., G.D.C.), Biomedical Engineering (W.J.G., J.P.M., G.W.M.), Radiology and Medical Imaging (J.P.M., J.F.M., E.E.d.L., A.M.R., G.W.M.), and Medicine (Y.M.S.), University of Virginia, Box 801339, Charlottesville, VA 22908; Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); and Department of Science and Engineering, University of Nottingham, Ningbo, China (C.W.)
| | - Jaime F. Mata
- From the Departments of Physics (S.T., G.D.C.), Biomedical Engineering (W.J.G., J.P.M., G.W.M.), Radiology and Medical Imaging (J.P.M., J.F.M., E.E.d.L., A.M.R., G.W.M.), and Medicine (Y.M.S.), University of Virginia, Box 801339, Charlottesville, VA 22908; Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); and Department of Science and Engineering, University of Nottingham, Ningbo, China (C.W.)
| | - Eduard E. de Lange
- From the Departments of Physics (S.T., G.D.C.), Biomedical Engineering (W.J.G., J.P.M., G.W.M.), Radiology and Medical Imaging (J.P.M., J.F.M., E.E.d.L., A.M.R., G.W.M.), and Medicine (Y.M.S.), University of Virginia, Box 801339, Charlottesville, VA 22908; Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); and Department of Science and Engineering, University of Nottingham, Ningbo, China (C.W.)
| | - Gordon D. Cates
- From the Departments of Physics (S.T., G.D.C.), Biomedical Engineering (W.J.G., J.P.M., G.W.M.), Radiology and Medical Imaging (J.P.M., J.F.M., E.E.d.L., A.M.R., G.W.M.), and Medicine (Y.M.S.), University of Virginia, Box 801339, Charlottesville, VA 22908; Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); and Department of Science and Engineering, University of Nottingham, Ningbo, China (C.W.)
| | - Alan M. Ropp
- From the Departments of Physics (S.T., G.D.C.), Biomedical Engineering (W.J.G., J.P.M., G.W.M.), Radiology and Medical Imaging (J.P.M., J.F.M., E.E.d.L., A.M.R., G.W.M.), and Medicine (Y.M.S.), University of Virginia, Box 801339, Charlottesville, VA 22908; Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); and Department of Science and Engineering, University of Nottingham, Ningbo, China (C.W.)
| | - Chengbo Wang
- From the Departments of Physics (S.T., G.D.C.), Biomedical Engineering (W.J.G., J.P.M., G.W.M.), Radiology and Medical Imaging (J.P.M., J.F.M., E.E.d.L., A.M.R., G.W.M.), and Medicine (Y.M.S.), University of Virginia, Box 801339, Charlottesville, VA 22908; Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); and Department of Science and Engineering, University of Nottingham, Ningbo, China (C.W.)
| | - G. Wilson Miller
- From the Departments of Physics (S.T., G.D.C.), Biomedical Engineering (W.J.G., J.P.M., G.W.M.), Radiology and Medical Imaging (J.P.M., J.F.M., E.E.d.L., A.M.R., G.W.M.), and Medicine (Y.M.S.), University of Virginia, Box 801339, Charlottesville, VA 22908; Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); and Department of Science and Engineering, University of Nottingham, Ningbo, China (C.W.)
| |
Collapse
|
15
|
Kuethe DO, Hix JM, Fredenburgh LE. T 1 , T 1 contrast, and Ernst-angle images of four rat-lung pathologies. Magn Reson Med 2018; 81:2489-2500. [PMID: 30417929 DOI: 10.1002/mrm.27582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 09/07/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE To initiate the archive of relaxation-weighted images that may help discriminate between pulmonary pathologies relevant to acute respiratory distress syndrome. MRI has the ability to distinguish pathologies by providing a variety of different contrast mechanisms. Lungs have historically been difficult to image with MRI but image quality is sufficient to begin cataloging the appearance of pathologies in T1 - and T2 -weighted images. This study documents T1 and the use of T1 contrast with four experimental rat lung pathologies. METHODS Inversion-recovery and spoiled steady state images were made at 1.89 T to measure T1 and document contrast in rats with atelectasis, lipopolysaccharide-induced inflammation, ventilator-induced lung injury (VILI), and injury from saline lavage. Higher-resolution Ernst-angle images were made to see patterns of lung infiltrations. RESULTS T1 -weighted images showed minimal contrast between pathologies, similar to T1 -weighted images of other soft tissues. Images taken shortly after magnetization inversion and displayed with inverted contrast highlight lung pathologies. Ernst-angle images distinguish the effects of T1 relaxation and spin density and display distinctive patterns. T1 for pathologies were: atelectasis, 1.25 ± 0.046 s; inflammation from instillation of lipopolysaccharide, 1.24 ± 0.015 s; VILI, 1.55 ± 0.064 s (p = 0.0022 vs. normal lung); and injury from saline lavage, 1.90±0.080 s (p = 0.0022 vs. normal lung; p = 0.0079 vs. VILI). T1 of normal lung and erector spinae muscle were 1.25 ± 0.028 s and 1.02 ± 0.027 s, respectively (p = 0.0022). CONCLUSIONS Traditional T1 -weighting is subtle. However, images made with inverted magnetization and inverted contrast highlight the pathologies and Ernst-angle images aid in distinguishing pathologies.
Collapse
Affiliation(s)
- Dean O Kuethe
- ABQMR, Albuquerque, New Mexico.,Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Jeremy M Hix
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Laura E Fredenburgh
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
16
|
Schittny JC. How high resolution 3-dimensional imaging changes our understanding of postnatal lung development. Histochem Cell Biol 2018; 150:677-691. [PMID: 30390117 PMCID: PMC6267404 DOI: 10.1007/s00418-018-1749-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
During the last 10 + years biologically and clinically significant questions about postnatal lung development could be answered due to the application of modern cutting-edge microscopic and quantitative histological techniques. These are in particular synchrotron radiation based X-ray tomographic microscopy (SRXTM), but also 3Helium Magnetic Resonance Imaging, as well as the stereological estimation of the number of alveoli and the length of the free septal edge. First, the most important new finding may be the following: alveolarization of the lung does not cease after the maturation of the alveolar microvasculature but continues until young adulthood and, even more important, maybe reactivated lifelong if needed to rescue structural damages of the lungs. Second, the pulmonary acinus represents the functional unit of the lung. Because the borders of the acini could not be detected in classical histological sections, any investigation of the acini requires 3-dimensional (imaging) methods. Based on SRXTM it was shown that in rat lungs the number of acini stays constant, meaning that their volume increases by a factor of ~ 11 after birth. The latter is very important for acinar ventilation and particle deposition.
Collapse
Affiliation(s)
- Johannes C Schittny
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland.
| |
Collapse
|
17
|
Roth CJ, Yoshihara L, Wall WA. A simplified parametrised model for lung microstructures capable of mimicking realistic geometrical and mechanical properties. Comput Biol Med 2017; 89:104-114. [PMID: 28800439 DOI: 10.1016/j.compbiomed.2017.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
Abstract
The respiratory zone of mammalian lungs contains several millions of so-called alveoli. The geometrical and mechanical properties of this microstructure are crucial for respiration and influence the macroscopic behaviour of the entire organ in health and disease. Hence, if computational models are sought to gain more insight into lung behaviour, predict lung states in certain scenarios or suggest better treatment options in early stages of respiratory dysfunction, an adequate representation of this microstructure is essential. However, investigating the real alveolar architecture requires complex medical-imaging methods and would be computationally extremely expensive. Even worse, there is currently no way of obtaining the real patient-specific microstructure in vivo. Hence, we present a fast and easy to compute parametrised model of lung microstructures based on tetrakaidecahedra which can represent both geometrical and mechanical properties of the parenchyma. We show that gas transport pathways and stress and strain distributions are comparable to real alveolar microstructures and even capable of capturing variations present in biology. The created parametrised lung microstructure models can be utilized in finite element simulations to study, e.g., alveolar flow phenomena, particle deposition, or alveolar stresses and strains during mechanical ventilation. Due to the simpler geometry of the parametrised microgeometries compared to imaging-based microstructures, remarkable savings in CPU time can be achieved. We show that our model requires a minimum of 10% of the computational time for computing the same strain state in structural mechanics simulations compared to imaging-based alveolar microstructures.
Collapse
Affiliation(s)
- Christian J Roth
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstrasse 15, 85748, Garching b. München, Germany
| | - Lena Yoshihara
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstrasse 15, 85748, Garching b. München, Germany.
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstrasse 15, 85748, Garching b. München, Germany
| |
Collapse
|
18
|
Walkup LL, Thomen RP, Akinyi T, Watters E, Ruppert K, Clancy JP, Woods JC, Cleveland ZI. Feasibility, tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol 2016; 46:1651-1662. [PMID: 27492388 PMCID: PMC5083137 DOI: 10.1007/s00247-016-3672-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/05/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Hyperpolarized 129Xe is a promising contrast agent for MRI of pediatric lung function, but its safety and tolerability in children have not been rigorously assessed. OBJECTIVE To assess the feasibility, safety and tolerability of hyperpolarized 129Xe gas as an inhaled contrast agent for pediatric pulmonary MRI in healthy control subjects and in children with cystic fibrosis. MATERIALS AND METHODS Seventeen healthy control subjects (ages 6-15 years, 11 boys) and 11 children with cystic fibrosis (ages 8-16 years, 4 boys) underwent 129Xe MRI, receiving up to three doses of 129Xe gas prepared by either a commercially available or a homebuilt 129Xe polarizer. Subject heart rate and SpO2 were monitored for 2 min post inhalation and compared to resting baseline values. Adverse events were reported via follow-up phone call at days 1 and 30 (range ±7 days) post-MRI. RESULTS All children tolerated multiple doses of 129Xe, and no children withdrew from the study. Relative to baseline, most children who received a full dose of gas for imaging (10 of 12 controls and 8 of 11 children with cystic fibrosis) experienced a nadir in SpO2 (mean -6.0 ± standard deviation 7.2%, P≤0.001); however within 2 min post inhalation SpO2 values showed no significant difference from baseline (P=0.11). There was a slight elevation in heart rate (mean +6.6 ± 13.9 beats per minute [bpm], P=0.021), which returned from baseline within 2 min post inhalation (P=0.35). Brief side effects related to the anesthetic properties of xenon were mild and quickly resolved without intervention. No serious or severe adverse events were observed; in total, four minor adverse events (14.3%) were reported following 129Xe MRI, but all were deemed unrelated to the study. CONCLUSION The feasibility, safety and tolerability of 129Xe MRI has been assessed in a small group of children as young as 6 years. SpO2 changes were consistent with the expected physiological effects of a short anoxic breath-hold, and other mild side effects were consistent with the known anesthetic properties of xenon and with previous safety assessments of 129Xe MRI in adults. Hyperpolarized 129Xe is a safe and well-tolerated inhaled contrast agent for pulmonary MR imaging in healthy children and in children with cystic fibrosis who have mild to moderate lung disease.
Collapse
Affiliation(s)
- Laura L. Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA
| | - Robert P. Thomen
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA,Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
| | - Teckla Akinyi
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA,Biomedical Engineering Program, University of Cincinnati, Cincinnati, OH, USA
| | - Erin Watters
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA
| | - Kai Ruppert
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA
| | - John P. Clancy
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jason C. Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA,Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
| | - Zackary I. Cleveland
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., MLC 5033, Cincinnati, OH 45229, USA,Biomedical Engineering Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|