1
|
Ma J, Chen J, Reed GD, Hackett EP, Harrison CE, Ratnakar J, Schulte RF, Zaha VG, Malloy CR, Park JM. Cardiac T 2 ∗ measurement of hyperpolarized 13 C metabolites using metabolite-selective multi-echo spiral imaging. Magn Reson Med 2021; 86:1494-1504. [PMID: 33821504 DOI: 10.1002/mrm.28796] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Noninvasive imaging with hyperpolarized (HP) pyruvate can capture in vivo cardiac metabolism. For proper quantification of the metabolites and optimization of imaging parameters, understanding MR characteristics such as T 2 ∗ s of the HP signals is critical. This study is to measure in vivo cardiac T 2 ∗ s of HP [1-13 C]pyruvate and the products in rodents and humans. METHODS A dynamic 13 C multi-echo spiral imaging sequence that acquires [13 C]bicarbonate, [1-13 C]lactate, and [1-13 C]pyruvate images in an interleaved manner was implemented for a clinical 3 Tesla system. T 2 ∗ of each metabolite was calculated from the multi-echo images by fitting the signal decay of each region of interest mono-exponentially. The performance of measuring T 2 ∗ using the sequence was first validated using a 13 C phantom and then with rodents following a bolus injection of HP [1-13 C]pyruvate. In humans, T 2 ∗ of each metabolite was calculated for left ventricle, right ventricle, and myocardium. RESULTS Cardiac T 2 ∗ s of HP [1-13 C]pyruvate, [1-13 C]lactate, and [13 C]bicarbonate in rodents were measured as 24.9 ± 5.0, 16.4 ± 4.7, and 16.9 ± 3.4 ms, respectively. In humans, T 2 ∗ of [1-13 C]pyruvate was 108.7 ± 22.6 ms in left ventricle and 129.4 ± 8.9 ms in right ventricle. T 2 ∗ of [1-13 C]lactate was 40.9 ± 8.3, 44.2 ± 5.5, and 43.7 ± 9.0 ms in left ventricle, right ventricle, and myocardium, respectively. T 2 ∗ of [13 C]bicarbonate in myocardium was 64.4 ± 2.5 ms. The measurements were reproducible and consistent over time after the pyruvate injection. CONCLUSION The proposed metabolite-selective multi-echo spiral imaging sequence reliably measures in vivo cardiac T 2 ∗ s of HP [1-13 C]pyruvate and products.
Collapse
Affiliation(s)
- Junjie Ma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Chen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Edward P Hackett
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Crystal E Harrison
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James Ratnakar
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Vlad G Zaha
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
2
|
pH Dependence of T2 for Hyperpolarizable 13C-Labelled Small Molecules Enables Spatially Resolved pH Measurement by Magnetic Resonance Imaging. Pharmaceuticals (Basel) 2021; 14:ph14040327. [PMID: 33918366 PMCID: PMC8067065 DOI: 10.3390/ph14040327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Hyperpolarized 13C magnetic resonance imaging often uses spin-echo-based pulse sequences that are sensitive to the transverse relaxation time T2. In this context, local T2-changes might introduce a quantification bias to imaging biomarkers. Here, we investigated the pH dependence of the apparent transverse relaxation time constant (denoted here as T2) of six 13C-labelled molecules. We obtained minimum and maximum T2 values within pH 1–13 at 14.1 T: [1-13C]acetate (T2,min = 2.1 s; T2,max = 27.7 s), [1-13C]alanine (T2,min = 0.6 s; T2,max = 10.6 s), [1,4-13C2]fumarate (T2,min = 3.0 s; T2,max = 18.9 s), [1-13C]lactate (T2,min = 0.7 s; T2,max = 12.6 s), [1-13C]pyruvate (T2,min = 0.1 s; T2,max = 18.7 s) and 13C-urea (T2,min = 0.1 s; T2,max = 0.1 s). At 7 T, T2-variation in the physiological pH range (pH 6.8–7.8) was highest for [1-13C]pyruvate (ΔT2 = 0.95 s/0.1pH) and [1-13C]acetate (ΔT2 = 0.44 s/0.1pH). Concentration, salt concentration, and temperature alterations caused T2 variations of up to 45.4% for [1-13C]acetate and 23.6% for [1-13C]pyruvate. For [1-13C]acetate, spatially resolved pH measurements using T2-mapping were demonstrated with 1.6 pH units accuracy in vitro. A strong proton exchange-based pH dependence of T2 suggests that pH alterations potentially influence signal strength for hyperpolarized 13C-acquisitions.
Collapse
|
3
|
Xu Z, Niedzielski JS, Sun C, Walker CM, Michel KA, Einstein SA, Martinez GV, Bankson JA. Correction and optimization of symmetric echo-planar spectroscopic imaging for hyperpolarized [1- 13C]-pyruvate. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 321:106859. [PMID: 33160268 PMCID: PMC7722237 DOI: 10.1016/j.jmr.2020.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Symmetric echo-planar spectroscopic imaging (EPSI) supports higher spectral bandwidth and improves signal-to-noise efficiency compared to flyback EPSI with the same readout bandwidth, but suffers from artifacts that are associated with non-uniform temporal sampling in k-t space. Our goal is to eliminate these artifacts and enhance observation of hyperpolarized [1-13C] pyruvate and its metabolites using symmetric EPSI. We used symmetric EPSI to efficiently acquire radially encoded spectroscopic imaging projections with a spectral under-sampling scheme that was optimized for HP pyruvate and its metabolites. A simple approach called selective correction of off-resonance effects (SCORE) was developed and applied to eliminate spectral artifacts. Simulations were used to assess the relative SNR performance of this technique, and a phantom study was carried out at 3 T to evaluate this method and compare it with alternative strategies. SCORE correction eliminated spectral artifacts due to chemical shift and non-uniform sampling in time. It is also compatible with established methods to eliminate artifacts caused by eddy currents. SCORE corrected symmetric EPSI supported maximal EPSI spectral bandwidth and improved SNR efficiency. Symmetric EPSI with SCORE correction offers a straightforward, efficient, and effective framework for assessment of hyperpolarized [1-13C] pyruvate and its metabolites.
Collapse
Affiliation(s)
- Zhan Xu
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | - Joshua S Niedzielski
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | - Changyu Sun
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher M Walker
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | - Keith A Michel
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Samuel A Einstein
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | - Gary V Martinez
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | - James A Bankson
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
4
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
5
|
Hansen RB, Sánchez‐Heredia JD, Bøgh N, Hansen ESS, Laustsen C, Hanson LG, Ardenkjær‐Larsen JH. Coil profile estimation strategies for parallel imaging with hyperpolarized
13
C MRI. Magn Reson Med 2019; 82:2104-2117. [DOI: 10.1002/mrm.27892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Rie B. Hansen
- Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
| | | | - Nikolaj Bøgh
- MR Research Centre Aarhus University Aarhus Denmark
| | | | | | - Lars G. Hanson
- Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research Copenhagen University Hospital Hvidovre Copenhagen Denmark
| | - Jan H. Ardenkjær‐Larsen
- Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
- GE Healthcare Brøndby Denmark
| |
Collapse
|
6
|
Gordon JW, Chen HY, Autry A, Park I, Van Criekinge M, Mammoli D, Milshteyn E, Bok R, Xu D, Li Y, Aggarwal R, Chang S, Slater JB, Ferrone M, Nelson S, Kurhanewicz J, Larson PEZ, Vigneron DB. Translation of Carbon-13 EPI for hyperpolarized MR molecular imaging of prostate and brain cancer patients. Magn Reson Med 2018; 81:2702-2709. [PMID: 30375043 DOI: 10.1002/mrm.27549] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE To develop and translate a metabolite-specific imaging sequence using a symmetric echo planar readout for clinical hyperpolarized (HP) Carbon-13 (13 C) applications. METHODS Initial data were acquired from patients with prostate cancer (N = 3) and high-grade brain tumors (N = 3) on a 3T scanner. Samples of [1-13 C]pyruvate were polarized for at least 2 h using a 5T SPINlab system operating at 0.8 K. Following injection of the HP substrate, pyruvate, lactate, and bicarbonate (for brain studies) were sequentially excited with a singleband spectral-spatial RF pulse and signal was rapidly encoded with a single-shot echo planar readout on a slice-by-slice basis. Data were acquired dynamically with a temporal resolution of 2 s for prostate studies and 3 s for brain studies. RESULTS High pyruvate signal was seen throughout the prostate and brain, with conversion to lactate being shown across studies, whereas bicarbonate production was also detected in the brain. No Nyquist ghost artifacts or obvious geometric distortion from the echo planar readout were observed. The average error in center frequency was 1.2 ± 17.0 and 4.5 ± 1.4 Hz for prostate and brain studies, respectively, below the threshold for spatial shift because of bulk off-resonance. CONCLUSION This study demonstrated the feasibility of symmetric EPI to acquire HP 13 C metabolite maps in a clinical setting. As an advance over prior single-slice dynamic or single time point volumetric spectroscopic imaging approaches, this metabolite-specific EPI acquisition provided robust whole-organ coverage for brain and prostate studies while retaining high SNR, spatial resolution, and dynamic temporal resolution.
Collapse
Affiliation(s)
- Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Adam Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Ilwoo Park
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniele Mammoli
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marcus Ferrone
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California
| | - Sarah Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
7
|
Gordon JW, Hansen RB, Shin PJ, Feng Y, Vigneron DB, Larson PEZ. 3D hyperpolarized C-13 EPI with calibrationless parallel imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 289:92-99. [PMID: 29476930 PMCID: PMC5856653 DOI: 10.1016/j.jmr.2018.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 05/08/2023]
Abstract
With the translation of metabolic MRI with hyperpolarized 13C agents into the clinic, imaging approaches will require large volumetric FOVs to support clinical applications. Parallel imaging techniques will be crucial to increasing volumetric scan coverage while minimizing RF requirements and temporal resolution. Calibrationless parallel imaging approaches are well-suited for this application because they eliminate the need to acquire coil profile maps or auto-calibration data. In this work, we explored the utility of a calibrationless parallel imaging method (SAKE) and corresponding sampling strategies to accelerate and undersample hyperpolarized 13C data using 3D blipped EPI acquisitions and multichannel receive coils, and demonstrated its application in a human study of [1-13C]pyruvate metabolism.
Collapse
Affiliation(s)
- Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States.
| | - Rie B Hansen
- Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter J Shin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Yesu Feng
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|