1
|
Bu M, Deng X, Zhang Y, Chen SW, Jiang M, Chen BT. Brain iron content and cognitive function in patients with β-thalassemia. Ther Adv Hematol 2023; 14:20406207231167050. [PMID: 37151807 PMCID: PMC10155013 DOI: 10.1177/20406207231167050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
Patients with β-thalassemia (β-TM) may have brain iron overload from long-term blood transfusions, ineffective erythropoiesis, and increased intestinal iron absorption, leading to cognitive impairment. Brain magnetic resonance imaging (MRI) methods such as the transverse relaxation rate, susceptibility-weighted imaging, and quantitative susceptibility mapping can provide quantitative, in vivo measurements of brain iron. This review assessed these MRI methods for brain iron quantification and the measurements for cognitive function in patients with β-TM. We aimed to identify the neural correlates of cognitive impairment, which should help to evaluate therapies for improving cognition and quality of life in patients with β-TM.
Collapse
Affiliation(s)
- Meiru Bu
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xi Deng
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yu Zhang
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Sean W. Chen
- Department of Medical Oncology &
Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte,
CA, USA
| | - Muliang Jiang
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning 530021, P. R. China
| | - Bihong T. Chen
- Department of Diagnostic Radiology, City of
Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
2
|
Ciris P. Information theoretic evaluation of Lorentzian, Gaussian, Voigt, and symmetric alpha-stable models of reversible transverse relaxation in cervical cancer in vivo at 3 T. MAGMA (NEW YORK, N.Y.) 2023; 36:119-133. [PMID: 35925432 DOI: 10.1007/s10334-022-01035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022]
Abstract
OBJECTS To better characterize cervical cancer at 3 T. MRI transverse relaxation patterns hold valuable biophysical information about cellular scale microstructure. Lorentzian modeling is typically used to represent intravoxel frequency distributions, resulting in mono-exponential decay of reversible transverse relaxation. However, deviations from mono-exponential decay are expected theoretically and observed experimentally. MATERIALS AND METHODS We compared the information content of four models of signal attenuation with reversible transverse relaxation. Biological phantoms and six women with cervical squamous cell carcinoma were imaged using a gradient-echo sampling of the spin-echo (GESSE) sequence. Lorentzian, Gaussian, Voigt, and Symmetric α-Stable (SAS) models were ranked using Akaike's Information Criterion (AIC), and the model retaining the highest information content was identified at each voxel as the best model. RESULTS The Lorentzian model resulted in information loss in large fractions of the phantoms and cervix. Gaussian and SAS models frequently had higher information content than the Lorentzian in much of the areas of interest. The Voigt model rarely surpassed the three other models in terms of information content. DISCUSSION Gaussian and SAS models provide better fitting of data in much of the human cervix at 3 T. Minimizing information loss through improved tissue modeling may have important implications for identifying reliable biomarkers of tumor hypoxia and iron deposition.
Collapse
Affiliation(s)
- Pelin Ciris
- Department of Biomedical Engineering, Faculty of Engineering, Akdeniz University, A305, 07070, Antalya, Türkiye.
| |
Collapse
|
3
|
Balasubramanian M, Mulkern RV, Polimeni JR. In vivo irreversible and reversible transverse relaxation rates in human cerebral cortex via line scans at 7 T with 250 micron resolution perpendicular to the cortical surface. Magn Reson Imaging 2022; 90:44-52. [PMID: 35398027 PMCID: PMC9930184 DOI: 10.1016/j.mri.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/10/2022] [Accepted: 04/02/2022] [Indexed: 01/15/2023]
Abstract
Understanding how and why MR signals and their associated relaxation rates vary with cortical depth could ultimately enable the noninvasive investigation of the laminar architecture of cerebral cortex in the living human brain. However, cortical gray matter is typically only a few millimeters thick, making it challenging to sample many cortical depths with the voxel sizes commonly used in MRI studies. Line-scan techniques provide a way to overcome this challenge and here we implemented a novel line-scan GESSE pulse sequence that allowed us to measure irreversible and reversible transverse relaxation rates-R2 and R2´, respectively-with extremely high resolution (250 μm) in the radial direction, perpendicular to the cortical surface. Eight healthy human subjects were scanned at 7 T using this sequence, with primary visual cortex (V1) targeted in three subjects and primary motor (M1) and somatosensory cortex (S1) targeted in the other five. In all three cortical areas, a peak in R2 values near the central depths was seen consistently across subjects-an observation that has not been made before, to our knowledge. On the other hand, no consistent pattern was apparent for R2´ values as a function of cortical depth. The intracortical R2 peak reported here is unlikely to be explained by myelin content or by deoxyhemoglobin in the microvasculature; however, this peak is in accord with the laminar distribution of non-heme iron in these cortical areas, known from prior histology studies. Obtaining information about tissue microstructure via measurements of transverse relaxation (and other quantitative MR contrast mechanisms) at the extremely high radial resolutions achievable through the use of line-scan techniques could therefore bring us closer to being able to perform "in vivo histology" of the cerebral cortex.
Collapse
Affiliation(s)
- Mukund Balasubramanian
- Harvard Medical School, Boston, MA, USA; Department of Radiology, Boston Children's Hospital, Boston, MA, USA.
| | - Robert V. Mulkern
- Harvard Medical School, Boston, MA, USA,Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
| | - Jonathan R. Polimeni
- Harvard Medical School, Boston, MA, USA,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Herrmann CJJ, Els A, Boehmert L, Periquito J, Eigentler TW, Millward JM, Waiczies S, Kuchling J, Paul F, Niendorf T. Simultaneous T 2 and T 2 ∗ mapping of multiple sclerosis lesions with radial RARE-EPI. Magn Reson Med 2021; 86:1383-1402. [PMID: 33951214 DOI: 10.1002/mrm.28811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE The characteristic MRI features of multiple sclerosis (MS) lesions make it conceptually appealing to pursue parametric mapping techniques that support simultaneous generation of quantitative maps of 2 or more MR contrast mechanisms. We present a modular rapid acquisition with relaxation enhancement (RARE)-EPI hybrid that facilitates simultaneous T2 and T 2 ∗ mapping (2in1-RARE-EPI). METHODS In 2in1-RARE-EPI the first echoes in the echo train are acquired with a RARE module, later echoes are acquired with an EPI module. To define the fraction of echoes covered by the RARE and EPI module, an error analysis of T2 and T 2 ∗ was conducted with Monte Carlo simulations. Radial k-space (under)sampling was implemented for acceleration (R = 2). The feasibility of 2in1-RARE-EPI for simultaneous T2 and T 2 ∗ mapping was examined in a phantom study mimicking T2 and T 2 ∗ relaxation times of the brain. For validation, 2in1-RARE-EPI was benchmarked versus multi spin-echo (MSE) and multi gradient-echo (MGRE) techniques. The clinical applicability of 2in1-RARE-EPI was demonstrated in healthy subjects and MS patients. RESULTS There was a good agreement between T2 / T 2 ∗ values derived from 2in1-RARE-EPI and T2 / T 2 ∗ reference values obtained from MSE and MGRE in both phantoms and healthy subjects. In patients, MS lesions in T2 and T 2 ∗ maps deduced from 2in1-RARE-EPI could be just as clearly delineated as in reference maps calculated from MSE/MGRE. CONCLUSION This work demonstrates the feasibility of radially (under)sampled 2in1-RARE-EPI for simultaneous T2 and T 2 ∗ mapping in MS patients.
Collapse
Affiliation(s)
- Carl J J Herrmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Laura Boehmert
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Joao Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Chair of Medical Engineering, Technical University of Berlin, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Joseph Kuchling
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|