1
|
Armbruster R, Wilson N, Elliott MA, Liu F, Benyard B, Jacobs P, Swain A, Nanga RPR, Reddy R. Repeatability of Lac+ measurements in healthy human brain at 3 T. NMR IN BIOMEDICINE 2024; 37:e5158. [PMID: 38584133 DOI: 10.1002/nbm.5158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE In vivo quantification of lactate has numerous applications in studying the pathology of both cerebral and musculoskeletal systems. Due to its low concentration (~0.5-1 mM), and overlap with lipid signals, traditional 1H MR spectra acquired in vivo using a small voxel and short echo time often result in an inadequate signal to detect and resolve the lactate peak, especially in healthy human volunteers. METHODS In this study, using a semi-LASER acquisition with long echo time (TE = 288 ms) and large voxel size (80 × 70 × 20 mm3), we clearly visualize the combined signal of lactate and threonine. Therefore, we call the signal at 1.33 ppm Lac+ and quantify Lac+ concentration from water suppressed spectra in healthy human brains in vivo. Four participants (22-37 years old; mean age = 28 ± 5.4; three male, one female) were scanned on four separate days, and on each day four measurements were taken. Intra-day values are calculated for each participant by comparing the four measurements on a single day. Inter-day values were calculated using the mean intra-day measurements. RESULTS The mean intra-participant Lac+ concentration, standard deviation (SD), and coefficient of variation (CV) ranged from 0.49 to 0.61 mM, 0.02 to 0.07 mM, and 4% to 13%, respectively, across four volunteers. The inter-participant Lac+ concentration, SD, and CV was 0.53 mM, ±0.06 mM, and 11%. CONCLUSION Repeatability is shown in Lac+ measurement in healthy human brain using a long echo time semi-LASER sequence with a large voxel in about 3.5 min at 3 T.
Collapse
Affiliation(s)
- Ryan Armbruster
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neil Wilson
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark A Elliott
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fang Liu
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Blake Benyard
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul Jacobs
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anshuman Swain
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravi Prakash Reddy Nanga
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Hyppönen VEA, Rosa J, Kettunen MI. Simultaneous fMRI and metabolic MRS of hyperpolarized [1- 13C]pyruvate during nicotine stimulus in rat. NMR IN BIOMEDICINE 2024; 37:e5108. [PMID: 38273732 DOI: 10.1002/nbm.5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Functional MRI (fMRI) and MRS (fMRS) can be used to noninvasively map cerebral activation and metabolism. Recently, hyperpolarized 13C spectroscopy and metabolic imaging have provided an alternative approach to assess metabolism. In this study, we combined 1H fMRI and hyperpolarized [1-13C]pyruvate MRS to compare cerebral blood oxygenation level-dependent (BOLD) response and real-time cerebral metabolism, as assessed with lactate and bicarbonate labelling, during nicotine stimulation. Simultaneous 1H fMRI (multislice gradient echo echo-planar imaging) and 13C spectroscopic (single slice pulse-acquire) data were collected in urethane-anaesthetized female Sprague-Dawley rats (n = 12) at 9.4 T. Animals received an intravenous (i.v.) injection of either nicotine (stimulus; 88 μg/kg, n = 7, or 300 μg/kg, n = 5) or 0.9% saline (matching volume), followed by hyperpolarized [1-13C]pyruvate injection 60 s later. Three hours later, a second injection was administered: the animals that had previously received saline were injected with nicotine and vice versa, both followed by another hyperpolarized [1-13C]pyruvate i.v. injection 60 s later. The low-dose (88 μg/kg) nicotine injection led to a 12% ± 4% (n = 7, t-test, p ~ 0.0006 (t-value -5.8, degrees of freedom 6), Wilcoxon p ~ 0.0078 (test statistic 0)) increase in BOLD signal. At the same time, an increase in 13C-bicarbonate signal was seen in four out of six animals. Bicarbonate-to-total carbon ratios were 0.010 ± 0.004 and 0.018 ± 0.010 (n = 6, t-test, p ~ 0.03 (t-value -2.3, degrees of freedom 5), Wilcoxon p ~ 0.08 (test statistic 3)) for saline and nicotine experiments, respectively. No increase in the lactate signal was seen; lactate-to-total carbon was 0.16 ± 0.02 after both injections. The high (300 μg/kg) nicotine dose (n = 5) caused highly variable BOLD and metabolic responses, possibly due to the apparent respiratory distress. Simultaneous detection of 1H fMRI and hyperpolarized 13C-MRS is feasible. A comparison of metabolic response between control and stimulated states showed differences in bicarbonate signal, implying that the hyperpolarization technique could offer complimentary information on brain activation.
Collapse
Affiliation(s)
- Viivi-Elina A Hyppönen
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jessica Rosa
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko I Kettunen
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Sun W, Xu D, Yang Y, Wen L, Yu H, Xing Y, Song X, Li H, Xu H. Improved Detection of Target Metabolites in Brain Tumors with Intermediate TE, High SNR, and High Bandwidth Spin-Echo Sequence at 5T. AJNR Am J Neuroradiol 2024; 45:461-467. [PMID: 38453417 PMCID: PMC11288575 DOI: 10.3174/ajnr.a8150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND PURPOSE Due to high chemical shift displacement, challenges emerge at ultra-high fields when measuring metabolites using 1H-MRS. Our goal was to investigate how well the high SNR and high bandwidth spin-echo (HISE) technique perform at 5T for detecting target metabolites in brain tumors. MATERIALS AND METHODS Twenty-six subjects suspected of having brain tumors were enrolled. HISE and point-resolved spectroscopy (PRESS) single-voxel spectroscopy scans were collected with a 5T clinical scanner with an intermediate TE (TE = 144 ms). The main metabolites, including total NAA, Cr, and total Cho, were accessed and compared between HISE and PRESS using a paired Student t test, with full width at half maximum and SNR as covariates. The detection rate of specific metabolites, including lactate, alanine, and lipid, and subjective spectral quality were accessed and compared between HISE and PRESS. RESULTS Twenty-three pathologically confirmed brain tumors were included. Only the full width at half maximum for total NAA was significantly lower with HISE than with PRESS (P < .05). HISE showed a significantly higher SNR for total NAA, Cr, and total Cho compared with PRESS (P < .05). Lactate was detected in 21 of the 23 cases using HISE, but in only 4 cases using PRESS. HISE detected alanine in 8 of 9 meningiomas, whereas PRESS detected alanine in just 3 meningiomas. PRESS found lipid in more cases than HISE, while HISE outperformed PRESS in terms of subjective spectral quality. CONCLUSIONS HISE outperformed the clinical standard PRESS technique in detecting target metabolites of brain tumors at 5T, particularly lactate and alanine.
Collapse
Affiliation(s)
- Wenbo Sun
- From the Department of Radiology (W.S., H.L., H.X.), Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Dan Xu
- Department of Nuclear Medicine (D.X.), Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - YanXing Yang
- United-Imaging Healthcare (Y.Y., L.W., H.Y., Y.X., X.S.), Shanghai, China
| | - Linfei Wen
- United-Imaging Healthcare (Y.Y., L.W., H.Y., Y.X., X.S.), Shanghai, China
| | - Hanjiang Yu
- United-Imaging Healthcare (Y.Y., L.W., H.Y., Y.X., X.S.), Shanghai, China
| | - Yaowen Xing
- United-Imaging Healthcare (Y.Y., L.W., H.Y., Y.X., X.S.), Shanghai, China
| | - Xiaopeng Song
- United-Imaging Healthcare (Y.Y., L.W., H.Y., Y.X., X.S.), Shanghai, China
| | - Huan Li
- From the Department of Radiology (W.S., H.L., H.X.), Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Haibo Xu
- From the Department of Radiology (W.S., H.L., H.X.), Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
4
|
Hagihara H, Shoji H, Hattori S, Sala G, Takamiya Y, Tanaka M, Ihara M, Shibutani M, Hatada I, Hori K, Hoshino M, Nakao A, Mori Y, Okabe S, Matsushita M, Urbach A, Katayama Y, Matsumoto A, Nakayama KI, Katori S, Sato T, Iwasato T, Nakamura H, Goshima Y, Raveau M, Tatsukawa T, Yamakawa K, Takahashi N, Kasai H, Inazawa J, Nobuhisa I, Kagawa T, Taga T, Darwish M, Nishizono H, Takao K, Sapkota K, Nakazawa K, Takagi T, Fujisawa H, Sugimura Y, Yamanishi K, Rajagopal L, Hannah ND, Meltzer HY, Yamamoto T, Wakatsuki S, Araki T, Tabuchi K, Numakawa T, Kunugi H, Huang FL, Hayata-Takano A, Hashimoto H, Tamada K, Takumi T, Kasahara T, Kato T, Graef IA, Crabtree GR, Asaoka N, Hatakama H, Kaneko S, Kohno T, Hattori M, Hoshiba Y, Miyake R, Obi-Nagata K, Hayashi-Takagi A, Becker LJ, Yalcin I, Hagino Y, Kotajima-Murakami H, Moriya Y, Ikeda K, Kim H, Kaang BK, Otabi H, Yoshida Y, Toyoda A, Komiyama NH, Grant SGN, Ida-Eto M, Narita M, Matsumoto KI, Okuda-Ashitaka E, Ohmori I, Shimada T, Yamagata K, Ageta H, Tsuchida K, Inokuchi K, Sassa T, Kihara A, Fukasawa M, Usuda N, Katano T, Tanaka T, Yoshihara Y, Igarashi M, Hayashi T, Ishikawa K, Yamamoto S, Nishimura N, Nakada K, Hirotsune S, Egawa K, Higashisaka K, Tsutsumi Y, Nishihara S, Sugo N, Yagi T, Ueno N, Yamamoto T, Kubo Y, Ohashi R, Shiina N, Shimizu K, Higo-Yamamoto S, Oishi K, Mori H, Furuse T, Tamura M, Shirakawa H, Sato DX, Inoue YU, Inoue T, Komine Y, Yamamori T, Sakimura K, Miyakawa T. Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment. eLife 2024; 12:RP89376. [PMID: 38529532 PMCID: PMC10965225 DOI: 10.7554/elife.89376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Giovanni Sala
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Yoshihiro Takamiya
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Mika Tanaka
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular CenterSuitaJapan
| | - Mihiro Shibutani
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Akito Nakao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyotoJapan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyotoJapan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Masayuki Matsushita
- Department of Molecular Cellular Physiology, Graduate School of Medicine, University of the RyukyusNishiharaJapan
| | - Anja Urbach
- Department of Neurology, Jena University HospitalJenaGermany
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Shota Katori
- Laboratory of Mammalian Neural Circuits, National Institute of GeneticsMishimaJapan
| | - Takuya Sato
- Laboratory of Mammalian Neural Circuits, National Institute of GeneticsMishimaJapan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of GeneticsMishimaJapan
| | - Haruko Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of MedicineYokohamaJapan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of MedicineYokohamaJapan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceWakoJapan
| | - Tetsuya Tatsukawa
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceWakoJapan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceWakoJapan
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Sciences, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of TokyoTokyoJapan
- Department of Physiology, Kitasato University School of MedicineSagamiharaJapan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of TokyoTokyoJapan
| | - Johji Inazawa
- Research Core, Tokyo Medical and Dental UniversityTokyoJapan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Tetsushi Kagawa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Mohamed Darwish
- Department of Biochemistry, Faculty of Pharmacy, Cairo UniversityCairoEgypt
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
| | | | - Keizo Takao
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
- Department of Behavioral Physiology, Faculty of Medicine, University of ToyamaToyamaJapan
| | - Kiran Sapkota
- Department of Neuroscience, Southern ResearchBirminghamUnited States
| | | | - Tsuyoshi Takagi
- Institute for Developmental Research, Aichi Developmental Disability CenterKasugaiJapan
| | - Haruki Fujisawa
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health UniversityToyoakeJapan
| | - Yoshihisa Sugimura
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health UniversityToyoakeJapan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo Medical University School of MedicineNishinomiyaJapan
| | - Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Nanette Deneen Hannah
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa UniversityKita-gunJapan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Katsuhiko Tabuchi
- Department of Molecular & Cellular Physiology, Shinshu University School of MedicineMatsumotoJapan
| | - Tadahiro Numakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
- Department of Psychiatry, Teikyo University School of MedicineTokyoJapan
| | - Freesia L Huang
- Program of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
- Department of Pharmacology, Graduate School of Dentistry, Osaka UniversitySuitaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiSuitaJapan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiSuitaJapan
- Division of Bioscience, Institute for Datability Science, Osaka UniversitySuitaJapan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
- Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka UniversitySuitaJapan
| | - Kota Tamada
- RIKEN Brain Science InstituteWakoJapan
- Department of Physiology and Cell Biology, Kobe University School of MedicineKobeJapan
| | - Toru Takumi
- RIKEN Brain Science InstituteWakoJapan
- Department of Physiology and Cell Biology, Kobe University School of MedicineKobeJapan
| | - Takaoki Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain ScienceWakoJapan
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University of OldenburgOldenburgGermany
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain ScienceWakoJapan
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of MedicineTokyoJapan
| | - Isabella A Graef
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Gerald R Crabtree
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Nozomi Asaoka
- Department of Pharmacology, Kyoto Prefectural University of MedicineKyotoJapan
| | - Hikari Hatakama
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto UniversityKyotoJapan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto UniversityKyotoJapan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
| | - Yoshio Hoshiba
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Ryuhei Miyake
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain ScienceWakoJapan
| | - Kisho Obi-Nagata
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain ScienceWakoJapan
| | - Akiko Hayashi-Takagi
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain ScienceWakoJapan
| | - Léa J Becker
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de StrasbourgStrasbourgFrance
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de StrasbourgStrasbourgFrance
| | - Yoko Hagino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | | | - Yuki Moriya
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Hyopil Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Hikari Otabi
- College of Agriculture, Ibaraki UniversityAmiJapan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and TechnologyFuchuJapan
| | - Yuta Yoshida
- College of Agriculture, Ibaraki UniversityAmiJapan
| | - Atsushi Toyoda
- College of Agriculture, Ibaraki UniversityAmiJapan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and TechnologyFuchuJapan
- Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM)IbarakiJapan
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Seth GN Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Michiru Ida-Eto
- Department of Developmental and Regenerative Medicine, Mie University, Graduate School of MedicineTsuJapan
| | - Masaaki Narita
- Department of Developmental and Regenerative Medicine, Mie University, Graduate School of MedicineTsuJapan
| | - Ken-ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane UniversityIzumoJapan
| | | | - Iori Ohmori
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Tadayuki Shimada
- Child Brain Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Kaoru Inokuchi
- Research Center for Idling Brain Science, University of ToyamaToyamaJapan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), University of ToyamaToyamaJapan
| | - Takayuki Sassa
- Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Motoaki Fukasawa
- Department of Anatomy II, Fujita Health University School of MedicineToyoakeJapan
| | - Nobuteru Usuda
- Department of Anatomy II, Fujita Health University School of MedicineToyoakeJapan
| | - Tayo Katano
- Department of Medical Chemistry, Kansai Medical UniversityHirakataJapan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Yoshihiro Yoshihara
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain ScienceWakoJapan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine, and Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
- Transdiciplinary Research Program, Niigata UniversityNiigataJapan
| | - Takashi Hayashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Kaori Ishikawa
- Institute of Life and Environmental Sciences, University of TsukubaTsukubaJapan
- Graduate School of Science and Technology, University of TsukubaTsukubaJapan
| | - Satoshi Yamamoto
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company, LtdFujisawaJapan
| | - Naoya Nishimura
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company, LtdFujisawaJapan
| | - Kazuto Nakada
- Institute of Life and Environmental Sciences, University of TsukubaTsukubaJapan
- Graduate School of Science and Technology, University of TsukubaTsukubaJapan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of MedicineOsakaJapan
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Graduate School of MedicineSapporoJapan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
| | - Shoko Nishihara
- Glycan & Life Systems Integration Center (GaLSIC), Soka UniversityTokyoJapan
| | - Noriyuki Sugo
- Graduate School of Frontier Biosciences, Osaka UniversitySuitaJapan
| | - Takeshi Yagi
- Graduate School of Frontier Biosciences, Osaka UniversitySuitaJapan
| | - Naoto Ueno
- Laboratory of Morphogenesis, National Institute for Basic BiologyOkazakiJapan
| | - Tomomi Yamamoto
- Division of Biophysics and Neurobiology, National Institute for Physiological SciencesOkazakiJapan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological SciencesOkazakiJapan
| | - Rie Ohashi
- Laboratory of Neuronal Cell Biology, National Institute for Basic BiologyOkazakiJapan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies)OkazakiJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic BiologyOkazakiJapan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies)OkazakiJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
| | - Kimiko Shimizu
- Department of Biological Sciences, School of Science, The University of TokyoTokyoJapan
| | - Sayaka Higo-Yamamoto
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of ScienceNodaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- School of Integrative and Global Majors (SIGMA), University of TsukubaTsukubaJapan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Tamio Furuse
- Mouse Phenotype Analysis Division, Japan Mouse Clinic, RIKEN BioResource Research Center (BRC)TsukubaJapan
| | - Masaru Tamura
- Mouse Phenotype Analysis Division, Japan Mouse Clinic, RIKEN BioResource Research Center (BRC)TsukubaJapan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto UniversityKyotoJapan
| | - Daiki X Sato
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Yuriko Komine
- Young Researcher Support Group, Research Enhancement Strategy Office, National Institute for Basic Biology, National Institute of Natural SciencesOkazakiJapan
- Division of Brain Biology, National Institute for Basic BiologyOkazakiJapan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic BiologyOkazakiJapan
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain ScienceWakoJapan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata UniversityNiigataJapan
- Department of Animal Model Development, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| |
Collapse
|
5
|
Yoo JH, Park YW, Kim D, Park H, Jeong B. Effects of Parental Verbal Abuse Experience on the Glutamate Response to Swear Words in the Ventromedial Prefrontal Cortex: A Functional 1H-magnetic Resonance Spectroscopy Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:559-571. [PMID: 37424423 PMCID: PMC10335905 DOI: 10.9758/cpn.22.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 07/11/2023]
Abstract
Objective Several lines of evidence indicate verbal abuse (VA) critically impacts the developing brain; however, whether VA results in changes in brain neurochemistry has not been established. Here, we hypothesized that exposure to recurrent parental VA elicits heightened glutamate (Glu) responses during the presentation of swear words, which can be measured with functional magnetic resonance spectroscopy (fMRS). Methods During an emotional Stroop task consisting of blocks of color and swear words, metabolite concentration changes were measured in the ventromedial prefrontal cortex (vmPFC) and the left amygdalohippocampal region (AMHC) of healthy adults (14 F/27 M, 23 ± 4 years old) using fMRS. The dynamic changes in Glu and their associations with the emotional state of the participants were finally evaluated based on 36 datasets from the vmPFC and 30 from the AMHC. Results A repeated-measures analysis of covariance revealed a modest effect of parental VA severity on Glu changes in the vmPFC. The total score on the Verbal Abuse Questionnaire by parents (pVAQ) was associated with the Glu response to swear words (ΔGluSwe). The interaction term of ΔGluSwe and baseline N-acetyl aspartate (NAA) level in the vmPFC could be used to predict state-trait anxiety level and depressive mood. We could not find any significant associations between ΔGluSwe in the AMHC and either pVAQ or emotional states. Conclusion Parental VA exposure in individuals is associated with a greater Glu response towards VA-related stimuli in the vmPFC and that the accompanying low NAA level may be associated with anxiety level or depressive mood.
Collapse
Affiliation(s)
- Jae Hyun Yoo
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Young Woo Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dohyun Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Department of Psychiatry, Dankook University College of Medicine, Cheonan, Korea
| | - HyunWook Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Bumseok Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- KAIST Institute for Health Science and Technology and KI for Artificial Intelligence, KAIST, Daejeon, Korea
| |
Collapse
|
6
|
Koolschijn RS, Clarke WT, Ip IB, Emir UE, Barron HC. Event-related functional magnetic resonance spectroscopy. Neuroimage 2023; 276:120194. [PMID: 37244321 PMCID: PMC7614684 DOI: 10.1016/j.neuroimage.2023.120194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Proton-Magnetic Resonance Spectroscopy (MRS) is a non-invasive brain imaging technique used to measure the concentration of different neurochemicals. "Single-voxel" MRS data is typically acquired across several minutes, before individual transients are averaged through time to give a measurement of neurochemical concentrations. However, this approach is not sensitive to more rapid temporal dynamics of neurochemicals, including those that reflect functional changes in neural computation relevant to perception, cognition, motor control and ultimately behaviour. In this review we discuss recent advances in functional MRS (fMRS) that now allow us to obtain event-related measures of neurochemicals. Event-related fMRS involves presenting different experimental conditions as a series of trials that are intermixed. Critically, this approach allows spectra to be acquired at a time resolution in the order of seconds. Here we provide a comprehensive user guide for event-related task designs, choice of MRS sequence, analysis pipelines, and appropriate interpretation of event-related fMRS data. We raise various technical considerations by examining protocols used to quantify dynamic changes in GABA, the primary inhibitory neurotransmitter in the brain. Overall, we propose that although more data is needed, event-related fMRS can be used to measure dynamic changes in neurochemicals at a temporal resolution relevant to computations that support human cognition and behaviour.
Collapse
Affiliation(s)
- Renée S Koolschijn
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - I Betina Ip
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, United States
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
7
|
Veeraiah P, Jansen JFA. Multinuclear Magnetic Resonance Spectroscopy at Ultra-High-Field: Assessing Human Cerebral Metabolism in Healthy and Diseased States. Metabolites 2023; 13:metabo13040577. [PMID: 37110235 PMCID: PMC10143499 DOI: 10.3390/metabo13040577] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a highly energetic organ. Although the brain can consume metabolic substrates, such as lactate, glycogen, and ketone bodies, the energy metabolism in a healthy adult brain mainly relies on glucose provided via blood. The cerebral metabolism of glucose produces energy and a wide variety of intermediate metabolites. Since cerebral metabolic alterations have been repeatedly implicated in several brain disorders, understanding changes in metabolite levels and corresponding cell-specific neurotransmitter fluxes through different substrate utilization may highlight the underlying mechanisms that can be exploited to diagnose or treat various brain disorders. Magnetic resonance spectroscopy (MRS) is a noninvasive tool to measure tissue metabolism in vivo. 1H-MRS is widely applied in research at clinical field strengths (≤3T) to measure mostly high abundant metabolites. In addition, X-nuclei MRS including, 13C, 2H, 17O, and 31P, are also very promising. Exploiting the higher sensitivity at ultra-high-field (>4T; UHF) strengths enables obtaining unique insights into different aspects of the substrate metabolism towards measuring cell-specific metabolic fluxes in vivo. This review provides an overview about the potential role of multinuclear MRS (1H, 13C, 2H, 17O, and 31P) at UHF to assess the cerebral metabolism and the metabolic insights obtained by applying these techniques in both healthy and diseased states.
Collapse
Affiliation(s)
- Pandichelvam Veeraiah
- Scannexus (Ultra-High-Field MRI Center), 6229 EV Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
8
|
Shirbandi K, Rikhtegar R, Khalafi M, Mirza Aghazadeh Attari M, Rahmani F, Javanmardi P, Iraji S, Babaei Aghdam Z, Rezaei Rashnoudi AM. Functional Magnetic Resonance Spectroscopy of Lactate in Alzheimer Disease: A Comprehensive Review of Alzheimer Disease Pathology and the Role of Lactate. Top Magn Reson Imaging 2023; 32:15-26. [PMID: 37093700 PMCID: PMC10121369 DOI: 10.1097/rmr.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 04/13/2023]
Abstract
ABSTRACT Functional 1H magnetic resonance spectroscopy (fMRS) is a derivative of dynamic MRS imaging. This modality links physiologic metabolic responses with available activity and measures absolute or relative concentrations of various metabolites. According to clinical evidence, the mitochondrial glycolysis pathway is disrupted in many nervous system disorders, especially Alzheimer disease, resulting in the activation of anaerobic glycolysis and an increased rate of lactate production. Our study evaluates fMRS with J-editing as a cutting-edge technique to detect lactate in Alzheimer disease. In this modality, functional activation is highlighted by signal subtractions of lipids and macromolecules, which yields a much higher signal-to-noise ratio and enables better detection of trace levels of lactate compared with other modalities. However, until now, clinical evidence is not conclusive regarding the widespread use of this diagnostic method. The complex machinery of cellular and noncellular modulators in lactate metabolism has obscured the potential roles fMRS imaging can have in dementia diagnosis. Recent developments in MRI imaging such as the advent of 7 Tesla machines and new image reconstruction methods, coupled with a renewed interest in the molecular and cellular basis of Alzheimer disease, have reinvigorated the drive to establish new clinical options for the early detection of Alzheimer disease. Based on the latter, lactate has the potential to be investigated as a novel diagnostic and prognostic marker for Alzheimer disease.
Collapse
Affiliation(s)
- Kiarash Shirbandi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rikhtegar
- Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | - Mohammad Khalafi
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farzaneh Rahmani
- Department of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Pouya Javanmardi
- Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajjad Iraji
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Babaei Aghdam
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
9
|
Pasanta D, He JL, Ford T, Oeltzschner G, Lythgoe DJ, Puts NA. Functional MRS studies of GABA and glutamate/Glx - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 144:104940. [PMID: 36332780 PMCID: PMC9846867 DOI: 10.1016/j.neubiorev.2022.104940] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Functional magnetic resonance spectroscopy (fMRS) can be used to investigate neurometabolic responses to external stimuli in-vivo, but findings are inconsistent. We performed a systematic review and meta-analysis on fMRS studies of the primary neurotransmitters Glutamate (Glu), Glx (Glutamate + Glutamine), and GABA. Data were extracted, grouped by metabolite, stimulus domain, and brain region, and analysed by determining standardized effect sizes. The quality of individual studies was rated. When results were analysed by metabolite type small to moderate effect sizes of 0.29-0.47 (p < 0.05) were observed for changes in Glu and Glx regardless of stimulus domain and brain region, but no significant effects were observed for GABA. Further analysis suggests that Glu, Glx and GABA responses differ by stimulus domain or task and vary depending on the time course of stimulation and data acquisition. Here, we establish effect sizes and directionality of GABA, Glu and Glx response in fMRS. This work highlights the importance of standardised reporting and minimal best practice for fMRS research.
Collapse
Affiliation(s)
- Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Talitha Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Georg Oeltzschner
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 700. N. Broadway, 21207 Baltimore, United States; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N. Wolfe Street, 21205 Baltimore, United States
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL London, United Kingdom.
| |
Collapse
|
10
|
Koush Y, Rothman DL, Behar KL, de Graaf RA, Hyder F. Human brain functional MRS reveals interplay of metabolites implicated in neurotransmission and neuroenergetics. J Cereb Blood Flow Metab 2022; 42:911-934. [PMID: 35078383 PMCID: PMC9125492 DOI: 10.1177/0271678x221076570] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 01/28/2023]
Abstract
While functional MRI (fMRI) localizes brain activation and deactivation, functional MRS (fMRS) provides insights into the underlying metabolic conditions. There is much interest in measuring task-induced and resting levels of metabolites implicated in neuroenergetics (e.g., lactate, glucose, or β-hydroxybutyrate (BHB)) and neurotransmission (e.g., γ-aminobutyric acid (GABA) or pooled glutamate and glutamine (Glx)). Ultra-high magnetic field (e.g., 7T) has boosted the fMRS quantification precision, reliability, and stability of spectroscopic observations using short echo-time (TE) 1H-MRS techniques. While short TE 1H-MRS lacks sensitivity and specificity for fMRS at lower magnetic fields (e.g., 3T or 4T), most of these metabolites can also be detected by J-difference editing (JDE) 1H-MRS with longer TE to filter overlapping resonances. The 1H-MRS studies show that JDE can detect GABA, Glx, lactate, and BHB at 3T, 4T and 7T. Most recently, it has also been demonstrated that JDE 1H-MRS is capable of reliable detection of metabolic changes in different brain areas at various magnetic fields. Combining fMRS measurements with fMRI is important for understanding normal brain function, but also clinically relevant for mechanisms and/or biomarkers of neurological and neuropsychiatric disorders. We provide an up-to-date overview of fMRS research in the last three decades, both in terms of applications and technological advances. Overall the emerging fMRS techniques can be expected to contribute substantially to our understanding of metabolism for brain function and dysfunction.
Collapse
Affiliation(s)
- Yury Koush
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Kevin L Behar
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robin A de Graaf
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Dorst J, Borbath T, Landheer K, Avdievich N, Henning A. Simultaneous detection of metabolite concentration changes, water BOLD signal and pH changes during visual stimulation in the human brain at 9.4T. J Cereb Blood Flow Metab 2022; 42:1104-1119. [PMID: 35060409 PMCID: PMC9121534 DOI: 10.1177/0271678x221075892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
This study presents a method to directly link metabolite concentration changes and BOLD response in the human brain during visual stimulation by measuring the water and metabolite signals simultaneously. Therefore, the metabolite-cycling (MC) non-water suppressed semiLASER localization technique was optimized for functional 1H MRS in the human brain at 9.4 T. Data of 13 volunteers were acquired during a 26:40 min visual stimulation block-design paradigm. Activation-induced BOLD signal was observed in the MC water signal as well as in the NAA-CH3 and tCr-CH3 singlets. During stimulation, glutamate concentration increased 2.3 ± 2.0% to a new steady-state, while a continuous increase over the whole stimulation period could be observed in lactate with a mean increase of 35.6 ± 23.1%. These increases of Lac and Glu during brain activation confirm previous findings reported in literature. A positive correlation of the MC water BOLD signal with glutamate and lactate concentration changes was found. In addition, a pH decrease calculated from a change in the ratio of PCr to Cr was observed during brain activation, particularly at the onset of the stimulation.
Collapse
Affiliation(s)
- Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, University of Tübingen, Tübingen, Germany
| | - Tamas Borbath
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Faculty of Science, University of Tübingen, University of Tübingen, Tübingen, Germany
| | | | - Nikolai Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
DiNuzzo M, Mangia S, Moraschi M, Mascali D, Hagberg GE, Giove F. Perception is associated with the brain's metabolic response to sensory stimulation. eLife 2022; 11:71016. [PMID: 35225790 PMCID: PMC9038191 DOI: 10.7554/elife.71016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Processing of incoming sensory stimulation triggers an increase of cerebral perfusion and blood oxygenation (neurovascular response) as well as an alteration of the metabolic neurochemical profile (neurometabolic response). Here we show in human primary visual cortex (V1) that perceived and unperceived isoluminant chromatic flickering stimuli designed to have similar neurovascular responses as measured by blood oxygenation level dependent functional MRI (BOLD-fMRI) have markedly different neurometabolic responses as measured by functional MRS. In particular, a significant regional buildup of lactate, an index of aerobic glycolysis, and glutamate, an index of malate-aspartate shuttle, occurred in V1 only when the flickering was perceived, without any relation with behavioral or physiological variables. Whereas the BOLD-fMRI signal in V1, a proxy for input to V1, was insensitive to flickering perception by design, the BOLD-fMRI signal in secondary visual areas was larger during perceived than unperceived flickering, indicating increased output from V1. These results demonstrate that the upregulation of energy metabolism induced by visual stimulation depends on the type of information processing taking place in V1, and that 1H-fMRS provides unique information about local input/output balance that is not measured by BOLD fMRI.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States
| | - Marta Moraschi
- Department of Radiation Oncology, University of Rome, Rome, Italy
| | - Daniele Mascali
- Dipartimento di Neuroscienze, Università Gabriele D'Annunzio, Chieti, Italy
| | - Gisela E Hagberg
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics and Biomedical Magnetic Resonance, Tübingen, Germany
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| |
Collapse
|
13
|
Manzhurtsev A, Menschchikov P, Yakovlev A, Ublinskiy M, Bozhko O, Kupriyanov D, Akhadov T, Varfolomeev S, Semenova N. 3T MEGA-PRESS study of N-acetyl aspartyl glutamate and N-acetyl aspartate in activated visual cortex. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:555-568. [PMID: 33591453 DOI: 10.1007/s10334-021-00912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To measure N-acetyl aspartyl glutamate (NAAG) and N-acetyl aspartate (NAA) concentrations in visual cortex activated by a continuous stimulation in a 3 T field. METHODS NAAG and NAA spectra were obtained with MEGA-PRESS pulse sequence (TE/TR = 140/2000 ms; δONNAAG/δOFFNAAG = 4.61/4.15 ppm; δONNAA/δOFFNAA = 4.84/4.38 ppm) in 14 healthy volunteers at rest and upon stimulation by a radial checkerboard flickering at a frequency of 8 Hz. Spectra of all subjects were frequency and phase aligned and then averaged. Additionally, to obtain the time-dependency data, spectra were divided into time sections of 64 s each. The intensities of NAA, NAAG and lactate + macromolecular (Lac + MM) signals were defined by integration of the real part of spectra. The heights of the central resonance of NAAG and NAA signals were measured. RESULTS The NAAG and NAA concentrations, measured with 2.5% and 0.5% error, respectively, were unaffected by visual activation. A significant increase in the Lac + MM signal by ~ 12% is clearly observed. No stimulation-induced time dependency was found for NAAG or NAA, while the increase in Lac + MM was gradual. The concentration values in visual cortex are in good agreement with the 7 T MRS measurements: [NAAG] = 1.55 mM, [NAA] = 11.95 mM. CONCLUSION The MEGA-PRESS pulse sequence together with the spectral preprocessing techniques allowed to demonstrate that the concentrations of NAAG and NAA in the visual cortex remain constant during continuous visual stimulation within the margin of error. An increase in the lactate signal intensity signifies the activation of the anaerobic glycolysis in activated visual cortex.
Collapse
Affiliation(s)
- Andrei Manzhurtsev
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation. .,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation. .,Moscow State University, Leninskie Gory st., 1, 119991, Moscow, Russian Federation.
| | - Petr Menschchikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,LLC Philips Healthcare, 13, Sergeya Makeeva St., 123022, Moscow, Russian Federation
| | - Alexei Yakovlev
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation
| | - Maxim Ublinskiy
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation
| | - Olga Bozhko
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation
| | - Dmitrii Kupriyanov
- LLC Philips Healthcare, 13, Sergeya Makeeva St., 123022, Moscow, Russian Federation
| | - Tolib Akhadov
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation
| | - Sergei Varfolomeev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,Moscow State University, Leninskie Gory st., 1, 119991, Moscow, Russian Federation
| | - Natalia Semenova
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,Moscow State University, Leninskie Gory st., 1, 119991, Moscow, Russian Federation.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation
| |
Collapse
|
14
|
Fernandes CC, Lanz B, Chen C, Morris PG, Salmon CG. Investigating the regional effect of the chemical shift displacement artefact on the J-modulated lactate signal at ultra high-field. NMR IN BIOMEDICINE 2021; 34:e4440. [PMID: 33140530 PMCID: PMC11475734 DOI: 10.1002/nbm.4440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The present work aims to show the applicability of an analytical model for the optimisation of the STEAM sequence timing parameters for lactate detection at ultra high-field. The effects of the chemical shift displacement artefact on the J-modulated signal for a weakly-coupled spin system were considered in the three applied directions of field gradients and the product operator formalism was used to obtain expressions for the signal modulation in each compartment of the excited volume. The validity of this model was demonstrated experimentally at 7 T in a phantom and acquisitions with optimised parameters were performed on a healthy volunteer. The spectra acquired with TE = 144 ms with the optimised mixing time and TE = 288 ms showed easily detectable lactate peaks in the normal human brain. Additionally, the acquisition with the longer TE resulted in a spectrum with less lipid/macromolecular contamination. The simulations shown here demonstrated that the proposed analytical model is suitable for correctly predicting the resulting lactate signal. With the optimised parameters, it was possible to use a simple sequence with sufficient signal-to-noise ratio to reliably distinguish lactate from overlapping resonances in a healthy brain.
Collapse
Affiliation(s)
- Carolina C. Fernandes
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamNottinghamshireNG7 2RDUnited Kingdom
| | - Bernard Lanz
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamNottinghamshireNG7 2RDUnited Kingdom
| | - Chen Chen
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamNottinghamshireNG7 2RDUnited Kingdom
| | - Peter G. Morris
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamNottinghamshireNG7 2RDUnited Kingdom
| | - Carlos G. Salmon
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamNottinghamshireNG7 2RDUnited Kingdom
- Department of PhysicsUniversity of Sao PauloRiberao PretoSao PauloBrazil
| |
Collapse
|