1
|
Shaul D, Lev-Cohain N, Sapir G, Sosna J, Gomori JM, Joskowicz L, Katz-Brull R. Real-time influence of intracellular acidification and Na + /H + exchanger inhibition on in-cell pyruvate metabolism in the perfused mouse heart: A 31 P-NMR and hyperpolarized 13 C-NMR study. NMR IN BIOMEDICINE 2023; 36:e4993. [PMID: 37424280 DOI: 10.1002/nbm.4993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Disruption of acid-base balance is linked to various diseases and conditions. In the heart, intracellular acidification is associated with heart failure, maladaptive cardiac hypertrophy, and myocardial ischemia. Previously, we have reported that the ratio of the in-cell lactate dehydrogenase (LDH) to pyruvate dehydrogenase (PDH) activities is correlated with cardiac pH. To further characterize the basis for this correlation, these in-cell activities were investigated under induced intracellular acidification without and with Na+ /H+ exchanger (NHE1) inhibition by zoniporide. Male mouse hearts (n = 30) were isolated and perfused retrogradely. Intracellular acidification was performed in two ways: (1) with the NH4 Cl prepulse methodology; and (2) by combining the NH4 Cl prepulse with zoniporide. 31 P NMR spectroscopy was used to determine the intracellular cardiac pH and to quantify the adenosine triphosphate and phosphocreatine content. Hyperpolarized [1-13 C]pyruvate was obtained using dissolution dynamic nuclear polarization. 13 C NMR spectroscopy was used to monitor hyperpolarized [1-13 C]pyruvate metabolism and determine enzyme activities in real time at a temporal resolution of a few seconds using the product-selective saturating excitation approach. The intracellular acidification induced by the NH4 Cl prepulse led to reduced LDH and PDH activities (-16% and -39%, respectively). This finding is in line with previous evidence of reduced myocardial contraction and therefore reduced metabolic activity upon intracellular acidification. Concomitantly, the LDH/PDH activity ratio increased with the reduction in pH, as previously reported. Combining the NH4 Cl prepulse with zoniporide led to a greater reduction in LDH activity (-29%) and to increased PDH activity (+40%). These changes resulted in a surprising decrease in the LDH/PDH ratio, as opposed to previous predictions. Zoniporide alone (without intracellular acidification) did not change these enzyme activities. A possible explanation for the enzymatic changes observed during the combination of the NH4 Cl prepulse and NHE1 inhibition may be related to mitochondrial NHE1 inhibition, which likely negates the mitochondrial matrix acidification. This effect, combined with the increased acidity in the cytosol, would result in an enhanced H+ gradient across the mitochondrial membrane and a temporarily higher pyruvate transport into the mitochondria, thereby increasing the PDH activity at the expense of the cytosolic LDH activity. These findings demonstrate the complexity of in-cell cardiac metabolism and its dependence on intracellular acidification. This study demonstrates the capabilities and limitations of hyperpolarized [1-13 C]pyruvate in the characterization of intracellular acidification as regards cardiac pathologies.
Collapse
Affiliation(s)
- David Shaul
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem, Israel
| | - Naama Lev-Cohain
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gal Sapir
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Leo Joskowicz
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem, Israel
| |
Collapse
|
2
|
Shaul D, Grieb B, Lev‐Cohain N, Sosna J, Gomori JM, Katz‐Brull R. Accumulation of 3-aminopropylphosphonate in the ex vivo brain observed by phosphorus-31 nuclear magnetic resonance. NMR IN BIOMEDICINE 2022; 35:e4721. [PMID: 35229366 PMCID: PMC9540894 DOI: 10.1002/nbm.4721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
3-aminopropylphosphonate (3-APP) is known for its use as an exogenous indicator of extracellular volume and pH in phosphorus-31 nuclear magnetic resonance (31 P NMR) studies. We used 3-APP for estimating the extracellular volume in NMR studies of several ex vivo preparations including retrograde perfused mouse heart (n = 4), mouse liver slices (n = 2), xenograft breast cancer tumors (n = 7, MCF7), and rat brain slices (n = 4). In the former three preparations, the 3-APP signal was stable in lineshape and intensity for hours and the chemical shift of the signal in the presence of the biological sample was the same as in the perfusion medium without the biological sample. However, in studies of brain slices, the 3-APP signal appeared split into two, with an upfield component (0.7 ± 0.1 ppm to the left) increasing with time and showing a wider linewidth (66.7 ± 12.6 vs. 39.1 ± 7.6 Hz, the latter is of the perfusion medium signal). This finding suggests that 3-APP inadvertently accumulated in brain slices, most likely as a membrane bound form. This observation limits the use of 3-APP as an inert biochemical indicator in brain preparations and should be taken into account when using 3-APP in vivo.
Collapse
Affiliation(s)
- David Shaul
- Department of Radiology, Hadassah Medical CenterHebrew University of Jerusalem, The Faculty of MedicineJerusalemIsrael
- The Wohl Institute for Translational MedicineJerusalemIsrael
| | - Benjamin Grieb
- Department of Radiology, Hadassah Medical CenterHebrew University of Jerusalem, The Faculty of MedicineJerusalemIsrael
- Department of Psychiatry and Psychotherapie I (Weissenau), ZfP SuedwuerttembergUlm UniversityRavensburgGermany
| | - Naama Lev‐Cohain
- Department of Radiology, Hadassah Medical CenterHebrew University of Jerusalem, The Faculty of MedicineJerusalemIsrael
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical CenterHebrew University of Jerusalem, The Faculty of MedicineJerusalemIsrael
| | - J. Moshe Gomori
- Department of Radiology, Hadassah Medical CenterHebrew University of Jerusalem, The Faculty of MedicineJerusalemIsrael
| | - Rachel Katz‐Brull
- Department of Radiology, Hadassah Medical CenterHebrew University of Jerusalem, The Faculty of MedicineJerusalemIsrael
- The Wohl Institute for Translational MedicineJerusalemIsrael
| |
Collapse
|
3
|
Sapir G, Steinberg DJ, Aqeilan RI, Katz-Brull R. Real-Time Non-Invasive and Direct Determination of Lactate Dehydrogenase Activity in Cerebral Organoids-A New Method to Characterize the Metabolism of Brain Organoids? Pharmaceuticals (Basel) 2021; 14:ph14090878. [PMID: 34577579 PMCID: PMC8465402 DOI: 10.3390/ph14090878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Organoids are a powerful tool in the quest to understand human diseases. As the developing brain is extremely inaccessible in mammals, cerebral organoids (COs) provide a unique way to investigate neural development and related disorders. The aim of this study was to utilize hyperpolarized 13C NMR to investigate the metabolism of COs in real-time, in a non-destructive manner. The enzymatic activity of lactate dehydrogenase (LDH) was determined by quantifying the rate of [1-13C]lactate production from hyperpolarized [1-13C]pyruvate. Organoid development was assessed by immunofluorescence imaging. Organoid viability was confirmed using 31P NMR spectroscopy. A total of 15 organoids collated into 3 groups with a group total weight of 20-77 mg were used in this study. Two groups were at the age of 10 weeks and one was at the age of 33 weeks. The feasibility of this approach was demonstrated in both age groups, and the LDH activity rate was found to be 1.32 ± 0.75 nmol/s (n = 3 organoid batches). These results suggest that hyperpolarized NMR can be used to characterize the metabolism of brain organoids with a total tissue wet weight of as low as 20 mg (<3 mm3) and a diameter ranging from 3 to 6 mm.
Collapse
Affiliation(s)
- Gal Sapir
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Daniel J. Steinberg
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel; (D.J.S.); (R.I.A.)
| | - Rami I. Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel; (D.J.S.); (R.I.A.)
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- The Wohl Institute for Translational Medicine, Jerusalem 9112001, Israel
- Correspondence:
| |
Collapse
|