1
|
Radke KL, Kamp B, Adriaenssens V, Stabinska J, Gallinnis P, Wittsack HJ, Antoch G, Müller-Lutz A. Deep Learning-Based Denoising of CEST MR Data: A Feasibility Study on Applying Synthetic Phantoms in Medical Imaging. Diagnostics (Basel) 2023; 13:3326. [PMID: 37958222 PMCID: PMC10650582 DOI: 10.3390/diagnostics13213326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Chemical Exchange Saturation Transfer (CEST) magnetic resonance imaging (MRI) provides a novel method for analyzing biomolecule concentrations in tissues without exogenous contrast agents. Despite its potential, achieving a high signal-to-noise ratio (SNR) is imperative for detecting small CEST effects. Traditional metrics such as Magnetization Transfer Ratio Asymmetry (MTRasym) and Lorentzian analyses are vulnerable to image noise, hampering their precision in quantitative concentration estimations. Recent noise-reduction algorithms like principal component analysis (PCA), nonlocal mean filtering (NLM), and block matching combined with 3D filtering (BM3D) have shown promise, as there is a burgeoning interest in the utilization of neural networks (NNs), particularly autoencoders, for imaging denoising. This study uses the Bloch-McConnell equations, which allow for the synthetic generation of CEST images and explores NNs efficacy in denoising these images. Using synthetically generated phantoms, autoencoders were created, and their performance was compared with traditional denoising methods using various datasets. The results underscored the superior performance of NNs, notably the ResUNet architectures, in noise identification and abatement compared to analytical approaches across a wide noise gamut. This superiority was particularly pronounced at elevated noise intensities in the in vitro data. Notably, the neural architectures significantly improved the PSNR values, achieving up to 35.0, while some traditional methods struggled, especially in low-noise reduction scenarios. However, the application to the in vivo data presented challenges due to varying noise profiles. This study accentuates the potential of NNs as robust denoising tools, but their translation to clinical settings warrants further investigation.
Collapse
Affiliation(s)
- Karl Ludger Radke
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany (G.A.); (A.M.-L.)
| | - Benedikt Kamp
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany (G.A.); (A.M.-L.)
| | - Vibhu Adriaenssens
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany (G.A.); (A.M.-L.)
| | - Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrik Gallinnis
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany (G.A.); (A.M.-L.)
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany (G.A.); (A.M.-L.)
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany (G.A.); (A.M.-L.)
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany (G.A.); (A.M.-L.)
| |
Collapse
|
3
|
Zhou J, Zaiss M, Knutsson L, Sun PZ, Ahn SS, Aime S, Bachert P, Blakeley JO, Cai K, Chappell MA, Chen M, Gochberg DF, Goerke S, Heo HY, Jiang S, Jin T, Kim SG, Laterra J, Paech D, Pagel MD, Park JE, Reddy R, Sakata A, Sartoretti-Schefer S, Sherry AD, Smith SA, Stanisz GJ, Sundgren PC, Togao O, Vandsburger M, Wen Z, Wu Y, Zhang Y, Zhu W, Zu Z, van Zijl PCM. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors. Magn Reson Med 2022; 88:546-574. [PMID: 35452155 PMCID: PMC9321891 DOI: 10.1002/mrm.29241] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Linda Knutsson
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medical Radiation Physics, Lund University, Lund, Sweden.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael A Chappell
- Mental Health and Clinical Neurosciences and Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Physics, Vanderbilt University, Nashville, Tennessee, USA
| | - Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - John Laterra
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany.,Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Mark D Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ravinder Reddy
- Center for Advance Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - A Dean Sherry
- Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Pia C Sundgren
- Department of Diagnostic Radiology/Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund University Bioimaging Center, Lund University, Lund, Sweden.,Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Luo X, Ren Q, Luo M, Li T, Lv Y, Liu Y, Rong K, Zhang W, Li X. Glutamate Chemical Exchange Saturation Transfer Imaging and Functional Alterations of Hippocampus in Rat Depression Model: A Pilot Study. J Magn Reson Imaging 2021; 54:1967-1976. [PMID: 34291854 DOI: 10.1002/jmri.27850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Adjusting abnormal glutamate neurotransmission is a crucial mechanism in the treatment of depression. However, few non-invasive techniques could effectively detect changes in glutamate neurotransmitters, and no consensus exists on whether glutamate could affect resting-state function changes in depression. PURPOSE To study the changes in glutamate chemical exchange saturation transfer (GluCEST) value in the hippocampus of rat model exposed to chronic unpredictable mild stress (CUMS), and to explore the effect of this change on the activity of hippocampal glutamatergic neurons. STUDY TYPE Prospective animal study. ANIMAL MODEL Twenty male Sprague-Dawley rats (200-300 g). FIELD STRENGTH/SEQUENCE 7.0 T scanner. Fat rapid acquisition relaxation enhancement sequence for GluCEST, and echo planner imaging sequence for resting-state functional magnetic resonance imaging (rs_fMRI). ASSESSMENT Rats were divided into two groups: CUMS group (N = 10) and control group (CTRL, N = 10). The magnetization transfer ratio asymmetry analysis was used to quantify the GluCEST data, and evaluate the rs_fMRI data through the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) analysis. STATISTICAL TESTS A t-test was used to compare the difference in GluCEST or rs_fMRI between CUMS and CTRL groups. Spearman's correlation was applied to explore the correlation between GluCEST values and abnormal fMRI values in hippocampus. Statistical significance was set at P < 0.05. RESULTS The GluCEST value in the left hippocampus has changed significantly (3.3 ± 0.3 [CUMS] vs. 3.9 ± 0.4 [CTRL], P < 0.05). In addition, the GluCEST value was significantly positively correlated with the ALFF values (r = 0.5, P < 0. 05, df = 7) and negatively correlated with the ReHo values (r = -0.6, P < 0.05, df = 7). DATA CONCLUSION GluCEST technique has the feasibility of mapping glutamate changes in rat depression. Glutamate neurotransmitters are important factors affecting the abnormal function of neural activity. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Xunrong Luo
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Qingfa Ren
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Mingfang Luo
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Tianping Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yijie Lv
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Kang Rong
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Wei Zhang
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| |
Collapse
|