1
|
Simegn GL, Sun PZ, Zhou J, Kim M, Reddy R, Zu Z, Zaiss M, Yadav NN, Edden RA, van Zijl PC, Knutsson L. Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: A contemporary review. NMR IN BIOMEDICINE 2025; 38:e5294. [PMID: 39532518 PMCID: PMC11606773 DOI: 10.1002/nbm.5294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a powerful imaging technique sensitive to tissue molecular composition, pH, and metabolic processes in situ. CEST MRI uniquely probes the physical exchange of protons between water and specific molecules within tissues, providing a window into physiological phenomena that remain invisible to standard MRI. However, given the very low concentration (millimolar range) of CEST compounds, the effects measured are generally only on the order of a few percent of the water signal. Consequently, a few critical challenges, including correction of motion artifacts and magnetic field (B0 and B1 +) inhomogeneities, have to be addressed in order to unlock the full potential of CEST MRI. Motion, whether from patient movement or inherent physiological pulsations, can distort the CEST signal, hindering accurate quantification. B0 and B1 + inhomogeneities, arising from scanner hardware imperfections, further complicate data interpretation by introducing spurious variations in the signal intensity. Without proper correction of these confounding factors, reliable analysis and clinical translation of CEST MRI remain challenging. Motion correction methods aim to compensate for patient movement during (prospective) or after (retrospective) image acquisition, reducing artifacts and preserving data quality. Similarly, B0 and B1 + inhomogeneity correction techniques enhance the spatial and spectral accuracy of CEST MRI. This paper aims to provide a comprehensive review of the current landscape of motion and magnetic field inhomogeneity correction methods in CEST MRI. The methods discussed apply to saturation transfer (ST) MRI in general, including semisolid magnetization transfer contrast (MTC) and relayed nuclear Overhauser enhancement (rNOE) studies.
Collapse
Affiliation(s)
- Gizeaddis Lamesgin Simegn
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30329, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30329, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jinyuan Zhou
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mina Kim
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Moritz Zaiss
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nirbhay Narayan Yadav
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Peter C.M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Wang K, Ju L, Song Y, Blair L, Xie K, Liu C, Li A, Zhu D, Xu F, Liu G, Heo HY, Yadav N, Oeltzschner G, Edden RAE, Qin Q, Kamson DO, Xu J. Whole-cerebrum guanidino and amide CEST mapping at 3 T by a 3D stack-of-spirals gradient echo acquisition. Magn Reson Med 2024; 92:1456-1470. [PMID: 38748853 PMCID: PMC11262991 DOI: 10.1002/mrm.30134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.
Collapse
Affiliation(s)
- Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Licheng Ju
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindsay Blair
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kevin Xie
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Claire Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Anna Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Dan Zhu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feng Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye-Young Heo
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirbhay Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georg Oeltzschner
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A. E. Edden
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qin Qin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Olayinka Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
von Knebel Doeberitz N, Kroh F, König L, Boyd PS, Graß S, Bauspieß C, Scherer M, Unterberg A, Bendszus M, Wick W, Bachert P, Debus J, Ladd ME, Schlemmer HP, Goerke S, Korzowski A, Paech D. Post-Surgical Depositions of Blood Products Are No Major Confounder for the Diagnostic and Prognostic Performance of CEST MRI in Patients with Glioma. Biomedicines 2023; 11:2348. [PMID: 37760790 PMCID: PMC10525358 DOI: 10.3390/biomedicines11092348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Amide proton transfer (APT) and semi-solid magnetization transfer (ssMT) imaging can predict clinical outcomes in patients with glioma. However, the treatment of brain tumors is accompanied by the deposition of blood products within the tumor area in most cases. For this reason, the objective was to assess whether the diagnostic interpretation of the APT and ssMT is affected by methemoglobin (mHb) and hemosiderin (Hs) depositions at the first follow-up MRI 4 to 6 weeks after the completion of radiotherapy. A total of 34 participants underwent APT and ssMT imaging by applying reconstruction methods described by Zhou et al. (APTwasym), Goerke et al. (MTRRexAPT and MTRRexMT) and Mehrabian et al. (MTconst). Contrast-enhancing tumor (CE), whole tumor (WT), mHb and Hs were segmented on contrast-enhanced T1wCE, T2w-FLAIR, T1w and T2*w images. ROC-analysis, Kaplan-Meier analysis and the log rank test were used to test for the association of mean contrast values with therapy response and overall survival (OS) before (WT and CE) and after correcting tumor volumes for mHb and Hs (CEC and WTC). CEC showed higher associations of the MTRRexMT with therapy response (CE: AUC = 0.677, p = 0.081; CEC: AUC = 0.705, p = 0.044) and of the APTwasym with OS (CE: HR = 2.634, p = 0.040; CEC: HR = 2.240, p = 0.095). In contrast, WTC showed a lower association of the APTwasym with survival (WT: HR = 2.304, p = 0.0849; WTC: HR = 2.990, p = 0.020). Overall, a sophisticated correction for blood products did not substantially influence the clinical performance of APT and ssMT imaging in patients with glioma early after radiotherapy.
Collapse
Affiliation(s)
| | - Florian Kroh
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, 69120 Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Philip S. Boyd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Svenja Graß
- Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Cora Bauspieß
- Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Moritz Scherer
- Department of Neurosurgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Martin Bendszus
- Faculty of Medicine, University of Heidelberg, 69120 Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Wolfgang Wick
- Faculty of Medicine, University of Heidelberg, 69120 Heidelberg, Germany
- Department of Neurology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mark E. Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, 69120 Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andreas Korzowski
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neuroradiology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
4
|
Mennecke A, Khakzar KM, German A, Herz K, Fabian MS, Liebert A, Blümcke I, Kasper BS, Nagel AM, Laun FB, Schmidt M, Winkler J, Dörfler A, Zaiss M. 7 tricks for 7 T CEST: Improving the reproducibility of multipool evaluation provides insights into the effects of age and the early stages of Parkinson's disease. NMR IN BIOMEDICINE 2023; 36:e4717. [PMID: 35194865 DOI: 10.1002/nbm.4717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 05/23/2023]
Abstract
The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab-selective, B 1 + -homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, B 0 -correction, normalization, denoising, B 1 + -correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven "tricks" for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low-signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z-spectrum using the outermost saturated measurements (3), B 0 correction of the Z-spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), B 1 + correction using a linear fit (6) and Lorentzian fitting using the five-pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age-matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven "tricks", the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected.
Collapse
Affiliation(s)
- Angelika Mennecke
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katrin M Khakzar
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alexander German
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kai Herz
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Moritz S Fabian
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrzej Liebert
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ingmar Blümcke
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Burkhard S Kasper
- Department of Neurology, Epilepsy Centre, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Manuel Schmidt
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jürgen Winkler
- Department of Neurology, Epilepsy Centre, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Dörfler
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Moritz Zaiss
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
5
|
Knebel Doeberitz NV, Kroh F, Breitling J, König L, Maksimovic S, Graß S, Adeberg S, Scherer M, Unterberg A, Bendszus M, Wick W, Bachert P, Debus J, Ladd ME, Schlemmer HP, Korzowski A, Goerke S, Paech D. CEST Imaging of the APT and ssMT predict the overall survival of patients with glioma at the first follow-up after completion of radiotherapy at 3T. Radiother Oncol 2023; 184:109694. [PMID: 37150450 DOI: 10.1016/j.radonc.2023.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND PURPOSE Outcome prediction of patients with glioma early after the completion of radiotherapy represents a major clinical challenge. Previously, the prognostic value of chemical exchange saturation transfer (CEST) imaging has been demonstrated in patients with newly diagnosed glioma. The objective of this study was to assess the potential of amide proton transfer (APT)-, relayed nuclear Overhauser effect (rNOE)- and semi-solid magnetization transfer (ssMT)-imaging according to Zhou et al. (APTwasym), Goerke et al. (MTRRexAPT, MTRRexNOE and MTRRexMT) and Mehrabian et al. (PeakAreaAPT, PeakAreaNOE and MTconst) for the prognostication of the overall survival (OS) of patients with glioma at the first follow-up after the completion of radiotherapy. MATERIALS AND METHODS 49 of 72 participants with diffuse glioma, who underwent CEST MRI at 3T between July 2018 and December 2021 4 to 6 weeks after the completion of radiotherapy, were analyzed. Contrast-enhancing tumor (CE) and whole tumor (WT) volumes were segmented on T2w-FLAIR and contrast-enhanced T1w images. Kaplan-Meier analysis and logrank-test were used for statistical analyses. RESULTS APTw imaging demonstrated the strongest association with OS (HR=4.66, p<0.001). The MTconst (HR=2.54, p=0.044) was associated with the OS of participants with residual contrast-enhancing glioma tissue, whilst the MTRRexAPT (HR=2.44, p=0.056) showed a trend in this sub-cohort. The MTRRexNOE, MTRRexMT and PeakAreaNOE were not associated with survival. CONCLUSION Imaging of the APT and ssMT at the first follow-up 4 to 6 weeks after the completion of radiotherapy at 3T were associated with the overall survival of patients with glioma.
Collapse
Affiliation(s)
| | - Florian Kroh
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Johannes Breitling
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Srdjan Maksimovic
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Svenja Graß
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Moritz Scherer
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas Korzowski
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuroradiology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|