1
|
Coyac M, Jalabert L, Declèves X, Etain B, Bellivier F. Relevance of red blood cell Lithium concentration in the management of Lithium-treated bipolar and unipolar disorders: a systematic narrative review. Int J Bipolar Disord 2024; 12:35. [PMID: 39412639 PMCID: PMC11485006 DOI: 10.1186/s40345-024-00356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Despite a variability in response and a narrow therapeutic index, Lithium (Li) remains the gold standard treatment for bipolar disorders (BD), and a treatment of choice for unipolar disorders (UD). Red blood cell Li concentration (RBCLiC) and red blood cell/plasma Li ratio (LiR) have been studied in many areas of mood disorders (such as acute or chronic Li efficacy, adherence, side effects (SE), intoxication management) as well as in several research domains. This systematic review aims to synthesize the existing literature. METHODS We conducted a systematic review, based on preferred reporting items for systematic reviews and Metanalysis (PRISMA) guidelines, of articles published between 1972 and February 2023, indexed in the following databases: EMBASE, MEDLINE, Cochrane Library. The search terms were combinations of the following headings: "Lithium AND Plasma AND Erythrocyte AND Mood disorders". The systematic review protocol was published to PROSPERO (CRD42023406154). RESULTS AND CONCLUSION Out of the 252 identified studies, 57 met the selection criteria. The articles investigated the interest of RBCLiC and other blood parameters (PLiC and LiR) in various areas: (i) disease management (31 articles) (compliance/adherence (5 articles), SE/toxicity (13 articles), prediction of Li response/therapeutic efficacy for acute episode or for relapse prevention (17 articles)), (ii) Li blood parameters as trait markers of mood disorders subtypes (UD, BDI, BDII) (16 articles), (iii) Li blood parameters as state markers of mood episodes (11 articles), (iv) factors influencing Li blood parameters (age, gender, ethnicity, dosage and duration of Li treatment, co-medications with other treatments, seasonality) associated with RBCLiC or LiR (24 articles), and (v) potential pathophysiological mechanisms (30 articles). CONCLUSION Overall, this review suggests that RBCLiC or LiR could be of interest for tolerance monitoring. However, the heterogeneity of methods and results, coupled with the limited amount of data, does not allow clear conclusions to be drawn in the other areas explored in this literature review. Given the potential interest in exploring brain Li pharmacokinetics (PK)s, this review calls for further research.
Collapse
Affiliation(s)
- Manon Coyac
- Université de Paris, Paris, France.
- Département de Psychiatrie et de Médecine Addictologique, AP-HP.Nord, GH Saint-Louis-Lariboisière-F. Widal, 75010, Paris, France.
- Optimisation Thérapeutique en Neuropsychopharmacologie, Inserm, UMRS-1144, 75006, Paris, France.
| | - Lynn Jalabert
- Département de Psychiatrie et de Médecine Addictologique, AP-HP.Nord, GH Saint-Louis-Lariboisière-F. Widal, 75010, Paris, France
| | - Xavier Declèves
- Université de Paris, Paris, France
- Optimisation Thérapeutique en Neuropsychopharmacologie, Inserm, UMRS-1144, 75006, Paris, France
- Biologie du Médicament, AP-HP, Hôpital Cochin, 27 rue du Faubourg, St. Jacques, 75679, Paris Cedex 14, France
| | - Bruno Etain
- Université de Paris, Paris, France
- Département de Psychiatrie et de Médecine Addictologique, AP-HP.Nord, GH Saint-Louis-Lariboisière-F. Widal, 75010, Paris, France
- Optimisation Thérapeutique en Neuropsychopharmacologie, Inserm, UMRS-1144, 75006, Paris, France
| | - Frank Bellivier
- Université de Paris, Paris, France
- Département de Psychiatrie et de Médecine Addictologique, AP-HP.Nord, GH Saint-Louis-Lariboisière-F. Widal, 75010, Paris, France
- Optimisation Thérapeutique en Neuropsychopharmacologie, Inserm, UMRS-1144, 75006, Paris, France
| |
Collapse
|
2
|
Sguizzato M, Martini P, Ferrara F, Marvelli L, Drechsler M, Reale G, Calderoni F, Illuminati F, Porto F, Speltri G, Uccelli L, Giganti M, Boschi A, Cortesi R. Manganese-Loaded Liposomes: An In Vitro Study for Possible Diagnostic Application. Molecules 2024; 29:3407. [PMID: 39064985 PMCID: PMC11280348 DOI: 10.3390/molecules29143407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The present study investigates the possible use of manganese (Mn)-based liposomal formulations for diagnostic applications in imaging techniques such as magnetic resonance imaging (MRI), with the aim of overcoming the toxicity limitations associated with the use of free Mn2+. Specifically, anionic liposomes carrying two model Mn(II)-based compounds, MnCl2 (MC) and Mn(HMTA) (MH), were prepared and characterised in terms of morphology, size, loading capacity, and in vitro activity. Homogeneous dispersions characterised mainly by unilamellar vesicles were obtained; furthermore, no differences in size and morphology were detected between unloaded and Mn-loaded vesicles. The encapsulation efficiency of MC and MH was evaluated on extruded liposomes by means of ICP-OES analysis. The obtained results showed that both MC and MH are almost completely retained by the lipid portion of liposomes (LPs), with encapsulation efficiencies of 99.7% for MC and 98.8% for MH. The magnetic imaging properties of the produced liposomal formulations were investigated for application in a potential preclinical scenario by collecting magnetic resonance images of a phantom designed to compare the paramagnetic contrast properties of free MC and MH compounds and the corresponding manganese-containing liposome dispersions. It was found that both LP-MC and LP-MH at low concentrations (0.5 mM) show better contrast (contrast-to-noise ratios of 194 and 209, respectively) than solutions containing free Mn at the same concentrations (117 and 134, respectively) and are safe to use on human cells at the selected dose. Taken together, the results of this comparative analysis suggest that these liposome-containing Mn compounds might be suitable for diagnostic purposes.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
- Biotechnology Inter University Consortium (C.I.B.), Ferrara Section, University of Ferrara, 44121 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
| | - Lorenza Marvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
| | - Markus Drechsler
- Bavarian Polymer Institute Keylab “Electron and Optical Microscopy”, University of Bayreuth, 95447 Bayreuth, Germany;
| | - Giovanni Reale
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.R.); (F.P.); (L.U.); (M.G.)
| | | | | | - Francesca Porto
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.R.); (F.P.); (L.U.); (M.G.)
| | - Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.R.); (F.P.); (L.U.); (M.G.)
| | - Melchiore Giganti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.R.); (F.P.); (L.U.); (M.G.)
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (F.F.); (L.M.); (G.S.); (R.C.)
- Biotechnology Inter University Consortium (C.I.B.), Ferrara Section, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Sguizzato M, Martini P, Marvelli L, Pula W, Drechsler M, Capozza M, Terreno E, Del Bianco L, Spizzo F, Cortesi R, Boschi A. Synthetic and Nanotechnological Approaches for a Diagnostic Use of Manganese. Molecules 2022; 27:molecules27103124. [PMID: 35630601 PMCID: PMC9146667 DOI: 10.3390/molecules27103124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The development of multimodal imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) allows the contemporary obtaining of metabolic and morphological information. To fully exploit the complementarity of the two imaging modalities, the design of probes displaying radioactive and magnetic properties at the same time could be very beneficial. In this regard, transition metals offer appealing options, with manganese representing an ideal candidate. As nanosized imaging probes have demonstrated great value for designing advanced diagnostic/theranostic procedures, this work focuses on the potential of liposomal formulations loaded with a new synthesized paramagnetic Mn(II) chelates. Negatively charged liposomes were produced by thin-layer hydration method and extrusion. The obtained formulations were characterized in terms of size, surface charge, efficiency of encapsulation, stability over time, relaxivity, effective magnetic moment, and in vitro antiproliferative effect on human cells by means of the MTT assay. The negatively charged paramagnetic liposomes were monodisperse, with an average hydrodynamic diameter not exceeding 200 nm, and they displayed good stability and no cytotoxicity. As determined by optical emission spectroscopy, manganese complexes are loaded almost completely on liposomes maintaining their paramagnetic properties.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
- Biotechnology Interuniversity Consortium, Ferrara Section, University of Ferrara, 44121 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
- INFN—Laboratori Nazionali Legnaro, National Institute of Nuclear Physics, Viale dell’Università, 2, 35020 Legnaro, Italy
| | - Lorenza Marvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
- Correspondence: (L.M.); (R.C.)
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
| | - Markus Drechsler
- Key Lab “Electron and Optical Microscopy”, Bavarian Polymer Institute (BPI), University of Bayreuth, 95440 Bayreuth, Germany;
| | - Martina Capozza
- Molecular & Preclinical Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Lucia Del Bianco
- Department of Physics and Earth Science, University of Ferrara, 44122 Ferrara, Italy; (L.D.B.); (F.S.)
| | - Federico Spizzo
- Department of Physics and Earth Science, University of Ferrara, 44122 Ferrara, Italy; (L.D.B.); (F.S.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
- INFN—Laboratori Nazionali Legnaro, National Institute of Nuclear Physics, Viale dell’Università, 2, 35020 Legnaro, Italy
- Correspondence: (L.M.); (R.C.)
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.)
| |
Collapse
|
5
|
Sguizzato M, Pula W, Bordin A, Pagnoni A, Drechsler M, Marvelli L, Cortesi R. Manganese in Diagnostics: A Preformulatory Study. Pharmaceutics 2022; 14:pharmaceutics14010108. [PMID: 35057004 PMCID: PMC8780490 DOI: 10.3390/pharmaceutics14010108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
This investigation aims to find lipid-based nanosystems to be used as tools to deliver manganese for diagnostic purposes in multimodal imaging techniques. In particular, the study describes the production and characterization of aqueous dispersions of anionic liposomes as delivery systems for two model manganese-based compounds, namely manganese chloride and manganese acetylacetonate. Negatively charged liposomes were obtained using four different anionic surfactants, namely sodium docusate (SD), N-lauroylsarcosine (NLS), Protelan AG8 (PAG) and sodium lauroyl lactylate (SLL). Liposomes were produced by the direct hydration method followed by extrusion and characterized in terms of size, polydispersity, surface charge and stability over time. After extrusion, liposomes are homogeneous and monodispersed with an average diameter not exceeding 200 nm and a negative surface charge as confirmed by ζ potential measurement. Moreover, as indicated by atomic absorption spectroscopy analyses, the loading of manganese-based compounds was almost quantitative. Liposomes containing NLS or SLL were the most stable over time and the presence of manganese-based compounds did not affect their size distribution. Liposomes containing PAG and SD were instable and therefore discarded. The in vitro cytotoxicity of the selected anionic liposomes was evaluated by MTT assay on human keratinocyte. The obtained results highlighted that the toxicity of the formulations is dose dependent.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
| | - Anna Bordin
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
| | - Antonella Pagnoni
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy;
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Lorenza Marvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
6
|
Luo H, Chevillard L, Bellivier F, Mégarbane B, Etain B, Cisternino S, Declèves X. The role of brain barriers in the neurokinetics and pharmacodynamics of lithium. Pharmacol Res 2021; 166:105480. [PMID: 33549730 DOI: 10.1016/j.phrs.2021.105480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
Lithium (Li) is the most widely used mood stabilizer in treating patients with bipolar disorder. However, more than half of the patients do not or partially respond to Li therapy, despite serum Li concentrations in the serum therapeutic range. The exact mechanisms underlying the pharmacokinetic-pharmacodynamic (PK-PD) relationships of lithium are still poorly understood and alteration in the brain pharmacokinetics of lithium may be one of the mechanisms explaining the variability in the clinical response to Li. Brain barriers such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) play a crucial role in controlling blood-to-brain and brain-to-blood exchanges of various molecules including central nervous system (CNS) drugs. Recent in vivo studies by nuclear resonance spectroscopy revealed heterogenous brain distribution of Li in human that were not always correlated with serum concentrations, suggesting regional and variable transport mechanisms of Li through the brain barriers. Moreover, alteration in the functionality and integrity of brain barriers is reported in various CNS diseases, as a cause or a consequence and in this regard, Li by itself is known to modulate BBB properties such as the expression and activity of various transporters, metabolizing enzymes, and the specialized tight junction proteins on BBB. In this review, we will focus on recent knowledge into the role of the brain barriers as key-element in the Li neuropharmacokinetics which might improve the understanding of PK-PD of Li and its interindividual variability in drug response.
Collapse
Affiliation(s)
- Huilong Luo
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, USA
| | - Lucie Chevillard
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France
| | - Frank Bellivier
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Department of Psychiatry, Lariboisière Hospital, AP-HP, 75010 Paris, France
| | - Bruno Mégarbane
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Department of Medical and Toxicological Critical Care, Lariboisière Hospital, AP-HP, 75010 Paris, France
| | - Bruno Etain
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Department of Psychiatry, Lariboisière Hospital, AP-HP, 75010 Paris, France
| | - Salvatore Cisternino
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Service de Pharmacie, AP-HP, Hôpital Necker, 149 Rue de Sèvres, 75015 Paris, France
| | - Xavier Declèves
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France; Biologie du Médicament, AP-HP, Hôpital Cochin, 27 rue du Faubourg, St. Jacques, 75679 Paris Cedex 14, France.
| |
Collapse
|
7
|
Abstract
In this article, an overview of the current developments and research applications for non-proton magnetic resonance imaging (MRI) at ultrahigh magnetic fields (UHFs) is given. Due to technical and methodical advances, efficient MRI of physiologically relevant nuclei, such as Na, Cl, Cl, K, O, or P has become feasible and is of interest to obtain spatially and temporally resolved information that can be used for biomedical and diagnostic applications. Sodium (Na) MRI is the most widespread multinuclear imaging method with applications ranging over all regions of the human body. Na MRI yields the second largest in vivo NMR signal after the clinically used proton signal (H). However, other nuclei such as O and P (energy metabolism) or Cl and K (cell viability) are used in an increasing number of MRI studies at UHF. One major advancement has been the increased availability of whole-body MR scanners with UHFs (B0 ≥7T) expanding the range of detectable nuclei. Nevertheless, efforts in terms of pulse sequence and post-processing developments as well as hardware designs must be made to obtain valuable information in clinically feasible measurement times. This review summarizes the available methods in the field of non-proton UHF MRI, especially for Na MRI, as well as introduces potential applications in clinical research.
Collapse
Affiliation(s)
- Sebastian C Niesporek
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin M Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tanja Platt
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Smith FE, Thelwall PE, Necus J, Flowers CJ, Blamire AM, Cousins DA. 3D 7Li magnetic resonance imaging of brain lithium distribution in bipolar disorder. Mol Psychiatry 2018; 23:2184-2191. [PMID: 29426954 PMCID: PMC5955212 DOI: 10.1038/s41380-018-0016-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/19/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Lithium is a major treatment for bipolar disorder and the likelihood of a favourable response may be determined by its distribution in the brain. Lithium can be directly detected by magnetic resonance (MR), but previous 7Li MR spectroscopy studies have demonstrated that this is challenging compared to conventional 1H MR imaging due to the MR properties of the lithium nucleus and its low concentration in brain tissue, as dictated by therapeutic dose. We have tested and implemented a highly efficient balanced steady-state free precession 7Li-MRI method to address these challenges and enable MRI of brain lithium in a short duration scan. We report a 3D 7Li-MRI acquisition with 25 mm isotropic resolution in an 8-min scan that demonstrates heterogeneity in lithium concentration within the brain in subjects with bipolar disorder. This represents the direct imaging of a pharmaceutical agent in its target organ and notably expands the repertoire of techniques available to investigate the effects of lithium in man.
Collapse
Affiliation(s)
- Fiona Elizabeth Smith
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Peter Edward Thelwall
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Joe Necus
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Carly Jay Flowers
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Andrew Matthew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - David Andrew Cousins
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
9
|
Application of Heteronuclear NMR Spectroscopy to Bioinorganic and Medicinal Chemistry ☆. REFERENCE MODULE IN CHEMISTRY, MOLECULAR SCIENCES AND CHEMICAL ENGINEERING 2018. [PMCID: PMC7157447 DOI: 10.1016/b978-0-12-409547-2.10947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Stout J, Hanak AS, Chevillard L, Djemaï B, Risède P, Giacomini E, Poupon J, Barrière DA, Bellivier F, Mégarbane B, Boumezbeur F. Investigation of lithium distribution in the rat brain ex vivo using lithium-7 magnetic resonance spectroscopy and imaging at 17.2 T. NMR IN BIOMEDICINE 2017; 30:e3770. [PMID: 28703506 DOI: 10.1002/nbm.3770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/19/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Lithium is the first-line mood stabilizer for the treatment of patients with bipolar disorder. However, its mechanisms of action and transport across the blood-brain barrier remain poorly understood. The contribution of lithium-7 magnetic resonance imaging (7 Li MRI) to investigate brain lithium distribution remains limited because of the modest sensitivity of the lithium nucleus and the expected low brain concentrations in humans and animal models. Therefore, we decided to image lithium distribution in the rat brain ex vivo using a turbo-spin-echo imaging sequence at 17.2 T. The estimation of lithium concentrations was performed using a phantom replacement approach accounting for B1 inhomogeneities and differential T1 and T2 weighting. Our MRI-derived lithium concentrations were validated by comparison with inductively coupled plasma-mass spectrometry (ICP-MS) measurements ([Li]MRI = 1.18[Li]MS , R = 0.95). Overall, a sensitivity of 0.03 mmol/L was achieved for a spatial resolution of 16 μL. Lithium distribution was uneven throughout the brain (normalized lithium content ranged from 0.4 to 1.4) and was mostly symmetrical, with consistently lower concentrations in the metencephalon (cerebellum and brainstem) and higher concentrations in the cortex. Interestingly, low lithium concentrations were also observed close to the lateral ventricles. The average brain-to-plasma lithium ratio was 0.34 ± 0.04, ranging from 0.29 to 0.39. Brain lithium concentrations were reasonably correlated with plasma lithium concentrations, with Pearson correlation factors ranging from 0.63 to 0.90.
Collapse
Affiliation(s)
- Jacques Stout
- NeuroSpin, Institut Frédéric Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anne-Sophie Hanak
- Inserm UMR-S 1144, Universités Paris-Descartes & Paris-Diderot, Paris, France
| | - Lucie Chevillard
- Inserm UMR-S 1144, Universités Paris-Descartes & Paris-Diderot, Paris, France
| | - Boucif Djemaï
- NeuroSpin, Institut Frédéric Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Patricia Risède
- Inserm UMR-S 1144, Universités Paris-Descartes & Paris-Diderot, Paris, France
| | - Eric Giacomini
- NeuroSpin, Institut Frédéric Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Joël Poupon
- APHP, GH Saint-Louis-Lariboisière-Fernand Widal, Laboratoire de Toxicologie biologique, Paris, France
| | - David André Barrière
- NeuroSpin, Institut Frédéric Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- Inserm UMR-S 894, Université Paris-Descartes, Paris, France
| | - Frank Bellivier
- Inserm UMR-S 1144, Universités Paris-Descartes & Paris-Diderot, Paris, France
- APHP, GH Saint-Louis-Lariboisière-Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, France
| | - Bruno Mégarbane
- Inserm UMR-S 1144, Universités Paris-Descartes & Paris-Diderot, Paris, France
- APHP, GH Saint-Louis-Lariboisière-Fernand Widal, Réanimation Médicale et Toxicologique, Paris, France
| | - Fawzi Boumezbeur
- NeuroSpin, Institut Frédéric Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Söderberg C, Wernvik E, Jönsson AK, Druid H. Reference values of lithium in postmortem femoral blood. Forensic Sci Int 2017; 277:207-214. [DOI: 10.1016/j.forsciint.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 12/01/2022]
|
12
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
13
|
Komoroski RA, Lindquist DM, Pearce JM. Lithium compartmentation in brain by 7Li MRS: effect of total lithium concentration. NMR IN BIOMEDICINE 2013; 26:1152-1157. [PMID: 23401319 PMCID: PMC3665720 DOI: 10.1002/nbm.2929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/03/2013] [Accepted: 01/06/2013] [Indexed: 06/01/2023]
Abstract
In previous work at 4.7 T, the individual components of biexponential (7) Li transverse (T2 ) spin relaxation in rat brain in vivo were tentatively identified with intra- and extracellular Li. The goal in this work was to estimate Li's compartmental distribution as a function of total Li concentration in brain from the biexponential decays. Here a localized, biexponential (7) Li T2 MR spin-relaxation study with isotopically enriched (7) LiCl is reported in rat brain in vivo at 7 T. Additionally, a simple linear interpolation using the biexponential T2 values to estimate intracellular Li from individual monoexponential T2 decays was assessed. Intracellular T2 was 14.8 ± 4.3 ms and extracellular T2 was 295 ± 61 ms. The fraction of intracellular brain Li ranged from 37.3 to 64.8% (mean 54.5 ± 6.7%) and did not correlate with total Li concentration. The estimated intracellular Li concentration ranged from 47 to 80% (mean 68.3 ± 8.5%) of the total brain Li concentration and was highly correlated with it. The monoexponential estimates of the intracellular-Li fractions and derived concentrations averaged about 15% higher than the corresponding biexponential estimates. This work supports the previous conclusion that a large fraction of Li in the brain is within the intracellular compartment.
Collapse
Affiliation(s)
- Richard A Komoroski
- Center for Imaging Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0583, USA.
| | | | | |
Collapse
|
14
|
Rittmannsberger H, Malsiner-Walli G. Mood-dependent changes of serum lithium concentration in a rapid cycling patient maintained on stable doses of lithium carbonate. Bipolar Disord 2013; 15:333-7. [PMID: 23521652 DOI: 10.1111/bdi.12066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/13/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Serum lithium levels may be influenced by mood state. We report on a 58-year-old female patient suffering from rapid cycling bipolar disorder. Her serum lithium levels varied greatly, despite stable medication. METHODS The patient was observed over a one-year period. RESULTS The patient received a stable medication of lithium carbonate (450 mg), valproate (1500 mg), and clozapine (200 mg). Investigating mood and serum lithium levels over one year revealed six manic and six depressive phases. The mean lithium serum level was 0.67 mmol/L in the depressive states, 0.39 mmol/L in the manic states (t = 4.11, p = 0.001 versus depression), and 0.40 mmol/L in the euthymic states (t = 3.58, p = 0.003 versus depression). Noncompliance was ruled out. The patient gained up to 8 kg during manic phases, accompanied by pretibial edema. CONCLUSIONS Changes in serum lithium concentration are probably not caused by altered lithium, but by water metabolism. During mania, body water increases, leading to dilution and therefore a reduction in serum lithium levels. As there is no proof for any other known cause of hypervolemia, we propose the hypothesis that the increase in body water is due to a variant of idiopathic edema.
Collapse
|
15
|
Port JD, Rampton KE, Shu Y, Manduca A, Frye MA. Short TE7Li-MRS confirms Bi-exponential lithium T2 relaxation in humans and clearly delineates two patient subtypes. J Magn Reson Imaging 2012; 37:1451-9. [DOI: 10.1002/jmri.23935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 10/02/2012] [Indexed: 11/06/2022] Open
|
16
|
Lee JH, Adler C, Norris M, Chu WJ, Fugate EM, Strakowski SM, Komoroski RA. 4-T 7Li 3D MR spectroscopy imaging in the brains of bipolar disorder subjects. Magn Reson Med 2012; 68:363-8. [PMID: 22692991 PMCID: PMC3396736 DOI: 10.1002/mrm.24361] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 05/07/2012] [Accepted: 05/13/2012] [Indexed: 11/08/2022]
Abstract
This work demonstrates the first whole brain "high spatial resolution" (7)Li MR spectroscopy imaging in bipolar disorder subjects. The in vivo quantification is validated by a phantom containing 5 mM lithium salt using the identical radiofrequency sequence and imaging protocol. This study is the first demonstration of the (7)Li distribution in the brain of bipolar disorder patients on lithium therapy using a 3D MR spectroscopy imaging approach. The results show that brain lithium level is strongly correlated with serum lithium concentration. The brain-to-serum lithium ratios for the average brain and the local maximum were 0.39 ± 0.08 (r = 0.93) and 0.92 ± 0.16 (r = 0.90), respectively. The lithium distribution is found to be nonuniform throughout the brain for all patients, which is somewhat unexpected and highly intriguing. This uneven distribution is more evident in subjects at a higher therapeutic serum lithium level. This finding may suggest that lithium targets specific brain tissues and/or certain enzymatic and macromolecular sites that are associated with therapeutic effect. Further investigations of bipolar disorder patients on lithium therapy using 3D (7)Li MR spectroscopy imaging are warranted.
Collapse
Affiliation(s)
- Jing-Huei Lee
- School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, Ohio45267-0583 , USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hillert M, Zimmermann M, Klein J. Uptake of lithium into rat brain after acute and chronic administration. Neurosci Lett 2012; 521:62-6. [DOI: 10.1016/j.neulet.2012.05.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/04/2012] [Accepted: 05/19/2012] [Indexed: 11/29/2022]
|
18
|
Smith FE, Cousins DA, Thelwall PE, Ferrier IN, Blamire AM. Quantitative lithium magnetic resonance spectroscopy in the normal human brain on a 3 T clinical scanner. Magn Reson Med 2011; 66:945-9. [DOI: 10.1002/mrm.22923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 01/18/2011] [Accepted: 02/21/2011] [Indexed: 11/12/2022]
|
19
|
Grandjean EM, Aubry JM. Lithium: updated human knowledge using an evidence-based approach. Part II: Clinical pharmacology and therapeutic monitoring. CNS Drugs 2009; 23:331-49. [PMID: 19374461 DOI: 10.2165/00023210-200923040-00005] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
After a single dose, lithium, usually given as carbonate, reaches a peak plasma concentration at 1.0-2.0 hours for standard-release dosage forms, and 4-5 hours for sustained-release forms. Its bioavailability is 80-100%, its total clearance 10-40 mL/min and its elimination half-life is 18-36 hours. Use of the sustained-release formulation results in 30-50% reductions in peak plasma concentrations without major changes in the area under the plasma concentration curve. Lithium distribution to the brain, evaluated using 7Li magnetic resonance spectroscopy, showed brain concentrations to be approximately half those in serum, occasionally increasing to 75-80%. Brain concentrations were weakly correlated with serum concentrations. Lithium is almost exclusively excreted via the kidney as a free ion and lithium clearance is considered to decrease with aging. No gender- or race-related differences in kinetics have been demonstrated. Renal insufficiency is associated with a considerable reduction in renal clearance of lithium and is considered a contraindication to its use, especially if a sodium-poor diet is required. During the last months of pregnancy, lithium clearance increases by 30-50% as a result of an increase in glomerular filtration rate. Lithium also passes freely from maternal plasma into breast milk. Numerous kinetic interactions have been described for lithium, usually involving a decrease in the drug's clearance and therefore increasing its potential toxicity. Clinical pharmacology studies performed in healthy volunteers have investigated a possible effect of lithium on cognitive functions. Most of these studies reported a slight, negative effect on vigilance, alertness, learning and short-term memory after long-term administration only. Because of the narrow therapeutic range of lithium, therapeutic monitoring is the basis for optimal use and administration of this drug. Lithium dosages should be adjusted on the basis of the serum concentration drawn (optimally) 12 hours after the last dose. In patients receiving once-daily administration, the serum concentration at 24 hours should serve as the control value. The efficacy of lithium is clearly dose-dependent and reliably correlates with serum concentrations. It is now generally accepted that concentrations should be maintained between 0.6 and 0.8 mmol/L, although some authors still favour 0.8-1.2 mmol/L. With sustained-release preparations, and because of the later peak of serum lithium concentration, it is advised to keep serum concentrations within the upper range (0.8-1 mmol/L), rather than 0.6-0.8 mmol/L for standard formulations. It is controversial whether a reduced concentration is required in elderly people. The usual maintenance daily dose is 25-35 mmol (lithium carbonate 925-1300 mg) for patients aged <40 years; 20-25 mmol (740-925 mg) for those aged 40-60 years; and 15-20 mmol (550-740 mg) for patients aged >60 years. The initial recommended dose is usually 12-24 mmol (450-900 mg) per day, depending on age and bodyweight. The classical administration schedule is two or three times daily, although there is no strong evidence in favour of a three-times-daily schedule, and compliance with the midday dose is questionable. With a modern sustained-release preparation, the twice-daily schedule is well established, although one single evening dose is being recommended by a number of expert panels.
Collapse
|
20
|
Abstract
The nuclear magnetic resonance phenomenon has given rise to both magnetic resonance imaging, which yields morphologic data, and magnetic resonance spectroscopy (MRS), which yields chemical data. In humans these data are derived principally from the resonances of the hydrogen nucleus in the low molecular weight compounds in the body. Hydrogen MRS has become a routinely used clinical tool in the brain, prostate, and breast. Other nuclei also demonstrate this phenomenon but each of these comes with additional difficulties, including low abundance, low sensitivity, and/or low chemical concentrations. The future of MRS includes a drive to higher main magnetic field strengths and new methods to create 4-5 orders of magnitude greater signal. The future of MRS is bright, but in the United States it is endangered by overuse and misuse driven by the advent of reimbursement.
Collapse
Affiliation(s)
- Robert W Prost
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
21
|
Ronconi L, Sadler PJ. Applications of heteronuclear NMR spectroscopy in biological and medicinal inorganic chemistry. Coord Chem Rev 2008; 252:2239-2277. [PMID: 32226090 PMCID: PMC7094630 DOI: 10.1016/j.ccr.2008.01.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 01/15/2008] [Indexed: 11/30/2022]
Abstract
There is a wide range of potential applications of inorganic compounds, and metal coordination complexes in particular, in medicine but progress is hampered by a lack of methods to study their speciation. The biological activity of metal complexes is determined by the metal itself, its oxidation state, the types and number of coordinated ligands and their strength of binding, the geometry of the complex, redox potential and ligand exchange rates. For organic drugs a variety of readily observed spin I = 1/2 nuclei can be used (1H, 13C, 15N, 19F, 31P), but only a few metals fall into this category. Most are quadrupolar nuclei giving rise to broad lines with low detection sensitivity (for biological systems). However we show that, in some cases, heteronuclear NMR studies can provide new insights into the biological and medicinal chemistry of a range of elements and these data will stimulate further advances in this area.
Collapse
Key Words
- ADP, adenosine diphosphate
- AES, atomic emission spectroscopy
- AMP, adenosine monophosphate
- ATP, adenosine triphosphate
- BNCT, boron neutron capture therapy
- BPG, 2,3-bisphosphoglycerate
- BSA, bovine serum albumin
- BSH, sodium borocaptate
- Bioinorganic chemistry
- Biological systems
- DNA, deoxyribonucleic acid
- EDTA-N4, ethylenediaminetetraacetamide
- EFG, electric field gradient
- GMP, guanosine monophosphate
- HMQC, heteronuclear multiple quantum correlation
- Heteronuclear NMR spectroscopy
- Im, imidazole
- In, indazole
- MQF, multiple quantum filtered
- MRI, magnetic resonance imaging
- Medicinal inorganic chemistry
- Metallopharmaceuticals
- NOE, nuclear Overhauser effect
- PET, positron emission tomography
- Quadrupolar nuclei
- RBC, red blood cell
- RNA, ribonucleic acid
- SDS, sodium dodecyl sulfate
- rRNA, ribosomal ribonucleic acid
- tRNA, transfer ribonucleic acid
Collapse
Affiliation(s)
- Luca Ronconi
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
22
|
Komoroski RA, Pearce JM. Estimating intracellular lithium in brain in vivo by localized7Li magnetic resonance spectroscopy. Magn Reson Med 2008; 60:21-6. [DOI: 10.1002/mrm.21613] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Bendel P, Margalit R, Koudinova N, Salomon Y. Noninvasive quantitative in vivo mapping and metabolism of boronophenylalanine (BPA) by nuclear magnetic resonance (NMR) spectroscopy and imaging. Radiat Res 2005; 164:680-7. [PMID: 16238447 DOI: 10.1667/rr3450.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
10B-enriched L-p-boronophenylalanine (BPA) is one of the compounds used in boron neutron capture therapy (BNCT). In this study, several variations of nuclear magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) were applied to investigate the uptake, clearance and metabolism of the BPA-fructose complex (BPA-F) in normal mouse kidneys, rat oligodendroglioma xenografts, and rat blood. Localized 1H MRS was capable of following the uptake and clearance of BPA-F in mouse kidneys with temporal resolution of a few minutes, while 1H MRSI was used to image the BPA distribution in the kidney with a spatial resolution of 9 mm3. The results also revealed significant dissociation of the BPA-F complex to free BPA. This finding was corroborated by 1H and 11B NMR spectroscopy of rat blood samples as well as of tumor samples excised from mice after i.v. injection of BPA-F. This investigation demonstrates the feasibility of using 1H MRS and MRSI to follow the distribution of BPA in vivo, using NMR techniques specifically designed to optimize BPA detection. The implementation of such procedures could significantly improve the clinical efficacy of BNCT.
Collapse
Affiliation(s)
- Peter Bendel
- Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|