1
|
Asik D, Abozeid SM, Turowski SG, Spernyak JA, Morrow JR. Dinuclear Fe(III) Hydroxypropyl-Appended Macrocyclic Complexes as MRI Probes. Inorg Chem 2021; 60:8651-8664. [PMID: 34110140 PMCID: PMC9942924 DOI: 10.1021/acs.inorgchem.1c00634] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Four high-spin Fe(III) macrocyclic complexes, including three dinuclear and one mononuclear complex, were prepared toward the development of more effective iron-based magnetic resonance imaging (MRI) contrast agents. All four complexes contain a 1,4,7-triazacyclononane macrocyclic backbone with two hydroxypropyl pendant groups, an ancillary aryl or biphenyl group, and a coordination site for a water ligand. The pH potentiometric titrations support one or two deprotonations of the complexes, most likely deprotonation of hydroxypropyl groups at near-neutral pH. Variable-temperature 17O NMR studies suggest that the inner-sphere water ligand is slow to exchange with bulk water on the NMR time scale. Water proton T1 relaxation times measured for solutions of the Fe(III) complexes at pH 7.2 showed that the dinuclear complexes have a 2- to 3-fold increase in r1 relaxivity in comparison to the mononuclear complex per molecule at field strengths ranging from 1.4 T to 9.4 T. The most effective agent, a dinuclear complex with macrocycles linked through para-substitution of an aryl group (Fe2(PARA)), has an r1 of 6.7 mM-1 s-1 at 37 °C and 4.7 T or 3.3 mM-1 s-1 per iron center in the presence of serum albumin and shows enhanced blood pool and kidney contrast in mice MRI studies.
Collapse
Affiliation(s)
- Didar Asik
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, New York 14260, United States
| | - Samira M. Abozeid
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, New York 14260, United States
| | - Steven G. Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, New York 14263 United States
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, New York 14263 United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
2
|
Skupin-Mrugalska P, Zalewski T, Elvang PA, Nowaczyk G, Czajkowski M, Piotrowska-Kempisty H. Insight into theranostic nanovesicles prepared by thin lipid hydration and microfluidic method. Colloids Surf B Biointerfaces 2021; 205:111871. [PMID: 34051668 DOI: 10.1016/j.colsurfb.2021.111871] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023]
Abstract
Liposomes are phospholipid-based self-assembled nanoparticles. Various components can be solubilized in the lipid bilayer, encapsulated in the aqueous core or attached to the surface, making liposomes attractive platforms for multimodality functionalization. Here we describe theranostic liposomes delivering a magnetic resonance contrast agent (lipid derivative of gadopentetic acid) and a hydrophobic photosensitizer (zinc phthalocyanine, ZnPc) for photodynamic therapy of cancer. For the first time, this theranostic system was prepared by the microfluidic method. Analogous formulations were produced by thin lipid film hydration (TLH) with down-sizing performed by extrusion for comparison purposes. We demonstrated double the loading capacity of ZnPc into liposomes made by microfluidics compared to TLH/extrusion. Microfluidics resulted in the theranostic nanoliposomes characterized by sizes =2.5x smaller than vesicles prepared by TLH/extrusion. Increased relaxivity was observed for liposomes manufactured by microfluidics compared to TLH, despite a slightly lower Gd chelate recovery. We attributed the improved relaxation to the increased surface area/volume ratio of vesicles and decreased phosphatidylcholine/ZnPc molar ratio, which affected water molecules' diffusion through the liposomal membrane. Finally, we showed photodynamic efficacy of ZnPc loaded into theranostic liposomes in head and neck cancer model, resulting in IC50 of 0.22 - 0.61 μM, depending on the formulation and cell line used. We demonstrate microfluidics' feasibility to be used for theranostic liposome manufacturing and co-entrapment of therapeutic and imaging components in a single-step process with a high yield.
Collapse
Affiliation(s)
- Paulina Skupin-Mrugalska
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland.
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614, Poznan, Poland
| | - Philipp A Elvang
- Drug Transport & Delivery Group, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614, Poznan, Poland
| | - Mikolaj Czajkowski
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | | |
Collapse
|
3
|
Wang Z, Wang Y, Wang Y, Wei C, Deng Y, Chen H, Shen J, Ke H. Biomineralized iron oxide-polydopamine hybrid nanodots for contrast-enhanced T1-weighted magnetic resonance imaging and photothermal tumor ablation. J Mater Chem B 2021; 9:1781-1786. [PMID: 33594402 DOI: 10.1039/d1tb00032b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Iron oxide nanoparticles (IO NPs) have become the focus of molecular imaging probes for contrast enhanced magnetic resonance (MR) imaging due to their intrinsic magnetic and biodegradable properties, as well as long blood half-lives and low toxicity. Massive efforts have been made to explore the IO NPs as T2-weighted MR contrast agents, which have high susceptibility to induce a long-range magnetic field that interferes with diagnosis. Thus, the development of IO NPs with potent T1 relaxivity might help in providing an alternative for clinically applied gadolinium chelates. Herein, biomineralized iron oxide-polydopamine hybrid nanodots (IO/PDA-NDs) have been constructed using albumin as the nanoreactors to induce nanoprecipitation and polymerization simultaneously, facilitating T1-weighted contrast-enhancement as well as photothermal therapeutic capability. The IO nanoclusters in IO/PDA-NDs have an r1 relaxivity of 5.79 mM-1 s-1 with a relatively low r2/r1 ratio of 1.71, demonstrating the preferable iron oxide based T1 contrast agents. The high photothermal conversion coefficient and tumor targeting effect of the hybrid nanodots could result in complete tumor ablation efficacy. The biomineralization method provides a promising approach for the integration of tumor diagnosis and treatment to achieve efficient cancer theranostics.
Collapse
Affiliation(s)
- Ze'ai Wang
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China. and Department of Ultrasound, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Jiangsu 223002, China
| | - Yanfeng Wang
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Yuan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Chaogang Wei
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Junkang Shen
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Wyskocka-Gajda M, Przypis Ł, Olesiejuk M, Krawczyk T, Kuźnik A, Nawara K, Minoshima M, Sugihara F, Kikuchi K, Kuźnik N. A step towards gadolinium-free bioresponsive MRI contrast agent. Eur J Med Chem 2020; 211:113086. [PMID: 33348236 DOI: 10.1016/j.ejmech.2020.113086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023]
Abstract
The last 30 years of gadolinium-based "static" MRI contrast agents motivated to investigate bioresponsive agents with endogenous paramagnets. Iron(III) chelated by N,O-aminophenol skeleton of high versatility, and tuning potential was studied. The two-step convenient route of the ligand is characterized by high selectivity and allows for building a tunable chelate system. Functionalization with galactose endows a bioresponsive character sensitive to the enzyme activity. Direct relaxometric measurements of the resulting complexes revealed extremely high relaxivity of 5.62 mmol/dm3·s-1 comparable to classic gadolinium complexes. Enzymatic hydrolysis leads to relaxivity change by over 80%. Phantom MRI studies prove the bioresponsive character by contras percentage change within the range 40-275%. Cytotoxicity studies showed 70-90% viability of HeLa cells of the iron complexes. Proposed iron-based chelates with galactosidase-sensitive fragment express unequivocal relaxivity and MRI contras change and good biocompatibility. Therefore, these complexes are a promising step towards modern, bioresponsive MRI contrast agents with a "human-friendly" metal.
Collapse
Affiliation(s)
- Marzena Wyskocka-Gajda
- Silesian University of Technology, Faculty of Chemistry, M. Strzody 9, 44-100, Gliwice, Poland
| | - Łukasz Przypis
- Silesian University of Technology, Faculty of Chemistry, M. Strzody 9, 44-100, Gliwice, Poland
| | - Monika Olesiejuk
- Silesian University of Technology, Faculty of Chemistry, M. Strzody 9, 44-100, Gliwice, Poland
| | - Tomasz Krawczyk
- Silesian University of Technology, Faculty of Chemistry, M. Strzody 9, 44-100, Gliwice, Poland
| | - Anna Kuźnik
- Silesian University of Technology, Faculty of Chemistry, M. Strzody 9, 44-100, Gliwice, Poland
| | - Krzysztof Nawara
- Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815, Warsaw, Poland
| | - Masafumi Minoshima
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Fuminori Sugihara
- Immunology Frontier Research Center, Osaka University, Yamadaoka 3-1, Suita, Osaka, 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Nikodem Kuźnik
- Silesian University of Technology, Faculty of Chemistry, M. Strzody 9, 44-100, Gliwice, Poland.
| |
Collapse
|
5
|
Uzal-Varela R, Rodríguez-Rodríguez A, Martínez-Calvo M, Carniato F, Lalli D, Esteban-Gómez D, Brandariz I, Pérez-Lourido P, Botta M, Platas-Iglesias C. Mn 2+ Complexes Containing Sulfonamide Groups with pH-Responsive Relaxivity. Inorg Chem 2020; 59:14306-14317. [PMID: 32962345 DOI: 10.1021/acs.inorgchem.0c02098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present two ligands containing a N-ethyl-4-(trifluoromethyl)benzenesulfonamide group attached to either a 6,6'-(azanediylbis(methylene))dipicolinic acid unit (H3DPASAm) or a 2,2'-(1,4,7-triazonane-1,4-diyl)diacetic acid macrocyclic platform (H3NO2ASAm). These ligands were designed to provide a pH-dependent relaxivity response upon complexation with Mn2+ in aqueous solution. The protonation constants of the ligands and the stability constants of the Mn2+ complexes were determined using potentiometric titrations complemented by spectrophotometric experiments. The deprotonations of the sulfonamide groups of the ligands are characterized by protonation constants of log KiH = 10.36 and 10.59 for DPASAm3- and HNO2ASAm2-, respectively. These values decrease dramatically to log KiH = 6.43 and 5.42 in the presence of Mn2+, because of the coordination of the negatively charged sulfonamide groups to the metal ion. The higher log KiH value in [Mn(DPASAm)]- is related to the formation of a seven-coordinate complex, while the metal ion in [Mn(NO2ASAm)]- is six-coordinated. The X-ray crystal structure of Na[Mn(DPASAm)(H2O)]·2H2O confirms the formation of a seven-coordinate complex, where the coordination environment is fulfilled by the donor atoms of the two picolinate groups, the amine N atom, the N atom of the sulfonamide group, and a coordinated water molecule. The lower conditional stability of the [Mn(NO2ASAm)]- complex and the lower protonation constant of the sulfonamide group results in complex dissociation at relatively high pH (<7.0). However, protonation of the sulfonamide group in [Mn(DPASAm)]- falls into the physiologically relevant pH window and causes a significant increase in relaxivity from r1p = 3.8 mM-1 s-1 at pH 9.0 to r1p = 8.9 mM-1 s-1 at pH 4.0 (10 MHz, 25 °C).
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Aurora Rodríguez-Rodríguez
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Miguel Martínez-Calvo
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Daniela Lalli
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - David Esteban-Gómez
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Isabel Brandariz
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Paulo Pérez-Lourido
- Departamento de Quı́mica Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Carlos Platas-Iglesias
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| |
Collapse
|
6
|
Magnetic resonance imaging contrast enhancement in vitro and in vivo by octanuclear iron-oxo cluster-based agents. J Inorg Biochem 2018; 186:176-186. [PMID: 29957454 PMCID: PMC6943819 DOI: 10.1016/j.jinorgbio.2018.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/24/2018] [Accepted: 06/09/2018] [Indexed: 02/03/2023]
Abstract
A water-soluble octanuclear cluster, [Fe8], was studied with regard to its properties as a potential contrast enhancing agent in magnetic resonance imaging (MRI) in magnetic fields of 1.3, 7.2 and 11.9 T and was shown to have transverse relaxivities r2 = 4.01, 10.09 and 15.83 mM s-1, respectively. A related hydrophobic [Fe8] cluster conjugated with 5 kDa hyaluronic acid (HA) was characterized by 57Fe-Mössbauer and MALDI-TOF mass spectroscopy, and was evaluated in aqueous solutions in vitro with regard to its contrast enhancing properties [r2 = 3.65 mM s-1 (1.3 T), 26.20 mM s-1 (7.2 T) and 52.18 mM s-1 (11.9 T)], its in vitro cellular cytotoxicity towards A-549 cells and COS-7 cells and its in vivo enhancement of T2-weighted images (4.7 T) of a human breast cancer xenografted on a nude mouse. The physiologically compatible [Fe8]-HA conjugate was i.v. injected to the tumor-bearing mouse, resulting in observable, heterogeneous signal change within the tumor, evident 15 min after injection and persisting for approximately 30 min. Both molecular [Fe8] and its HA-conjugate show a strong magnetic field dependence on r2, rendering them promising platforms for the further development of T2 MRI contrast agents in high and ultrahigh magnetic fields.
Collapse
|
7
|
Skupin-Mrugalska P, Sobotta L, Warowicka A, Wereszczynska B, Zalewski T, Gierlich P, Jarek M, Nowaczyk G, Kempka M, Gapinski J, Jurga S, Mielcarek J. Theranostic liposomes as a bimodal carrier for magnetic resonance imaging contrast agent and photosensitizer. J Inorg Biochem 2018; 180:1-14. [DOI: 10.1016/j.jinorgbio.2017.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/03/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
|
8
|
Xi J, Da L, Yang C, Chen R, Gao L, Fan L, Han J. Mn 2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy. Int J Nanomedicine 2017; 12:3331-3345. [PMID: 28479854 PMCID: PMC5411169 DOI: 10.2147/ijn.s132270] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nanoparticle drug delivery carriers, which can implement high performances of multi-functions, are of great interest, especially for improving cancer therapy. Herein, we reported a new approach to construct Mn2+-coordinated doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a platform for synergistic chemo-photothermal tumor therapy. DOX-loaded PLGA (DOX/PLGA) nanoparticles were first synthesized through a double emulsion-solvent evaporation method, and then modified with polydopamine (PDA) through self-polymerization of dopamine, leading to the formation of PDA@DOX/PLGA nanoparticles. Mn2+ ions were then coordinated on the surfaces of PDA@DOX/PLGA to obtain Mn2+-PDA@DOX/PLGA nanoparticles. In our system, Mn2+-PDA@DOX/PLGA nanoparticles could destroy tumors in a mouse model directly, by thermal energy deposition, and could also simulate the chemotherapy by thermal-responsive delivery of DOX to enhance tumor therapy. Furthermore, the coordination of Mn2+ could afford the high magnetic resonance (MR) imaging capability with sensitivity to temperature and pH. The results demonstrated that Mn2+-PDA@ DOX/PLGA nanoparticles had a great potential as a smart theranostic agent due to their imaging and tumor-growth-inhibition properties.
Collapse
Affiliation(s)
- Juqun Xi
- Pharmacology Department, Medical School, Yangzhou University
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses
| | - Lanyue Da
- Pharmacology Department, Medical School, Yangzhou University
| | - Changshui Yang
- Pharmacology Department, Medical School, Yangzhou University
| | - Rui Chen
- Department of Nephrology, Subei People’s Hospital, Yangzhou University
| | - Lizeng Gao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
9
|
Kuźnik N, Wyskocka M. Iron(III) Contrast Agent Candidates for MRI: a Survey of the Structure-Effect Relationship in the Last 15 Years of Studies. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501166] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Miao ZH, Wang H, Yang H, Li ZL, Zhen L, Xu CY. Intrinsically Mn2+-Chelated Polydopamine Nanoparticles for Simultaneous Magnetic Resonance Imaging and Photothermal Ablation of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16946-16952. [PMID: 26196160 DOI: 10.1021/acsami.5b06265] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Theranostic agents for magnetic resonance imaging (MRI) guided photothermal therapy have attracted intensive interest in cancer diagnosis and treatment. However, the development of biocompatible theranostic agents with high photothermal conversion efficiency and good MRI contrast effect remains a challenge. Herein, PEGylated Mn2+-chelated polydopamine (PMPDA) nanoparticles were successfully developed as novel theranostic agents for simultaneous MRI signal enhancement and photothermal ablation of cancer cells, based on intrinsic manganese-chelating properties and strong near-infrared absorption of polydopamine nanomaterials. The obtained PMPDA nanoparticles showed significant MRI signal enhancement for both in vitro and in vivo imaging. Highly effective photothermal ablation of HeLa cells exposed to PMPDA nanoparticles was then achieved upon laser irradiation for 10 min. Furthermore, the excellent biocompatibility of PMPDA nanoparticles, because of the use of Mn2+ ions as diagnostic agents and biocompatible polydopamine as photothermal agents, was confirmed by a standard MTT assay. Therefore, the developed PMPDA nanoparticles could be used as a promising theranostic agent for MRI-guided photothermal therapy of cancer cells.
Collapse
Affiliation(s)
- Zhao-Hua Miao
- †School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- ‡MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Hui Wang
- §School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Huanjie Yang
- §School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Zheng-Lin Li
- ∥Condensed Matter Science and Technology Institute, School of Science, Harbin Institute of Technology, Harbin 150000, People's Republic of China
| | - Liang Zhen
- †School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- ‡MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Cheng-Yan Xu
- †School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- ‡MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
11
|
Calle D, Negri V, Ballesteros P, Cerdán S. Magnetoliposomes loaded with poly-unsaturated fatty acids as novel theranostic anti-inflammatory formulations. Am J Cancer Res 2015; 5:489-503. [PMID: 25767616 PMCID: PMC4350011 DOI: 10.7150/thno.10069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022] Open
Abstract
We describe the preparation, physico-chemical characterization and anti-inflammatory properties of liposomes containing the superparamagnetic nanoparticle Nanotex, the fluorescent dye Rhodamine-100 and omega-3 polyunsaturated fatty acid ethyl ester (ω-3 PUFA-EE), as theranostic anti-inflammatory agents. Liposomes were prepared after drying chloroform suspensions of egg phosphatidylcholine, hydration of the lipid film with aqueous phases containing or not Nanotex, Rhodamine-100 dye or ω-3 PUFA-EE, and eleven extrusion steps through nanometric membrane filters. This resulted in uniform preparations of liposomes of approximately 200 nm diameter. Extraliposomal contents were removed from the preparation by gel filtration chromatography. High Resolution Magic Angle Spinning 1H NMR Spectroscopy of the liposomal preparations containing ω-3 PUFA-EE revealed well resolved 1H resonances from highly mobile ω-3 PUFA-EE, suggesting the formation of very small (ca. 10 nm) ω-3 PUFA-EE nanogoticules, tumbling fast in the NMR timescale. Chloroform extraction of the liposomal preparations revealed additionally the incorporation of ω-3 PUFA-EE within the membrane domain. Water diffusion weighted spectra, indicated that the goticules of ω-3 PUFA-EE or its insertion in the membrane did not affect the average translational diffusion coefficient of water, suggesting an intraliposomal localization, that was confirmed by ultrafiltration. The therapeutic efficacy of these preparations was tested in two different models of inflammatory disease as inflammatory colitis or the inflammatory component associated to glioma development. Results indicate that the magnetoliposomes loaded with ω-3 PUFA-EE allowed MRI visualization in vivo and improved the outcome of inflammatory disease in both animal models, decreasing significantly colonic inflammation and delaying, or even reversing, glioma development. Together, our results indicate that magnetoliposomes loaded with ω-3 PUFA-EE may become useful anti-inflammatory agents for image guided drug delivery.
Collapse
|
12
|
Pablico-Lansigan MH, Hickling WJ, Japp EA, Rodriguez OC, Ghosh A, Albanese C, Nishida M, Van Keuren E, Fricke S, Dollahon N, Stoll SL. Magnetic nanobeads as potential contrast agents for magnetic resonance imaging. ACS NANO 2013; 7:9040-8. [PMID: 24047405 DOI: 10.1021/nn403647t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal-oxo clusters have been used as building blocks to form hybrid nanomaterials and evaluated as potential MRI contrast agents. We have synthesized a biocompatible copolymer based on a water stable, nontoxic, mixed-metal-oxo cluster, Mn8Fe4O12(L)16(H2O)4, where L is acetate or vinyl benzoic acid, and styrene. The cluster alone was screened by NMR for relaxivity and was found to be a promising T2 contrast agent, with r1 = 2.3 mM(-1) s(-1) and r2 = 29.5 mM(-1) s(-1). Initial cell studies on two human prostate cancer cell lines, DU-145 and LNCap, reveal that the cluster has low cytotoxicity and may be potentially used in vivo. The metal-oxo cluster Mn8Fe4(VBA)16 (VBA = vinyl benzoic acid) can be copolymerized with styrene under miniemulsion conditions. Miniemulsion allows for the formation of nanometer-sized paramagnetic beads (~80 nm diameter), which were also evaluated as a contrast agent for MRI. These highly monodispersed, hybrid nanoparticles have enhanced properties, with the option for surface functionalization, making them a promising tool for biomedicine. Interestingly, both relaxivity measurements and MRI studies show that embedding the Mn8Fe4 core within a polymer matrix decreases r2 effects with little effect on r1, resulting in a positive T1 contrast enhancement.
Collapse
Affiliation(s)
- Michele H Pablico-Lansigan
- Department of Chemistry, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Skinner JT, Yankeelov TE, Peterson TE, Does MD. Comparison of dynamic contrast-enhanced MRI and quantitative SPECT in a rat glioma model. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 7:494-500. [PMID: 22991315 DOI: 10.1002/cmmi.1479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pharmacokinetic modeling of dynamic contrast-enhanced (DCE) MRI data provides measures of the extracellular-extravascular volume fraction (v(e) ) and the volume transfer constant (K(trans) ) in a given tissue. These parameter estimates may be biased, however, by confounding issues such as contrast agent and tissue water dynamics, or assumptions of vascularization and perfusion made by the commonly used model. In contrast to MRI, radiotracer imaging with SPECT is insensitive to water dynamics. A quantitative dual-isotope SPECT technique was developed to obtain an estimate of v(e) in a rat glioma model for comparison with the corresponding estimates obtained using DCE-MRI with a vascular input function and reference region model. Both DCE-MRI methods produced consistently larger estimates of v(e) in comparison to the SPECT estimates, and several experimental sources were postulated to contribute to these differences.
Collapse
Affiliation(s)
- Jack T Skinner
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232-2310, USA
| | | | | | | |
Collapse
|
14
|
Martinez-Boubeta C, Balcells L, Cristòfol R, Sanfeliu C, Rodríguez E, Weissleder R, Lope-Piedrafita S, Simeonidis K, Angelakeris M, Sandiumenge F, Calleja A, Casas L, Monty C, Martínez B. Self-assembled multifunctional Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 6:362-70. [DOI: 10.1016/j.nano.2009.09.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 11/30/2022]
|
15
|
Bouzier-Sore AK, Ribot E, Bouchaud V, Miraux S, Duguet E, Mornet S, Clofent-Sanchez G, Franconi JM, Voisin P. Nanoparticle phagocytosis and cellular stress: involvement in cellular imaging and in gene therapy against glioma. NMR IN BIOMEDICINE 2010; 23:88-96. [PMID: 19795366 DOI: 10.1002/nbm.1434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In gene therapy against glioma, targeting tumoral tissue is not an easy task. We used the tumor infiltrating property of microglia in this study. These cells are well adapted to this therapy since they can phagocyte nanoparticles and allow their visualization by MRI. Indeed, while many studies have used transfected microglia containing a suicide gene and other internalized nanoparticles to visualize microglia, none have combined both approaches during gene therapy. Microglia cells were transfected with the TK-GFP gene under the control of the HSP(70) promoter. First, the possible cellular stress induced by nanoparticle internalization was checked to avoid a non-specific activation of the suicide gene. Then, MR images were obtained on tubes containing microglia loaded with superparamagnetic nanoparticles (VUSPIO) to characterize their MR properties, as well as their potential to track cells in vivo. VUSPIO were efficiently internalized by microglia, were found non-toxic and their internalization did not induce any cellular stress. VUSPIO relaxivity r(2) was 224 mM(-1).s(-1). Such results could generate a very high contrast between loaded and unloaded cells on T(2)-weighted images. The intracellular presence of VUSPIO does not prevent suicide gene activity, since TK is expressed in vitro and functional in vivo. It allows MRI detection of gene modified macrophages during cell therapy strategies.
Collapse
|
16
|
Stamatatos TC, Christou G. Azide groups in higher oxidation state manganese cluster chemistry: from structural aesthetics to single-molecule magnets. Inorg Chem 2009; 48:3308-22. [PMID: 19364123 DOI: 10.1021/ic801217j] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This Forum Article overviews the recent amalgamation of two long-established areas, manganese/oxo coordination cluster chemistry involving the higher Mn(II)/Mn(IV) oxidation states and transition-metal azide (N(3)(-)) chemistry. The combination of azide and alkoxide- or carboxylate-containing ligands in Mn chemistry has led to a variety of new polynuclear clusters, high-spin molecules, and single-molecule magnets, with metal nuclearities ranging from Mn(4) to Mn(32) and with ground-state spin values as large as S = 83/2. The organic bridging/chelating ligands are discussed separately as follows: (i) pyridyl alkoxides [the anions of 2-(hydroxymethyl)pyridine (hmpH), 2,6-pyridinedimethanol (pdmH(2)), and the gem-diol form of di-2-pyridyl ketone (dpkdH(2))]; (ii) non-pyridyl alkoxides [the anions of 1,1,1-tris(hydroxymethyl)ethane (thmeH(3)), triethanolamine (teaH(3)), and N-methyldiethanolamine (mdaH(2))]; (iii) other alcohols [the anions of 2,6-dihydroxymethyl-4-methylphenol (LH(3)) and Schiff bases]; (iv) pyridyl monoximes/dioximes [the anions of methyl-2-pyridyl ketone oxime (mpkoH), phenyl-2-pyridyl ketone oxime (ppkoH), and 2,6-diacetylpyridine dioxime (dapdoH(2))]; (v) non-pyridyl oximes [the anions of salicylaldoxime (saoH(2)) and its derivatives R-saoH(2)]. The large structural diversity of the resulting complexes stems from the combined ability of the azide and organic ligands to adopt a variety of ligation and bridging modes. The combined work demonstrates the synthetic novelty that arises when azide is used in conjunction with alcohol-based chelates, the aesthetic beauty of the resulting molecules, and the often fascinating magnetic properties that these compounds possess. This continues to emphasize the extensive and remarkable ability of Mn chemistry to satisfy a variety of different tastes.
Collapse
|
17
|
Bertin A, Steibel J, Michou-Gallani AI, Gallani JL, Felder-Flesch D. Development of a Dendritic Manganese-Enhanced Magnetic Resonance Imaging (MEMRI) Contrast Agent: Synthesis, Toxicity (in Vitro) and Relaxivity (in Vitro, in Vivo) Studies. Bioconjug Chem 2009; 20:760-7. [DOI: 10.1021/bc8004683] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annabelle Bertin
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS/ULP 7504, 23 rue du Lœss BP 43, 67034 Strasbourg Cedex 2, France, Laboratoire d’Imagerie et de Neurosciences Cognitives, UMR CNRS/ULP 7191, 12 rue Goethe, 67000 Strasbourg, France, and siRNA Therapeutics, NIBR Biologics Center, Novartis Institutes for Biomedical Research, Inc., 4002 Basel, Switzerland
| | - Jérôme Steibel
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS/ULP 7504, 23 rue du Lœss BP 43, 67034 Strasbourg Cedex 2, France, Laboratoire d’Imagerie et de Neurosciences Cognitives, UMR CNRS/ULP 7191, 12 rue Goethe, 67000 Strasbourg, France, and siRNA Therapeutics, NIBR Biologics Center, Novartis Institutes for Biomedical Research, Inc., 4002 Basel, Switzerland
| | - Anne-Isabelle Michou-Gallani
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS/ULP 7504, 23 rue du Lœss BP 43, 67034 Strasbourg Cedex 2, France, Laboratoire d’Imagerie et de Neurosciences Cognitives, UMR CNRS/ULP 7191, 12 rue Goethe, 67000 Strasbourg, France, and siRNA Therapeutics, NIBR Biologics Center, Novartis Institutes for Biomedical Research, Inc., 4002 Basel, Switzerland
| | - Jean-Louis Gallani
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS/ULP 7504, 23 rue du Lœss BP 43, 67034 Strasbourg Cedex 2, France, Laboratoire d’Imagerie et de Neurosciences Cognitives, UMR CNRS/ULP 7191, 12 rue Goethe, 67000 Strasbourg, France, and siRNA Therapeutics, NIBR Biologics Center, Novartis Institutes for Biomedical Research, Inc., 4002 Basel, Switzerland
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS/ULP 7504, 23 rue du Lœss BP 43, 67034 Strasbourg Cedex 2, France, Laboratoire d’Imagerie et de Neurosciences Cognitives, UMR CNRS/ULP 7191, 12 rue Goethe, 67000 Strasbourg, France, and siRNA Therapeutics, NIBR Biologics Center, Novartis Institutes for Biomedical Research, Inc., 4002 Basel, Switzerland
| |
Collapse
|
18
|
Murugesu M, Takahashi S, Wilson A, Abboud KA, Wernsdorfer W, Hill S, Christou G. Large Mn25 Single-Molecule Magnet with Spin S = 51/2: Magnetic and High-Frequency Electron Paramagnetic Resonance Spectroscopic Characterization of a Giant Spin State. Inorg Chem 2008; 47:9459-70. [DOI: 10.1021/ic801142p] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Muralee Murugesu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, Department of Physics, University of Florida, P.O. Box 118440, Gainesville, Florida 32611, and Institut Néel, CNRS, BP 166, 25 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Susumu Takahashi
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, Department of Physics, University of Florida, P.O. Box 118440, Gainesville, Florida 32611, and Institut Néel, CNRS, BP 166, 25 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Anthony Wilson
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, Department of Physics, University of Florida, P.O. Box 118440, Gainesville, Florida 32611, and Institut Néel, CNRS, BP 166, 25 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Khalil A. Abboud
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, Department of Physics, University of Florida, P.O. Box 118440, Gainesville, Florida 32611, and Institut Néel, CNRS, BP 166, 25 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Wolfgang Wernsdorfer
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, Department of Physics, University of Florida, P.O. Box 118440, Gainesville, Florida 32611, and Institut Néel, CNRS, BP 166, 25 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Stephen Hill
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, Department of Physics, University of Florida, P.O. Box 118440, Gainesville, Florida 32611, and Institut Néel, CNRS, BP 166, 25 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - George Christou
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, Department of Physics, University of Florida, P.O. Box 118440, Gainesville, Florida 32611, and Institut Néel, CNRS, BP 166, 25 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| |
Collapse
|
19
|
Stavila V, Allali M, Canaple L, Stortz Y, Franc C, Maurin P, Beuf O, Dufay O, Samarut J, Janier M, Hasserodt J. Significant relaxivity gap between a low-spin and a high-spin iron(ii) complex of structural similarity: an attractive off–on system for the potential design of responsive MRI probes. NEW J CHEM 2008. [DOI: 10.1039/b715254j] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Cage B, Russek SE, Shoemaker R, Barker AJ, Stoldt C, Ramachandaran V, Dalal NS. The utility of the single-molecule magnet Fe8 as a magnetic resonance imaging contrast agent over a broad range of concentration. Polyhedron 2007. [DOI: 10.1016/j.poly.2006.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Li Z, Li W, Li X, Pei F, Wang X, Lei H. Mn(II)-monosubstituted polyoxometalates as candidates for contrast agents in magnetic resonance imaging. J Inorg Biochem 2007; 101:1036-42. [PMID: 17524483 DOI: 10.1016/j.jinorgbio.2007.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 01/31/2023]
Abstract
Two mono-substituted manganese polyoxometalates, K(6)MnSiW(11)O(39) (MnSiW(11)) and K(8)MnP(2)W(17)O(61) (MnP(2)W(17)), have been evaluated by in vivo and in vitro experiments as the candidates of potential tissue-specific contrast agents for magnetic resonance imaging (MRI). T1-relaxivities of 12.1mM(-1)s(-1) for MnSiW(11) and 4.7 mM(-1)s(-1) for MnP(2)W(17) (400 MHz, 25 degrees C) were higher than or similar to that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in BSA and hTf solutions were also reported. After administration of MnSiW(11) and MnP(2)W(17) to Wistar rats, MR imaging showed longer and remarkable enhancement in rat liver and favorable renal excretion capability. The signal intensity increased by 74.0+/-4.9% for the liver during the whole imaging period (90 min) and by 67.2+/-5.3% for kidney within 20-70 min after injection at 40+/-3 micromol kg(-1) dose for MnSiW(11). MnP(2)W(17) induced 71.5+/-15.1% enhancement for the liver in 10-45 min range and 73.1+/-3.2% enhancement for kidney within 5-40 min after injection at 39+/-3 micromol kg(-1) dose. In vitro and in vivo study showed MnSiW(11) and MnP(2)W(17) being favorable candidates as the tissue-specific contrast agents for MRI.
Collapse
Affiliation(s)
- Zhongfeng Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Taboada E, Rodríguez E, Roig A, Oró J, Roch A, Muller RN. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:4583-8. [PMID: 17355158 DOI: 10.1021/la063415s] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Here we report on the synthesis of ultrasmall gamma-Fe2O3 nanoparticles (5 nm) presenting a very narrow particle size distribution and an exceptionally high saturation magnetization. The synthesis has been carried out by decomposition of an iron organometallic precursor in an organic medium. The particles were subsequently stabilized in an aqueous solution at physiological pH, and the colloidal dispersions have been thoroughly characterized by complementary techniques. Particular attention has been given to the assessment of the mean particle size by transmission electron microscopy, X-ray diffraction, dynamic light scattering, magnetic, and relaxometric measurements. The good agreement found between the different techniques points to a very narrow particle size distribution. Regarding the magnetic properties, the particles are superparamagnetic at room temperature and present an unusually high saturation magnetization value. In addition, we describe the potential of these particles as specific positive contrast agents for magnetic resonance molecular imaging.
Collapse
Affiliation(s)
- Elena Taboada
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Esfera de la UAB, 08193 Bellaterra, Catalunya, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Rodríguez E, Simoes RV, Roig A, Molins E, Nedelko N, Slawska-Waniewska A, Aime S, Arús C, Cabañas ME, Sanfeliu C, Cerdán S, García-Martín ML. An iron-based T 1 contrast agent made of iron-phosphate complexes: In vitro and in vivo studies. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2007; 20:27-37. [PMID: 17268782 DOI: 10.1007/s10334-006-0066-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 12/11/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
A new iron-based T1 contrast agent consisting of a complex of iron ions coordinated to phosphate and amine ligands (Fe(phos) in short) has been characterized by spectroscopic and magnetic measurements. NMR relaxation studies showed r1 values to be dependent on the phosphate salt concentration, K2HPO4, present in the medium. r1 reaches a maximum value of 2.5 mM(-1) s(-1) for measurements carried out at 7 T and 298 K. 31P MRS, Mössbauer spectroscopy and magnetic measurements of Fe(phos) solutions suggest paramagnetic Fe3+ ions present in the studied iron-phosphate complex. In vitro and in vivo toxicity experiments with C6 cells and CD1 mice, respectively, demonstrated lack of toxicity for Fe(phos) at the highest dose tested in the MRI experiments (12 mM iron for C6 cells and 0.32 mmol iron/kg for mice). Finally, T1 weighted images of brain tumours in mice have shown positive contrast enhancement of Fe(phos) for tumour afflicted regions in the brain.
Collapse
Affiliation(s)
- Elisenda Rodríguez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Botar B, Kögerler P, Hill CL. A Nanoring−Nanosphere Molecule, {Mo214V30}: Pushing the Boundaries of Controllable Inorganic Structural Organization at the Molecular Level. J Am Chem Soc 2006; 128:5336-7. [PMID: 16620093 DOI: 10.1021/ja060886s] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A controlled, Raman-monitored chemical reduction of a molybdate and vanadate mixture affords a new type of molybdenum-oxide-based cluster showing an unprecedented level of inorganic structural organization. The cluster incorporates two nanosized substructures (a ring and a sphere) in an open clam-like assembly. Multiple methods indicate that the nanoring contains delocalized electrons and the nanosphere contains localized but interacting electrons.
Collapse
Affiliation(s)
- Bogdan Botar
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|