1
|
French A, Ali Agha M, Mitra A, Yanagawa A, Sellier MJ, Marion-Poll F. Drosophila Bitter Taste(s). Front Integr Neurosci 2015; 9:58. [PMID: 26635553 PMCID: PMC4658422 DOI: 10.3389/fnint.2015.00058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/30/2015] [Indexed: 11/13/2022] Open
Abstract
Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called “bitter”. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different “categories” of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus considerably extending the initial definition of “bitter” tasting.
Collapse
Affiliation(s)
- Alice French
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Moutaz Ali Agha
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Aniruddha Mitra
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Aya Yanagawa
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France ; Research Institute for Sustainable Humanosphere, Kyoto University Uji City, Japan
| | - Marie-Jeanne Sellier
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Frédéric Marion-Poll
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France ; AgroParisTech Paris, France
| |
Collapse
|
2
|
|
3
|
Gaudry Q, Kristan WB. Decision points: the factors influencing the decision to feed in the medicinal leech. Front Neurosci 2012; 6:101. [PMID: 22783162 PMCID: PMC3390556 DOI: 10.3389/fnins.2012.00101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/18/2012] [Indexed: 11/13/2022] Open
Abstract
The decision to feed is a complex task that requires making several small independent choices. Am I hungry? Where do I look for food? Is there something better I'd rather be doing? When should I stop? With all of these questions, it is no wonder that decisions about feeding depend on several sensory modalities and that the influences of these sensory systems would be evident throughout the nervous system. The leech is uniquely well suited for studying these complicated questions due to its relatively simple nervous system, its exceptionally well-characterized behaviors and neural circuits, and the ease with which one can employ semi-intact preparations to study the link between physiology and decision-making. We will begin this review by discussing the cellular substrates that govern the decision to initiate and to terminate a bout of feeding. We will then discuss how feeding temporarily blocks competing behaviors from being expressed while the animal continues to feed. Then we will review what is currently known about how feeding affects long-term behavioral choices of the leech. Finally, we conclude with a short discussion of the advantages of the leech's decision-making circuit's design and how this design might be applicable to all decision circuits.
Collapse
Affiliation(s)
- Quentin Gaudry
- Department of Neurobiology, Harvard Medical School Boston, MA, USA
| | | |
Collapse
|
4
|
Glendinning JI. How do predators cope with chemically defended foods? THE BIOLOGICAL BULLETIN 2007; 213:252-266. [PMID: 18083965 DOI: 10.2307/25066643] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many prey species (including plants) deter predators with defensive chemicals. These defensive chemicals act by rendering the prey's tissues noxious, toxic, or both. Here, I explore how predators cope with the presence of these chemicals in their diet. First, I describe the chemosensory mechanisms by which predators (including herbivores) detect defensive chemicals. Second, I review the mechanisms by which predators either avoid or tolerate defensive chemicals in prey. Third, I examine how effectively free-ranging predators can overcome the chemical defenses of prey. The available evidence indicates that predators have mixed success overcoming these defenses. This conclusion is based on reports of free-ranging predators rejecting unpalatable but harmless prey, or voluntarily ingesting toxic prey.
Collapse
Affiliation(s)
- John I Glendinning
- Department of Biological Sciences, Barnard College, Columbia University, 3009 Broadway, New York, New York 10027, USA.
| |
Collapse
|
5
|
de Brito Sanchez MG, Giurfa M, de Paula Mota TR, Gauthier M. Electrophysiological and behavioural characterization of gustatory responses to antennal ‘bitter’ taste in honeybees. Eur J Neurosci 2005; 22:3161-70. [PMID: 16367782 DOI: 10.1111/j.1460-9568.2005.04516.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We combined behavioural and electrophysiological experiments to study whether bitter taste is perceived at the antennal level in honeybees, Apis mellifera. Our behavioural studies showed that neither quinine nor salicin delivered at one antenna at different concentrations induced a retraction of the proboscis once it was extended in response to 1 M sucrose solution delivered to the opposite antenna. Bees that extended massively their proboscis to 1 M sucrose responded only partially when stimulated with a mixture of 1 M sucrose and 100 mM quinine. The mixture of 1 m sucrose and 100 mM salicin had no such suppressive effect. No behavioural suppression was found for mixtures of salt solution and either bitter substance. Electrophysiological recordings of taste sensillae at the antennal tip revealed sensillae that responded specifically either to sucrose or salt solutions, but none responded to the bitter substances quinine and salicin at the different concentrations tested. The electrophysiological responses of sensillae to 15 mM sucrose solution were inhibited by a mixture of 15 mM sucrose and 0.1 mM quinine, but not by a mixture of 15 mM sucrose and 0.1 mM salicin. The responses of sensillae to 50 mM NaCl were reduced by a mixture of 50 mm NaCl and 1 mM quinine but not by a mixture of 50 mM NaCl and 1 mM salicin. We concluded that no receptor cells for the bitter substances tested, exist at the level of the antennal tip of the honeybee and that antennal bitter taste is not represented as a separate perceptual quality.
Collapse
Affiliation(s)
- Maria Gabriela de Brito Sanchez
- Centre de Recherches sur la Cognition Animale (UMR 5169), CNRS--Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 4, France.
| | | | | | | |
Collapse
|
6
|
Kristan WB, Calabrese RL, Friesen WO. Neuronal control of leech behavior. Prog Neurobiol 2005; 76:279-327. [PMID: 16260077 DOI: 10.1016/j.pneurobio.2005.09.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 08/23/2005] [Accepted: 09/26/2005] [Indexed: 11/27/2022]
Abstract
The medicinal leech has served as an important experimental preparation for neuroscience research since the late 19th century. Initial anatomical and developmental studies dating back more than 100 years ago were followed by behavioral and electrophysiological investigations in the first half of the 20th century. More recently, intense studies of the neuronal mechanisms underlying leech movements have resulted in detailed descriptions of six behaviors described in this review; namely, heartbeat, local bending, shortening, swimming, crawling, and feeding. Neuroethological studies in leeches are particularly tractable because the CNS is distributed and metameric, with only 400 identifiable, mostly paired neurons in segmental ganglia. An interesting, yet limited, set of discrete movements allows students of leech behavior not only to describe the underlying neuronal circuits, but also interactions among circuits and behaviors. This review provides descriptions of six behaviors including their origins within neuronal circuits, their modification by feedback loops and neuromodulators, and interactions between circuits underlying with these behaviors.
Collapse
Affiliation(s)
- William B Kristan
- Section of Neurobiology, Division of Biological Sciences, 9500 Gilman Dr., University of California, San Diego, La Jolla, CA 92093-0357, USA
| | | | | |
Collapse
|
7
|
Grosvenor W, Kaulin Y, Spielman AI, Bayley DL, Kalinoski DL, Teeter JH, Brand JG. Biochemical enrichment and biophysical characterization of a taste receptor for L-arginine from the catfish, Ictalurus puntatus. BMC Neurosci 2004; 5:25. [PMID: 15282034 PMCID: PMC511074 DOI: 10.1186/1471-2202-5-25] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 07/28/2004] [Indexed: 11/16/2022] Open
Abstract
Background The channel catfish, Ictalurus punctatus, is invested with a high density of cutaneous taste receptors, particularly on the barbel appendages. Many of these receptors are sensitive to selected amino acids, one of these being a receptor for L-arginine (L-Arg). Previous neurophysiological and biophysical studies suggested that this taste receptor is coupled directly to a cation channel and behaves as a ligand-gated ion channel receptor (LGICR). Earlier studies demonstrated that two lectins, Ricinus communis agglutinin I (RCA-I) and Phaseolus vulgaris Erythroagglutinin (PHA-E), inhibited the binding of L-Arg to its presumed receptor sites, and that PHA-E inhibited the L-Arg-stimulated ion conductance of barbel membranes reconstituted into lipid bilayers. Results Both PHA-E and RCA-I almost exclusively labeled an 82–84 kDa protein band of an SDS-PAGE of solubilized barbel taste epithelial membranes. Further, both rhodamine-conjugated RCA-I and polyclonal antibodies raised to the 82–84 kDa electroeluted peptides labeled the apical region of catfish taste buds. Because of the specificity shown by RCA-I, lectin affinity was chosen as the first of a three-step procedure designed to enrich the presumed LGICR for L-Arg. Purified and CHAPS-solubilized taste epithelial membrane proteins were subjected successively to (1), lectin (RCA-I) affinity; (2), gel filtration (Sephacryl S-300HR); and (3), ion exchange chromatography. All fractions from each chromatography step were evaluated for L-Arg-induced ion channel activity by reconstituting each fraction into a lipid bilayer. Active fractions demonstrated L-Arg-induced channel activity that was inhibited by D-arginine (D-Arg) with kinetics nearly identical to those reported earlier for L-Arg-stimulated ion channels of native barbel membranes reconstituted into lipid bilayers. After the final enrichment step, SDS-PAGE of the active ion channel protein fraction revealed a single band at 82–84 kDa which may be interpreted as a component of a multimeric receptor/channel complex. Conclusions The data are consistent with the supposition that the L-Arg receptor is a LGICR. This taste receptor remains active during biochemical enrichment procedures. This is the first report of enrichment of an active LGICR from the taste system of vertebrata.
Collapse
Affiliation(s)
| | - Yuri Kaulin
- Monell Chemical Senses Center, Philadelphia, PA 19104-3308, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
- Current Address: Department of Pathology, Anatomy & Cell Biology; Thomas Jefferson University; Philadelphia, PA 19107-6799, USA
| | | | | | - D Lynn Kalinoski
- Monell Chemical Senses Center, Philadelphia, PA 19104-3308, USA
- Current Address: UCSD Thornton Hospital, San Diego, CA 92037, USA
| | - John H Teeter
- Monell Chemical Senses Center, Philadelphia, PA 19104-3308, USA
- Institute of Neurological Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph G Brand
- Monell Chemical Senses Center, Philadelphia, PA 19104-3308, USA
- Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Meunier N, Marion-Poll F, Rospars JP, Tanimura T. Peripheral coding of bitter taste in Drosophila. JOURNAL OF NEUROBIOLOGY 2003; 56:139-52. [PMID: 12838579 DOI: 10.1002/neu.10235] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Taste receptors play a crucial role in detecting the presence of bitter compounds such as alkaloids, and help to prevent the ingestion of toxic food. In Drosophila, we show for the first time that several taste sensilla on the prothoracic legs detect bitter compounds both through the activation of specific taste neurons but also through inhibition of taste neurons activated by sugars and water. Each sensillum usually houses a cluster of four taste neurons classified according to their best stimulus (S for sugar, W for Water, L1 and L2 for salts). Using a new statistical approach based on the analysis of interspike intervals, we show that bitter compounds activate the L2 cell. Bitter-activated L2 cells were excited with a latency of at least 50 ms. Their sensitivity to bitter compounds was different between sensilla, suggesting that specific receptors to bitter compounds are differentially expressed among L2 cells. When presented in mixtures, bitter compounds inhibited the responses of S and W, but not the L1 cell. The inhibition was effective even in sensilla where bitter compounds did not activate the L2 cell, indicating that bitter compounds directly interact with the S and W cells. Interestingly, this inhibition occurred with latencies similar to the excitation of bitter-activated L2 cells. It suggests that the inhibition in the W and S cells shares similar transduction pathways with the excitation in the L2 cells. Combined with molecular approaches, the results presented here should provide a physiological basis to understand how bitter compounds are detected and discriminated.
Collapse
Affiliation(s)
- Nicolas Meunier
- INRA Station de Phytopharmacie et Médiateurs Chimiques, 78026 Versailles Cedex, France.
| | | | | | | |
Collapse
|