1
|
Li H, Gao Z, Zhang S. Localization of trypsin, chymotrypsin and elastase in the digestive tract of amphioxus Branchiostoma japonicum with implications to the origin of vertebrate pancreas. Tissue Cell 2022; 79:101943. [DOI: 10.1016/j.tice.2022.101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
|
2
|
Yoon KA, Kim WJ, Lee S, Yang HS, Lee BH, Lee SH. Comparative analyses of the venom components in the salivary gland transcriptomes and saliva proteomes of some heteropteran insects. INSECT SCIENCE 2022; 29:411-429. [PMID: 34296820 DOI: 10.1111/1744-7917.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Salivary gland-specific transcriptomes of nine heteropteran insects with distinct feeding strategies (predaceous, hematophagous, and phytophagous) were analyzed and annotated to compare and identify the venom components as well as their expression profiles. The transcriptional abundance of venom genes was verified via quantitative real-time PCR. Hierarchical clustering of 30 representative differentially expressed venom genes from the nine heteropteran species revealed unique groups of salivary gland-specific genes depending on their feeding strategy. The commonly transcribed genes included a paralytic neurotoxin (arginine kinase), digestive enzymes (cathepsin and serine protease), an anti-inflammatory protein (cystatin), hexamerin, and an odorant binding protein. Both predaceous and hematophagous (bed bug) heteropteran species showed relatively higher transcription levels of genes encoding proteins involved in proteolysis and cytolysis, whereas phytophagous heteropterans exhibited little or no expression of these genes, but had a high expression of vitellogenin, a multifunctional allergen. Saliva proteomes from four representative species were also analyzed. All venom proteins identified via saliva proteome analysis were annotated using salivary gland transcriptome data. The proteomic expression profiles of venom proteins were in good agreement with the salivary gland-specific transcriptomic profiles. Our results indicate that profiling of the salivary gland transcriptome provides important information on the composition and evolutionary features of venoms depending on their feeding strategy.
Collapse
Affiliation(s)
- Kyungjae Andrew Yoon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | - Seungki Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Hee-Sun Yang
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Si Hyeock Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Department of Agricultural Biology, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Abramova A, Lind U, Blomberg A, Rosenblad MA. The complex barnacle perfume: identification of waterborne pheromone homologues in Balanus improvisus and their differential expression during settlement. BIOFOULING 2019; 35:416-428. [PMID: 31142149 DOI: 10.1080/08927014.2019.1602123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
A key question in barnacle biology is the nature of cues that induce gregarious settlement. One of the characterised cues is the waterborne settlement pheromone (WSP). This study aimed to identify WSP homologues in Balanus improvisus and to investigate their expression during settlement. Six WSP homologues were identified, all containing an N-terminal signal peptide, a conserved core region, and a variable C-terminus comprising several -GR- and -HDDH- motifs. The B. improvisus WSP homologues were expressed in all settlement stages but showed different expression patterns. The homologue most similar to the B. amphitrite WSP was the most abundant and was constantly expressed during settlement. In contrast, several of the other WSP homologues showed the greatest expression in the juvenile stage. The presence of several WSP homologues suggests the existence of a pheromone mix, where con-specificity might be determined by a combination of sequence characteristics and the concentration of the individual components.
Collapse
Affiliation(s)
- Anna Abramova
- a Department of Chemistry and Molecular Biology , University of Gothenburg , Gothenburg , Sweden
| | - Ulrika Lind
- a Department of Chemistry and Molecular Biology , University of Gothenburg , Gothenburg , Sweden
| | - Anders Blomberg
- a Department of Chemistry and Molecular Biology , University of Gothenburg , Gothenburg , Sweden
| | - Magnus Alm Rosenblad
- a Department of Chemistry and Molecular Biology , University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
4
|
Walker AA, Madio B, Jin J, Undheim EAB, Fry BG, King GF. Melt With This Kiss: Paralyzing and Liquefying Venom of The Assassin Bug Pristhesancus plagipennis (Hemiptera: Reduviidae). Mol Cell Proteomics 2017; 16:552-566. [PMID: 28130397 DOI: 10.1074/mcp.m116.063321] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/04/2017] [Indexed: 11/06/2022] Open
Abstract
Assassin bugs (Hemiptera: Heteroptera: Reduviidae) are venomous insects, most of which prey on invertebrates. Assassin bug venom has features in common with venoms from other animals, such as paralyzing and lethal activity when injected, and a molecular composition that includes disulfide-rich peptide neurotoxins. Uniquely, this venom also has strong liquefying activity that has been hypothesized to facilitate feeding through the narrow channel of the proboscis-a structure inherited from sap- and phloem-feeding phytophagous hemipterans and adapted during the evolution of Heteroptera into a fang and feeding structure. However, further understanding of the function of assassin bug venom is impeded by the lack of proteomic studies detailing its molecular composition.By using a combined transcriptomic/proteomic approach, we show that the venom proteome of the harpactorine assassin bug Pristhesancus plagipennis includes a complex suite of >100 proteins comprising disulfide-rich peptides, CUB domain proteins, cystatins, putative cytolytic toxins, triabin-like protein, odorant-binding protein, S1 proteases, catabolic enzymes, putative nutrient-binding proteins, plus eight families of proteins without homology to characterized proteins. S1 proteases, CUB domain proteins, putative cytolytic toxins, and other novel proteins in the 10-16-kDa mass range, were the most abundant venom components. Thus, in addition to putative neurotoxins, assassin bug venom includes a high proportion of enzymatic and cytolytic venom components likely to be well suited to tissue liquefaction. Our results also provide insight into the trophic switch to blood-feeding by the kissing bugs (Reduviidae: Triatominae). Although some protein families such as triabins occur in the venoms of both predaceous and blood-feeding reduviids, the composition of venoms produced by these two groups is revealed to differ markedly. These results provide insights into the venom evolution in the insect suborder Heteroptera.
Collapse
Affiliation(s)
| | - Bruno Madio
- From the ‡Institute for Molecular Bioscience
| | - Jiayi Jin
- From the ‡Institute for Molecular Bioscience
| | | | - Bryan G Fry
- ‖School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | |
Collapse
|
5
|
Zhang G, He LS, Him Wong Y, Xu Y, Zhang Y, Qian PY. p38 MAPK regulates PKAα and CUB-serine protease in Amphibalanus amphitrite cyprids. Sci Rep 2015; 5:14767. [PMID: 26434953 PMCID: PMC4593178 DOI: 10.1038/srep14767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 09/07/2015] [Indexed: 02/03/2023] Open
Abstract
The MKK3-p38 MAPK pathway has been reported to mediate larval settlement in Amphibalanus (=Balanus) amphitrite. To clarify the underlying molecular mechanism, we applied label-free proteomics to analyze changes in the proteome of cyprids treated with a p38 MAPK inhibitor. The results showed that the expression levels of 80 proteins were significantly modified (p < 0.05). These differentially expressed proteins were assigned to 15 functional groups according to the KOG database and 9 pathways were significantly enriched. Further analysis revealed that p38 MAPK might regulate the energy supply and metamorphosis. Two potential regulatory proteins, CUB-serine protease and PKAα, were both down-regulated in expression. CUB-serine protease localized to postaxial seta 2 and 3, as well as the 4 subterminal sensilla in the antennule. Importantly, it was co-localized with the neuron transmitter serotonin in the sections, suggesting that the CUB-serine protease was present in the neural system. PKAα was highly expressed during the cyprid and juvenile stages, and it was co-localized with phospho-p38 MAPK (pp38 MAPK) to the cement gland, suggesting that PKAα might have some functions in cement glands. Overall, p38 MAPK might regulate multiple functions in A. amphitrite cyprids, including the energy supply, metamorphosis, neural system and cement glands.
Collapse
Affiliation(s)
- Gen Zhang
- Environmental Science Programs and Division of Life Science, School of Science, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Li-Sheng He
- Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Science, No. 62, Fenghuang Road, Sanya, Hainan, P. R. China, 572000
| | - Yue Him Wong
- Environmental Science Programs and Division of Life Science, School of Science, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, P. R. China, 518060
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, P. R. China, 518060
| | - Pei-Yuan Qian
- Environmental Science Programs and Division of Life Science, School of Science, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
6
|
Comparative transcriptomic analysis provides insights into the molecular basis of brachyurization and adaptation to benthic lifestyle in Eriocheir sinensis. Gene 2015; 558:88-98. [DOI: 10.1016/j.gene.2014.12.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 01/29/2023]
|
7
|
Groh-Lunow KC, Getahun MN, Grosse-Wilde E, Hansson BS. Expression of ionotropic receptors in terrestrial hermit crab's olfactory sensory neurons. Front Cell Neurosci 2015; 8:448. [PMID: 25698921 PMCID: PMC4313712 DOI: 10.3389/fncel.2014.00448] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/12/2014] [Indexed: 01/11/2023] Open
Abstract
Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs) as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs) has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs.
Collapse
Affiliation(s)
- Katrin C Groh-Lunow
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Merid N Getahun
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| |
Collapse
|
8
|
Striped murrel S1 family serine protease: immune characterization, antibacterial property and enzyme activities. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0410-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Tuchina O, Groh KC, Talarico G, Müller CHG, Wielsch N, Hupfer Y, Svatoš A, Grosse-Wilde E, Hansson BS. Morphology and histochemistry of the aesthetasc-associated epidermal glands in terrestrial hermit crabs of the genus Coenobita (Decapoda: Paguroidea). PLoS One 2014; 9:e96430. [PMID: 24805352 PMCID: PMC4013018 DOI: 10.1371/journal.pone.0096430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/04/2014] [Indexed: 01/05/2023] Open
Abstract
Crustaceans have successfully adapted to a variety of environments including fresh- and saltwater as well as land. Transition from an aquatic to a terrestrial lifestyle required adaptations of the sensory equipment of an animal, particularly in olfaction, where the stimulus itself changes from hydrophilic to mainly hydrophobic, air-borne molecules. Hermit crabs Coenobita spp. (Anomura, Coenobitidae) have adapted to a fully terrestrial lifestyle as adults and have been shown to rely on olfaction in order to detect distant food items. We observed that the specialized olfactory sensilla in Coenobita, named aesthetascs, are immersed in a layer of mucous-like substance. We hypothesized that the mucous is produced by antennal glands and affects functioning of the aesthetascs. Using various microscopic and histochemical techniques we proved that the mucous is produced by aesthetasc-associated epidermal glands, which we consider to be modified rosette-type aesthetasc tegumental glands known from aquatic decapods. These epidermal glands in Coenobita are multicellular exocrine organs of the recto-canal type with tubulo-acinar arrangement of the secretory cells. Two distinct populations of secretory cells were clearly distinguishable with light and electron microscopy. At least part of the secretory cells contains specific enzymes, CUB-serine proteases, which are likely to be secreted on the surface of the aesthetasc pad and take part in antimicrobial defense. Proteomic analysis of the glandular tissue corroborates the idea that the secretions of the aesthetasc-associated epidermal glands are involved in immune responses. We propose that the mucous covering the aesthetascs in Coenobita takes part in antimicrobial defense and at the same time provides the moisture essential for odor perception in terrestrial hermit crabs. We conclude that the morphological modifications of the aesthetasc-associated epidermal glands as well as the functional characteristics of their secretions are important adaptations to a terrestrial lifestyle.
Collapse
Affiliation(s)
- Oksana Tuchina
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Katrin C. Groh
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Giovanni Talarico
- Department of Forensic Toxicology, Institute of Legal Medicine, University of Greifswald, Greifswald, Germany
| | - Carsten H. G. Müller
- Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt-University, Zoological Institute and Museum, Greifswald, Germany
- Department of Neuroscience, University of Arizona, Tucson, United States of America
| | - Natalie Wielsch
- Research Group of Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yvonne Hupfer
- Research Group of Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Aleš Svatoš
- Research Group of Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
10
|
Chen ZF, Zhang H, Wang H, Matsumura K, Wong YH, Ravasi T, Qian PY. Quantitative proteomics study of larval settlement in the Barnacle Balanus amphitrite. PLoS One 2014; 9:e88744. [PMID: 24551147 PMCID: PMC3923807 DOI: 10.1371/journal.pone.0088744] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/08/2014] [Indexed: 01/06/2023] Open
Abstract
Barnacles are major sessile components of the intertidal areas worldwide, and also one of the most dominant fouling organisms in fouling communities. Larval settlement has a crucial ecological effect not only on the distribution of the barnacle population but also intertidal community structures. However, the molecular mechanisms involved in the transition process from the larval to the juvenile stage remain largely unclear. In this study, we carried out comparative proteomic profiles of stage II nauplii, stage VI nauplii, cyprids, and juveniles of the barnacle Balanus amphitrite using label-free quantitative proteomics, followed by the measurement of the gene expression levels of candidate proteins. More than 700 proteins were identified at each stage; 80 were significantly up-regulated in cyprids and 95 in juveniles vs other stages. Specifically, proteins involved in energy and metabolism, the nervous system and signal transduction were significantly up-regulated in cyprids, whereas proteins involved in cytoskeletal remodeling, transcription and translation, cell proliferation and differentiation, and biomineralization were up-regulated in juveniles, consistent with changes associated with larval metamorphosis and tissue remodeling in juveniles. These findings provided molecular evidence for the morphological, physiological and biological changes that occur during the transition process from the larval to the juvenile stages in B. amphitrite.
Collapse
Affiliation(s)
- Zhang-Fan Chen
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huoming Zhang
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Hao Wang
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kiyotaka Matsumura
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yue Him Wong
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Timothy Ravasi
- Integrative Systems Biology Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
11
|
Song C, Cui Z, Liu Y, Li Q, Li X, Shi G, Wang C. Characterization and functional analysis of serine proteinase and serine proteinase homologue from the swimming crab Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2013; 35:231-239. [PMID: 23664866 DOI: 10.1016/j.fsi.2013.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/07/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
Serine proteases (SPs), with their homologues (SPHs), a family of multifunctional proteins, play a crucial role in innate immune system. In our present study, we made an appropriate correction: serine protease homologue PtcSPH (Li et al., [1]) obtained from the swimming crab Portunus trituberculatus was actually a serine protease and re-designated as PtcSP. Sequence analysis revealed PtcSP and PtSP (Li et al., [2]) might be encoded by the same genomic locus and generated by alternative splicing of the pre-mRNA. Eight exons were identified in genomic DNA sequence of PtcSP. A comprehensive phylogenetic analysis was made combined with our previous reports (Cui et al., [3]; Li et al., [1,2]). The result showed SPs and SPHs of P. trituberculatus had different origins in gene evolution. To further characterize the function(s) of proteins, the recombinant serine proteases or homologues were assayed for various biological functions: proteinase activity, antimicrobial activity and microorganisms binding activity. The recombinant protein PtcSP exhibited trypsin-like protease activity and antibacterial activity. PtSPH1 (Li et al., [2]) lacked proteolytic activity but displayed binding activity to yeast and the crab pathogenic bacterium, Vibrio alginolyticus. Further, the N-terminal clip domain of PtcSP had antibacterial activity and the C-terminal SP-like domain had trypsin-like protease activity.
Collapse
Affiliation(s)
- Chengwen Song
- EMBL, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Li Q, Cui Z, Liu Y, Wang S, Song C. Identification and characterization of two novel types of non-clip domain serine proteases (PtSP and PtSPH1) from cDNA haemocytes library of swimming crab Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2012; 32:683-692. [PMID: 22289714 DOI: 10.1016/j.fsi.2012.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 05/31/2023]
Abstract
In our previous studies, five serine proteases containing clip domain were characterized from the swimming crab Portunus trituberculatus. To further investigate the characterization and function of serine proteases, one serine protease (PtSP) and one serine protease homolog (PtSPH1) without clip domain were identified from haemocytes cDNA library in this paper. They both possessed an SP or SP-like domain at the C-terminal. In contrast to PtSP, absence of Ser catalytic residue resulted in the loss of serine protease activity of PtSPH1. Phylogenetic analysis suggested either SPs or SPHs might not have a single origin in gene evolution. Six introns presented in PtSP genomic DNA with one uncommon splice site (GG) was discovered at exon 1/intron 1 boundary region. Four introns with common splice sites were found in PtSPH1 genomic DNA. RT-PCR results showed that PtSP mRNA was mainly distributed in haemocytes, gill and eyestalk, whereas PtSPH1 transcript was mainly expressed in stomach. PtSP showed slight increase during the first 48 h compared to control groups except 8 h point after Micrococcus luteus challenge. However, significant up-regulation was observed in the expression level of PtSPH1 challenged by Gram-negative bacteria Vibrio alginolyticus, Gram-positive bacteria M. luteus and fungi Pichia pastoris during the first 48 h. It indicates that PtSPH1 might be more sensitive to microorganism challenges compared with PtSP.
Collapse
Affiliation(s)
- Qianqian Li
- EMBL, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | |
Collapse
|
13
|
Chen ZF, Matsumura K, Wang H, Arellano SM, Yan X, Alam I, Archer JAC, Bajic VB, Qian PY. Toward an understanding of the molecular mechanisms of barnacle larval settlement: a comparative transcriptomic approach. PLoS One 2011; 6:e22913. [PMID: 21829555 PMCID: PMC3146488 DOI: 10.1371/journal.pone.0022913] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/01/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The barnacle Balanus amphitrite is a globally distributed biofouler and a model species in intertidal ecology and larval settlement studies. However, a lack of genomic information has hindered the comprehensive elucidation of the molecular mechanisms coordinating its larval settlement. The pyrosequencing-based transcriptomic approach is thought to be useful to identify key molecular changes during larval settlement. METHODOLOGY AND PRINCIPAL FINDINGS Using 454 pyrosequencing, we collected totally 630,845 reads including 215,308 from the larval stages and 415,537 from the adults; 23,451 contigs were generated while 77,785 remained as singletons. We annotated 31,720 of the 92,322 predicted open reading frames, which matched hits in the NCBI NR database, and identified 7,954 putative genes that were differentially expressed between the larval and adult stages. Of these, several genes were further characterized with quantitative real-time PCR and in situ hybridization, revealing some key findings: 1) vitellogenin was uniquely expressed in late nauplius stage, suggesting it may be an energy source for the subsequent non-feeding cyprid stage; 2) the locations of mannose receptors suggested they may be involved in the sensory system of cyprids; 3) 20 kDa-cement protein homologues were expressed in the cyprid cement gland and probably function during attachment; and 4) receptor tyrosine kinases were expressed higher in cyprid stage and may be involved in signal perception during larval settlement. CONCLUSIONS Our results provide not only the basis of several new hypotheses about gene functions during larval settlement, but also the availability of this large transcriptome dataset in B. amphitrite for further exploration of larval settlement and developmental pathways in this important marine species.
Collapse
Affiliation(s)
- Zhang-Fan Chen
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kiyotaka Matsumura
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hao Wang
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shawn M. Arellano
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Xingcheng Yan
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Intikhab Alam
- Red Sea Laboratory for Integrative Systems Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - John A. C. Archer
- Red Sea Laboratory for Integrative Systems Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Vladimir B. Bajic
- Red Sea Laboratory for Integrative Systems Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
14
|
Ren Q, Zhao XF, Wang JX. Identification of three different types of serine proteases (one SP and two SPHs) in Chinese white shrimp. FISH & SHELLFISH IMMUNOLOGY 2011; 30:456-466. [PMID: 21109005 DOI: 10.1016/j.fsi.2010.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/28/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
Serine proteases (SPs) and serine protease homologs (SPHs) participate in digestion, embryonic development, blood coagulation, and immune defense responses. In this paper, we identify one SP and two SPHs, including a masquerade SPH (FcMas), a CUB domain containing SP (FcCUBSP), and a single domain containing SPH (FcSPH2) in Chinese white shrimp, Fenneropenaeus chinensis. FcMas has a Gly-rich region formed by three repeats of LGGQGGG, a clip domain and a C-terminal SP-like domain. Absence of Ser catalytic residue results in the loss of serine protease activity of FcMas, which then functions as an SPH. FcCUBSP has a signal peptide, followed by a CUB domain and an SP domain. FcSPH2 has a signal peptide and an SP-like domain. Loss of one catalytic residue (H) makes FcSPH2 catalytically inactive, which is considered an SPH. Phylogenetic analysis shows that FcMas and other SPHs from shrimp or insect are classified into one group. FcSPH2 is grouped in the chymotrypsin family. RT-PCR results show that FcMas mRNA is mainly distributed in hemocytes and gills. FcCUBSP is only detected in gills, whereas FcSPH2 is found in hepatopancreas only. QRT-PCR is used to analyze changes of FcMas, FcCUBSP and FcSPH2 in some tissues challenged with white spot syndrome virus (WSSV) or Vibrio. FcMas in hemocytes is down-regulated by WSSV or Vibrio challenge, and down-regulated by WSSV in gills. However, it is up-regulated upon Vibrio challenge in gills. FcCUBSP in gills and FcSPH2 in hepatopancreas are up-regulated upon WSSV or Vibrio challenge. Results suggest the roles of FcMas, FcCUBSP and FcSPH2 in shrimp's innate immunity.
Collapse
Affiliation(s)
- Qian Ren
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | | | |
Collapse
|
15
|
Zhang D, Jiang S, Ma J, Jiang J, Pan D, Xu X. Molecular cloning, characterization and expression analysis of a clip-domain serine protease from pearl oyster Pinctada fucata. FISH & SHELLFISH IMMUNOLOGY 2009; 26:662-668. [PMID: 19254766 DOI: 10.1016/j.fsi.2009.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/07/2009] [Accepted: 02/07/2009] [Indexed: 05/27/2023]
Abstract
The clip-domain serine proteases (SPs) are the essential components of extracellular signaling cascade in various biological processes, especially in embryonic development and the innate immune responses of invertebrate. Herein, we described the isolation and characterization of pearl oyster Pinctada fucata clip-domain SP gene (designated as poSP). The poSP cDNA was 1080 bp long and consisted of a 5'-untranslated region (UTR) of 13 bp, a 3'-UTR of 68 bp with a polyadenylation signal (AATAAA) at 22 nucleotides upstream of the poly(A) tail, and an open reading frame (ORF) of 999 bp encoding a polypeptide of 332 amino acids with an estimated molecular mass of 36.5 kDa and a theoretical isoelectric point of 7.3. A clip-domain and a trypsin-like serine protease domain were identified in the poSP using SMART analysis. Homology analysis of the deduced amino acid sequence of the poSP with other known SP sequences by MatGAT software revealed that the poSP shared 47.0-68.4% similarity to the other known SP sequences. The poSP mRNA was expressed in haemocytes, gonad, digestive gland and mantle, but not expressed in adductor muscle and gill. The poSP mRNA was up-regulated and increased nearly double-fold after LPS or Vibrio alginolyticus stimulation, respectively. These results suggested that the poSP was an inducible acute-phase protein that perhaps involved in the innate immune response of pearl oyster.
Collapse
Affiliation(s)
- Dianchang Zhang
- Division of Aquaculture and Biotechnology, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | | | | | | | | | | |
Collapse
|
16
|
Vaseeharan B, Lin YC, Ko CF, Chen JC. Cloning and characterisation of a serine proteinase from the haemocytes of mud crab Scylla serrata. FISH & SHELLFISH IMMUNOLOGY 2006; 21:20-31. [PMID: 16326112 DOI: 10.1016/j.fsi.2005.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 09/09/2005] [Accepted: 09/27/2005] [Indexed: 05/05/2023]
Abstract
A serine proteinase (SP) cDNA was cloned from the haemocytes of mud crab Scylla serrata using oligonucleotide primers and RT-PCR. Both 3'- and 5'-regions were isolated by rapid amplification of cDNA end (RACE) method. Analysis of the nucleotide sequence revealed that the cDNA clone has an open reading frame of 1,131 bp encoding a protein of 376 amino acids. The calculated molecular mass of the SP mature protein is 39.54 kDa with an estimated pI of 5.37. The C-terminal half of S. serrata SP is composed of a trypsin-like domain, with a sequence similar to that of other invertebrate and vertebrate SP domain. The typical catalytic triad of SP required for functional activity (His150, Asp217 and Ser331) was conserved in the polypeptide sequence. Sequence comparison showed that SP deduced amino acid has an overall similarity of 55%, 51% and 50% to SP deduced amino acid from spiny lobster Panulirus argus, horseshoe crab Tachypleus tridentatus and crayfish Pacifastaus leniusculus, respectively. The SP was strongly expressed in haemocytes, but was weakly expressed in heart, eyestalk and antennules. The SP transcript decreased significantly for the S. serrata following 3 days exposure to pH 9.5. However, the SP transcript increased significantly 24 h post-zymosan injection.
Collapse
Affiliation(s)
- Baskaralingam Vaseeharan
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, No: 2 Pei-Ning Road, Keelung 202, Taiwan, ROC
| | | | | | | |
Collapse
|
17
|
Stepanyan R, Day K, Urban J, Hardin DL, Shetty RS, Derby CD, Ache BW, McClintock TS. Gene expression and specificity in the mature zone of the lobster olfactory organ. Physiol Genomics 2006; 25:224-33. [PMID: 16614458 DOI: 10.1152/physiolgenomics.00276.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lobster olfactory organ is an important model for investigating many aspects of the olfactory system. To facilitate study of the molecular basis of olfaction in lobsters, we made a subtracted cDNA library from the mature zone of the olfactory organ of Homarus americanus, the American lobster. Sequencing of the 5′-end of 5,184 cDNA clones produced 2,389 distinct high-quality sequences consisting of 1,944 singlets and 445 contigs. Matches to known sequences corresponded with the types of cells present in the olfactory organ, including specific markers of olfactory sensory neurons, auxiliary cells, secretory cells of the aesthetasc tegumental gland, and epithelial cells. The wealth of neuronal mRNAs represented among the sequences reflected the preponderance of neurons in the tissue. The sequences identified candidate genes responsible for known functions and suggested new functions not previously recognized in the olfactory organ. A cDNA microarray was designed and tested by assessing mRNA abundance differences between two of the lobster's major chemosensory structures: the mature zone of the olfactory organ and the dactyl of the walking legs, a taste organ. The 115 differences detected again emphasized the abundance of neurons in the olfactory organ, especially a cluster of mRNAs encoding cytoskeletal-associated proteins and cell adhesion molecules such as 14-3-3ζ, actins, tubulins, trophinin, Fax, Yel077cp, suppressor of profilin 2, and gelsolin.
Collapse
Affiliation(s)
- Ruben Stepanyan
- Department of Physiology, Cellular and Molecular Neuroscience of Sensory Systems Training Program, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Schmidt M, Chien H, Tadesse T, Johns ME, Derby CD. Rosette-type tegumental glands associated with aesthetasc sensilla in the olfactory organ of the Caribbean spiny lobster, Panulirus argus. Cell Tissue Res 2006; 325:369-95. [PMID: 16555053 DOI: 10.1007/s00441-006-0163-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 09/06/2005] [Indexed: 10/24/2022]
Abstract
The lateral antennular flagellum of decapod crustaceans bears unique olfactory sensilla, namely the aesthetascs, and other sensilla types. In this study, we identify a new major tissue in the lateral flagellum of the Caribbean spiny lobster, Panulirus argus, namely "aesthetasc tegumental glands" (ATGs), based on immunostaining with antibodies against CUB serine protease (Csp), in situ hybridization with csp-specific probes, labeling with the F-actin marker phalloidin, labeling with the nuclear marker Hoechst 33258, and staining with methylene blue. Each ATG has 12-20 secretory cells arranged in a rosette. Each secretory cell has a Csp-immunoreactive basal portion and an apical portion containing granular material (metachromatic staining indicative of acid mucopolysaccharides). At the center of each secretory rosette is a phalloidin-positive common locus that gives rise to a main drainage duct projecting toward the cuticle. Scanning electron and light microscopy show that thin ducts traverse the cuticle and connect to "peg pores" proximal to the bases of the aesthetascs, with 3.4 peg pores per aesthetasc. Since the number of common loci is correlated with the number of peg pores, we conclude that each pore represents the outlet of one ATG, and that the secretions are released from them. We conclude further that ATGs and aesthetascs are functionally linked. We hypothesize that ATG secretions have antifouling and/or friction-reducing properties, and that they are spread over the surface of the aesthetascs by antennular grooming. A review of the literature suggests that ATGs are common in decapod crustacean antennules, and that rosette glands and grooming might be functionally coupled in other body areas.
Collapse
Affiliation(s)
- Manfred Schmidt
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA.
| | | | | | | | | |
Collapse
|
19
|
Stepanyan R, Haley SB, McClintock TS. Olfactory specific chymotrypsin-like serine protease from the aesthetasc tegumental gland of the lobster, Homarus americanus. Cell Tissue Res 2005; 322:321-30. [PMID: 16047165 DOI: 10.1007/s00441-005-0022-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Numerous proteases and protease inhibitors are expressed in the lobster olfactory organ. One of these proteases, olfactory enriched transcript 03 (OET-03), is particularly interesting because its mRNA is expressed only in one cell type of the olfactory organ of the American lobster, Homarus americanus. We have obtained a full-length cDNA clone of OET-03. The predicted amino acid sequence is equally divided between a novel N-terminal domain and a conserved serine protease catalytic domain at the C-terminus. Heterologous expression in HEK293 cells allowed protease assays demonstrating that OET-03 cleaved a specific serine protease substrate, N-alpha benzoyl-L-arginine p-nitroanilide, but did not cleave a substrate of metalloproteases and cysteine proteases. OET-03 protease activity was significantly inhibited by the chymotrypsin-like protease inhibitor, tosyl-L-phenylalanine chloromethyl ketone, but not by the general protease inhibitor, phenylmethylsulfonyl fluoride. Immunoreactivity for OET-03 was detected only in the cells previously shown to contain OET-03 mRNA. The cytoplasm of these cells was filled with enlarged smooth endoplasmic reticulum (a characteristic of secretory cells) that appeared to expand into large electron-translucent areas at the ventral end of the cell. The ventral ends of these secretory cells were apposed to phalloidin-labeled triangular structures reminiscent of the beginnings of the ducts of crustacean tegumental glands. This putative gland was found only in association with the aesthetasc sensory units of the olfactory organ, hence the name, aesthetasc tegumental gland.
Collapse
Affiliation(s)
- Ruben Stepanyan
- Department of Physiology, Cellular and Molecular Neuroscience of Sensory Systems Training Program, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
20
|
Johns ME, Tai PC, Derby CD. Serine proteases in the spiny lobster olfactory organ: their functional expression along a developmental axis, and the contribution of a CUB-serine protease. ACTA ACUST UNITED AC 2005; 61:377-91. [PMID: 15389692 DOI: 10.1002/neu.20056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several serine proteases and protease inhibitors have been identified in the crustacean olfactory organ, which is comprised of the lateral flagellum of the antennule and its aesthetascs sensilla that house olfactory receptor neurons and their supporting cells. The function of these proteases in the olfactory organ is unknown, but may include a role in perireception (e.g., odor activation or inactivation) or in the development or survival of olfactory receptor neurons. To examine directly the function of proteases in the olfactory organ of the Caribbean spiny lobster Panulirus argus, we used different tissue fractions from the lateral flagellum in an enzyme activity assay with a variety of protease substrates and inhibitors. Trypsin-like serine protease activity occurs throughout the lateral flagellum but is enriched in the cell membranes from aesthetascs. Cysteine- and metalloprotease activities also occur in olfactory tissue, but are more abundant in tissue fractions other than aesthetascs. To assess the contribution of one of the olfactory serine proteases--CUB-serine protease (Csp)--Csp was immunoprecipitated using an antibody; results with the remaining fraction suggest that Csp accounts for at least 40% of the total serine protease activity in the olfactory organ. The amount of total serine protease activity follows a developmental axis in the lateral flagellum. Total protease activity is lowest in the proximal zone, which lacks aesthetascs, and the proliferation zone, where olfactory receptor neurons and associated cells are born, and highest in aesthetascs of the distally-located senescence zone, which has the oldest olfactory tissue.
Collapse
Affiliation(s)
- Malcolm E Johns
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 4010, Atlanta, Georgia 30302-4010, USA
| | | | | |
Collapse
|
21
|
Oliveira-Neto OB, Batista JAN, Rigden DJ, Fragoso RR, Silva RO, Gomes EA, Franco OL, Dias SC, Cordeiro CMT, Monnerat RG, Grossi-De-Sá MF. A diverse family of serine proteinase genes expressed in cotton boll weevil (Anthonomus grandis): implications for the design of pest-resistant transgenic cotton plants. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:903-918. [PMID: 15350610 DOI: 10.1016/j.ibmb.2004.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2004] [Accepted: 06/01/2004] [Indexed: 05/24/2023]
Abstract
Fourteen different cDNA fragments encoding serine proteinases were isolated by reverse transcription-PCR from cotton boll weevil (Anthonomus grandis) larvae. A large diversity between the sequences was observed, with a mean pairwise identity of 22% in the amino acid sequence. The cDNAs encompassed 11 trypsin-like sequences classifiable into three families and three chymotrypsin-like sequences belonging to a single family. Using a combination of 5' and 3' RACE, the full-length sequence was obtained for five of the cDNAs, named Agser2, Agser5, Agser6, Agser10 and Agser21. The encoded proteins included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Southern blotting analysis suggested that one or two copies of these serine proteinase genes exist in the A. grandis genome. Northern blotting analysis of Agser2 and Agser5 showed that for both genes, expression is induced upon feeding and is concentrated in the gut of larvae and adult insects. Reverse northern analysis of the 14 cDNA fragments showed that only two trypsin-like and two chymotrypsin-like were expressed at detectable levels. Under the effect of the serine proteinase inhibitors soybean Kunitz trypsin inhibitor and black-eyed pea trypsin/chymotrypsin inhibitor, expression of one of the trypsin-like sequences was upregulated while expression of the two chymotrypsin-like sequences was downregulated.
Collapse
Affiliation(s)
- Osmundo B Oliveira-Neto
- Embrapa Recursos Genéticos e Biotecnologia, S.A.I.N. Parque Estação Biológica, Final W3, Asa Norte, Brasilia, DF 70770-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Miyoshi T, Tsuji N, Islam MK, Kamio T, Fujisaki K. Cloning and molecular characterization of a cubilin-related serine proteinase from the hard tick Haemaphysalis longicornis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:799-808. [PMID: 15262284 DOI: 10.1016/j.ibmb.2004.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 04/27/2004] [Indexed: 05/24/2023]
Abstract
Serine proteinases are one of the largest proteolytic families of enzymes, and have diverse cellular activities in mammalian tissues. We report here the cloning and molecular characterization of a cDNA encoding the serine proteinase of the hard tick Haemaphysalis longicornis (HlSP). The HlSP cDNA is 1570 bp long and the deduced precursor protein consists of 464 amino acids with a predicted molecular mass of 50.4 kDa and a pI of 8.2. The preprotein, consisting of 443 amino acids, was predicted to include a complement C1r/C1s, Uegf, and bone morphogenic protein-1 domain, a low-density lipoprotein receptor class A domain, and a catalytic domain. HlSP sequence analysis showed high similarity to serine proteinases reported from arthropods and vertebrate animal species. Two-dimensional immunoblot analysis revealed endogenous HlSP in adult tick extracts at 50 kDa. Endogenous HlSP was also expressed in all lifecycle stages of H. longicornis. Immunohistochemical studies detected the endogenous enzyme in the midgut epithelial cells of an adult tick. The Escherichia coli-expressed recombinant HlSP was demonstrated to degrade bovine serum albumin and hydrolyze the substrate Bz-L-Arg-pNA at the rate of 30.2 micromol/min/mg protein. Further, HlSP expression was up-regulated during a blood-feeding process, indicating its involvement in the digestion of host blood components.
Collapse
Affiliation(s)
- Takeharu Miyoshi
- Laboratory of Parasitic Diseases, National Agricultural Research Organization, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | |
Collapse
|
23
|
Stoss TD, Nickell MD, Hardin D, Derby CD, McClintock TS. Inducible transcript expressed by reactive epithelial cells at sites of olfactory sensory neuron proliferation. ACTA ACUST UNITED AC 2004; 58:355-68. [PMID: 14750148 DOI: 10.1002/neu.10294] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The continuous replacement of cells in the spiny lobster olfactory organ depends on proliferation of new cells at a specific site, the proximal proliferation zone (PPZ). Using representational difference analysis of cDNA, we identified transcripts enriched in the PPZ compared to the mature zone (MZ) of the organ. The 12 clones identified included four novel sequences, three exoskeletal proteins, a serine protease, two protease inhibitors, a putative growth factor, and a sequence named PET-15 that has similarity to antimicrobial proteins of the crustin type. PET-15 mRNA was only detected in epithelial cells. It was abundant in all epithelial cells of the PPZ, but was only detected in the MZ at sites of damage to the olfactory organ. PET-15 mRNA was increased by types of damage that are known to induce proliferation of new olfactory sensory neurons in the olfactory organ. It increased in the PPZ after partial ablation of the olfactory organ and in the MZ after shaving of aesthetasc sensilla. These ipsilateral effects were mirrored by smaller increases in the undamaged contralateral olfactory organ. These contralateral effects are most parsimoniously explained by the action of a diffusible signal. Because epithelial cells are the source of proliferating progenitors in the olfactory organ, the same diffusible signal may stimulate increases in both cellular proliferation and PET-15 mRNA. The uniformity of expression of PET-15 in the PPZ epithelium suggests that the epithelial cells that give rise to new olfactory sensory neurons are a subset of cells that express PET-15.
Collapse
Affiliation(s)
- Thomas D Stoss
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | |
Collapse
|
24
|
Gusev O, Ikeda H, Okochi T, Lee JM, Hatakeyama M, Kobayashi C, Agata K, Yamada H, Saigusa M. Purification and cDNA cloning of the ovigerous-hair stripping substance (OHSS) contained in the hatch water of an estuarine crab Sesarma haematocheir. ACTA ACUST UNITED AC 2004; 207:621-32. [PMID: 14718505 DOI: 10.1242/jeb.00785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The egg attachment system of an estuarine crab Sesarma haematocheir is formed on the maternal ovigerous hairs just after egg laying, and slips off these hairs just after hatching. The stripping is caused by an active factor that we call OHSS (ovigerous-hair stripping substance), which is released by the embryo upon hatching. OHSS was purified, and its active form had a molecular mass of 25 kDa. The cDNA of OHSS cloned from an embryonic cDNA library was 1759 bp long, encoding 492 amino acids in a single open reading frame (ORF). The C-terminal part of the predicted protein was composed of a trypsin-like serine protease domain, with homology to counterparts in other animals of 33-38%. The predicted protein (54.7 kDa) secreted as a zymogen may be cleaved post-translationally, separating the C-terminal from the N-terminal region. The OHSS gene was expressed in the embryo at least 2 weeks before hatching. Expression was also detected in the zoea larva 1 day after hatching and in the brain of the female. However, it was not detected in the muscle, hepatopancreas or ovigerous seta of the female. Ultrastructural analysis indicated that the material investing maternal ovigerous hair, i.e. the outermost layer (E1) of the egg case, is attached at the special sites (attachment sites) arranged at intervals of 130-160 nm on the hair. It is suggested that OHSS acts specifically at these sites, lysing the bond with the coat, thus disposing of the embryo attachment system. This enables the female to prepare the next clutch of embryos without ecdysis.
Collapse
Affiliation(s)
- Oleg Gusev
- Laboratory of Animal Behavior and Evolution, Graduate School of Natural Science and Technology, Okayama University, Tsushima 3-1-1, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hollins B, Hardin D, Gimelbrant AA, McClintock TS. Olfactory-enriched transcripts are cell-specific markers in the lobster olfactory organ. J Comp Neurol 2003; 455:125-38. [PMID: 12455001 DOI: 10.1002/cne.10489] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genes expressed specifically in a tissue are often involved in the defining functions of that tissue. We used representational difference analysis of cDNA to amplify 20 cDNA fragments representing transcripts that were more abundant in the lobster olfactory organ than in brain, eye/eyestalk, dactyl, pereiopod, or second antenna. We then independently confirmed that the transcripts represented by these clones were enriched in the olfactory organ. The 20 cDNA fragments represent between 6 and 15 different genes. Six of the cDNAs contained sequences highly similar to known gene families. We performed in situ hybridization with these six and found that all were expressed in subsets of cells associated with the aesthetasc sensilla in the olfactory organ. Clones OET-07, an ionotropic receptor, and OET-10, an alpha tubulin, were specific to the olfactory receptor neurons. OET-02, a monooxygenase, was expressed only in the outer auxiliary cells. OET-03, a serine protease, was specific to the collar cells. OET-11, an alpha(2) macroglobulin, was expressed by the receptor neurons and the collar cells. OET-17, a calcyphosine, was expressed in the receptor neurons, inner auxiliary cells, and collar cells. The identities and expression patterns of these six transcripts predict involvement in both known and novel properties of the lobster olfactory organ.
Collapse
Affiliation(s)
- Bettye Hollins
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | |
Collapse
|