1
|
Dho SE, Othman K, Zhang Y, McGlade CJ. NUMB alternative splicing and isoform specific functions in development and disease. J Biol Chem 2025:108215. [PMID: 39863103 DOI: 10.1016/j.jbc.2025.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The NUMB gene encodes a conserved adaptor protein with roles in asymmetric cell division and cell fate determination. First described as an inhibitor of Notch signaling, multi-functional NUMB proteins regulate multiple cellular pathways through protein complexes with ubiquitin ligases, polarity proteins and the endocytic machinery. The vertebrate NUMB protein isoforms were identified over two decades ago, yet the majority of functional studies exploring NUMB function in endocytosis, cell migration and adhesion, development and disease have largely neglected the potential for distinct isoform activity in design and interpretation. In this review we consolidate the literature that has directly addressed individual NUMB isoform functions, as well as interpret other functional studies through the lens of the specific isoforms that were utilized. We also summarize the emerging literature on the mechanisms that regulate alternative splicing of NUMB, and how this is subverted in disease. Finally, the importance of relative NUMB isoform expression as a determinant of activity and considerations for future studies of NUMB isoforms as unique proteins with distinct functions are discussed.
Collapse
Affiliation(s)
- Sascha E Dho
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8
| | - Kamal Othman
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9
| | - Yangjing Zhang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9
| | - C Jane McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9.
| |
Collapse
|
2
|
Liu W, Xie H, Liu X, Xu S, Cheng S, Wang Z, Xie T, Zhang ZC, Han J. PQBP1 regulates striatum development through balancing striatal progenitor proliferation and differentiation. Cell Rep 2023; 42:112277. [PMID: 36943865 DOI: 10.1016/j.celrep.2023.112277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/16/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
The balance between cell proliferation and differentiation is essential for maintaining the neural progenitor pool and brain development. Although the mechanisms underlying cell proliferation and differentiation at the transcriptional level have been studied intensively, post-transcriptional regulation of cell proliferation and differentiation remains largely unclear. Here, we show that deletion of the alternative splicing regulator PQBP1 in striatal progenitors results in defective striatal development due to impaired neurogenesis of spiny projection neurons (SPNs). Pqbp1-deficient striatal progenitors exhibit declined proliferation and increased differentiation, resulting in a reduced striatal progenitor pool. We further reveal that PQBP1 associates with components in splicing machinery. The alternative splicing profiles identify that PQBP1 promotes the exon 9 inclusion of Numb, a variant that mediates progenitor proliferation. These findings identify PQBP1 as a regulator in balancing striatal progenitor proliferation and differentiation and provide alternative insights into the pathogenic mechanisms underlying Renpenning syndrome.
Collapse
Affiliation(s)
- Wenhua Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Hao Xie
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Xian Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Shoujing Xu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Shanshan Cheng
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zi Chao Zhang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
3
|
Zhang Y, Dho SE, Othman K, Simpson CD, Lapierre J, Bondoc A, McGlade CJ. Numb exon 9 inclusion regulates Integrinβ5 surface expression and promotes breast cancer metastasis. Oncogene 2022; 41:2079-2094. [PMID: 35181737 DOI: 10.1038/s41388-022-02225-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 01/07/2023]
Abstract
The endocytic adaptor protein Numb acts as a tumor suppressor through downregulation of oncogenic pathways in multiple cancer types. The identification of splicing alterations giving rise to changes in Numb protein isoform expression indicate that Numb also has tumor promoting activity, though the underlying mechanisms are unknown. Here we report that NUMB exon 9 inclusion, which results in production of a protein isoform with an additional 49 amino acids, is a feature of multiple cancer types including all subtypes of breast cancer and correlates with worse progression-free survival. Specific deletion of exon 9-included Numb isoforms (Exon9in) from breast cancer cells reduced cell growth and prevents spontaneous lung metastasis in a mouse model. Quantitative proteome profiling showed that loss of Exon9in causes downregulation of membrane receptors and adhesion molecules, as well as proteins involved in extracellular matrix organization and the epithelial-mesenchymal transition (EMT) state. In addition, exon 9 deletion caused remodeling of the endocytic network, decreased ITGβ5 surface localization, cell spreading on vitronectin and downstream signaling to ERK and SRC. Together these observations suggest that Exon9in isoform expression disrupts the endocytic trafficking functions of Numb, resulting in increased surface expression of ITGβ5 as well as other plasma membrane proteins to promote cell adhesion, EMT, and tumor metastasis.
Collapse
Affiliation(s)
- Yangjing Zhang
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Sascha E Dho
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Kamal Othman
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Craig D Simpson
- SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Jessica Lapierre
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Andrew Bondoc
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
4
|
Abstract
Somatic stem cells are distinguished by their capacity to regenerate themselves and also to produce daughter cells that will differentiate. Self-renewal is achieved through the process of asymmetric cell division which helps to sustain tissue morphogenesis as well as maintain homeostasis. Asymmetric cell division results in the development of two daughter cells with different fates after a single mitosis. Only one daughter cell maintains "stemness" while the other differentiates and achieves a non-stem cell fate. Stem cells also have the capacity to undergo symmetric division of cells that results in the development of two daughter cells which are identical. Symmetric division results in the expansion of the stem cell population. Imbalances and deregulations in these processes can result in diseases such as cancer. Adult mammary stem cells (MaSCs) are a group of cells that play a critical role in the expansion of the mammary gland during puberty and any subsequent pregnancies. Furthermore, given the relatively long lifespans and their capability to undergo self-renewal, adult stem cells have been suggested as ideal candidates for transformation events that lead to the development of cancer. With the possibility that MaSCs can act as the source cells for distinct breast cancer types; understanding their regulation is an important field of research. In this review, we discuss asymmetric cell division in breast/mammary stem cells and implications on further research. We focus on the background history of asymmetric cell division, asymmetric cell division monitoring techniques, identified molecular mechanisms of asymmetric stem cell division, and the role asymmetric cell division may play in breast cancer.
Collapse
Affiliation(s)
| | - Brian W Booth
- Department of Bioengineering, Head-Cellular Engineering Laboratory, 401-1 Rhodes Engineering Research Center, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
5
|
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer that can self-renew and differentiate into large tumor masses. Evidence accumulated to date shows that CSCs affect tumor proliferation, recurrence, and resistance to chemotherapy. Recent studies have shown that, like stem cells, CSCs maintain cells with self-renewal capacity by means of asymmetric division and promote cell proliferation by means of symmetric division. This cell division is regulated by fate determinants, such as the NUMB protein, which recently has also been confirmed as a tumor suppressor. Loss of NUMB expression leads to uncontrolled proliferation and amplification of the CSC pool, which promotes the Notch signaling pathway and reduces the expression of the p53 protein. NUMB genes are alternatively spliced to produce six functionally distinct isoforms. An interesting recent discovery is that the protein NUMB isoform produced by alternative splicing of NUMB plays an important role in promoting carcinogenesis. In this review, we summarize the known functions of NUMB and NUMB isoforms related to the proliferation and generation of CSCs.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jaekwon Seok
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| |
Collapse
|
6
|
Choi HY, Seok J, Kang GH, Lim KM, Cho SG. The role of NUMB/NUMB isoforms in cancer stem cells. BMB Rep 2021; 54:335-343. [PMID: 34078527 PMCID: PMC8328821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer that can self-renew and differentiate into large tumor masses. Evidence accumulated to date shows that CSCs affect tumor proliferation, recurrence, and resistance to chemotherapy. Recent studies have shown that, like stem cells, CSCs maintain cells with self-renewal capacity by means of asymmetric division and promote cell proliferation by means of symmetric division. This cell division is regulated by fate determinants, such as the NUMB protein, which recently has also been confirmed as a tumor suppressor. Loss of NUMB expression leads to uncontrolled proliferation and amplification of the CSC pool, which promotes the Notch signaling pathway and reduces the expression of the p53 protein. NUMB genes are alternatively spliced to produce six functionally distinct isoforms. An interesting recent discovery is that the protein NUMB isoform produced by alternative splicing of NUMB plays an important role in promoting carcinogenesis. In this review, we summarize the known functions of NUMB and NUMB isoforms related to the proliferation and generation of CSCs. [BMB Reports 2021; 54(7): 335-343].
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA, Seoul 05029, Korea
| | - Jaekwon Seok
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Konkuk University, Seoul 05029, Korea
| |
Collapse
|
7
|
Li Y, Wang D, Wang H, Huang X, Wen Y, Wang B, Xu C, Gao J, Liu J, Tong J, Wang M, Su P, Ren S, Ma F, Li H, Bresnick EH, Zhou J, Shi L. A splicing factor switch controls hematopoietic lineage specification of pluripotent stem cells. EMBO Rep 2021; 22:e50535. [PMID: 33319461 PMCID: PMC7788460 DOI: 10.15252/embr.202050535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing (AS) leads to transcriptome diversity in eukaryotic cells and is one of the key regulators driving cellular differentiation. Although AS is of crucial importance for normal hematopoiesis and hematopoietic malignancies, its role in early hematopoietic development is still largely unknown. Here, by using high-throughput transcriptomic analyses, we show that pervasive and dynamic AS takes place during hematopoietic development of human pluripotent stem cells (hPSCs). We identify a splicing factor switch that occurs during the differentiation of mesodermal cells to endothelial progenitor cells (EPCs). Perturbation of this switch selectively impairs the emergence of EPCs and hemogenic endothelial progenitor cells (HEPs). Mechanistically, an EPC-induced alternative spliced isoform of NUMB dictates EPC specification by controlling NOTCH signaling. Furthermore, we demonstrate that the splicing factor SRSF2 regulates splicing of the EPC-induced NUMB isoform, and the SRSF2-NUMB-NOTCH splicing axis regulates EPC generation. The identification of this splicing factor switch provides a new molecular mechanism to control cell fate and lineage specification.
Collapse
Affiliation(s)
- Yapu Li
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Ding Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Hongtao Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Xin Huang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Yuqi Wen
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - BingRui Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Changlu Xu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Jie Gao
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Jinhua Liu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Jingyuan Tong
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Mengge Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Pei Su
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Sirui Ren
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Feng Ma
- Institute of Blood TransfusionChinese Academy of Medical Sciences & Peking Union Medical CollegeChengduChina
| | - Hong‐Dong Li
- School of Computer Science and EngineeringCentral South UniversityChangshaHunanChina
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research InstituteDepartment of Cell and Regenerative BiologySchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
| | - Jiaxi Zhou
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Lihong Shi
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| |
Collapse
|
8
|
Dou XQ, Chen XJ, Zhou Q, Wen MX, Zhang SZ, Zhang SQ. miR-335 modulates Numb alternative splicing via targeting RBM10 in endometrial cancer. Kaohsiung J Med Sci 2020; 36:171-177. [PMID: 31894898 DOI: 10.1002/kjm2.12149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 10/13/2019] [Indexed: 12/19/2022] Open
Abstract
Numb is a conserved protein plays important roles in the development of cancer. Two Numb isoforms have been found produced by alternative splicing and play contrast roles in regulating cellular functions. It is reported that the expression of Numb long isoform (Numb-L) was increased in various kinds of cancers, but in endometrial cancer, the condition is still unknown. The level of two Numb transcripts and protein isoforms were detected by semiquantitative polymerase chain reaction and immunoblotting in 47 paired endometrial tumor and adjacent non-tumor control tissues. The level of three alternative splicing related proteins: RBM5, RBM6, and RBM10 was determined by immunoblotting. MiRNAs targeting RBM10 were predicted by bioinformatics tools and their interaction with RBM10 was confirmed by luciferase assay and immunoblotting. The function of miR-335 in endometrial cancer was examined in xenograft mouse model. Numb-L level was increased in tumors and negatively correlated with RBM10 protein level. RBM10 mRNA level was not significantly altered in endometrial tumors suggesting its expression may regulated by post transcriptional regulators such as miRNAs. We identified miR-133a, miR-133b, and miR-335 directly target RBM10, but only miR-335 level increased in tumors and negatively correlated with RBM10 protein level. miR-335 overexpression promoted tumor growth by downregulating RBM10 and upregulating Numb-L level in xenograft mouse model. miR-335 overexpression promoted Numb-L expression via targeting RBM10 in endometrial cancer, which may provide new biomarkers for EC diagnosis.
Collapse
Affiliation(s)
- Xiao-Qing Dou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Xiu-Juan Chen
- Department of Obstetrics and Gynecology, People's Hospital of Rizhao, Rizhao, China
| | - Qun Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming-Xiao Wen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shu-Zhen Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shi-Qian Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
9
|
Wei R, Liu X, Voss C, Qin W, Dagnino L, Li L, Vigny M, Li SSC. NUMB regulates the endocytosis and activity of the anaplastic lymphoma kinase in an isoform-specific manner. J Mol Cell Biol 2019; 11:994-1005. [PMID: 30726988 PMCID: PMC6927325 DOI: 10.1093/jmcb/mjz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/07/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
NUMB is an evolutionarily conserved protein that plays an important role in cell adhesion, migration, polarity, and cell fate determination. It has also been shown to play a role in the pathogenesis of certain cancers, although it remains controversial whether NUMB functions as an oncoprotein or tumor suppressor. Here, we show that NUMB binds to anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase aberrantly activated in several forms of cancer, and this interaction regulates the endocytosis and activity of ALK. Intriguingly, the function of the NUMB-ALK interaction is isoform-dependent. While both p66-NUMB and p72-NUMB isoforms are capable of mediating the endocytosis of ALK, the former directs ALK to the lysosomal degradation pathway, thus decreasing the overall ALK level and the downstream MAP kinase signal. In contrast, the p72-NUMB isoform promotes ALK recycling back to the plasma membrane, thereby maintaining the kinase in its active state. Our work sheds light on the controversial role of different isoforms of NUMB in tumorigenesis and provides mechanistic insight into ALK regulation.
Collapse
Affiliation(s)
- Ran Wei
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Xuguang Liu
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Courtney Voss
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Wentao Qin
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lina Dagnino
- Physiology and Pharmacology and Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lei Li
- School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, China
| | - Marc Vigny
- Université Pierre et Marie Curie, UPMC, INSERM UMRS-839, Paris, France
| | - Shawn Shun-Cheng Li
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Ahmad I, Teotia P, Erickson H, Xia X. Recapitulating developmental mechanisms for retinal regeneration. Prog Retin Eye Res 2019; 76:100824. [PMID: 31843569 DOI: 10.1016/j.preteyeres.2019.100824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Degeneration of specific retinal neurons in diseases like glaucoma, age-related macular degeneration, and retinitis pigmentosa is the leading cause of irreversible blindness. Currently, there is no therapy to modify the disease-associated degenerative changes. With the advancement in our knowledge about the mechanisms that regulate the development of the vertebrate retina, the approach to treat blinding diseases through regenerative medicine appears a near possibility. Recapitulation of developmental mechanisms is critical for reproducibly generating cells in either 2D or 3D culture of pluripotent stem cells for retinal repair and disease modeling. It is the key for unlocking the neurogenic potential of Müller glia in the adult retina for therapeutic regeneration. Here, we examine the current status and potential of the regenerative medicine approach for the retina in the backdrop of developmental mechanisms.
Collapse
Affiliation(s)
- Iqbal Ahmad
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Pooja Teotia
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Helen Erickson
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
11
|
Ivanov D. Notch Signaling-Induced Oscillatory Gene Expression May Drive Neurogenesis in the Developing Retina. Front Mol Neurosci 2019; 12:226. [PMID: 31607861 PMCID: PMC6761228 DOI: 10.3389/fnmol.2019.00226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022] Open
Abstract
After integrating classic and cutting-edge research, we proposed a unified model that attempts to explain the key steps of mammalian retinal neurogenesis. We proposed that the Notch signaling-induced lateral inhibition mechanism promotes oscillatory expression of Hes1. Oscillating Hes1 inhibitory activity as a result leads to oscillatory expression of Notch signaling inhibitors, activators/inhibitors of retinal neuronal phenotypes, and cell cycle-promoting genes all within a retinal progenitor cell (RPC). We provided a mechanism explaining not only how oscillatory expression prevents the progenitor-to-precursor transition, but also how this transition happens. Our proposal of the mechanism posits that the levels of the above factors not only oscillate but also rise (with the exception of Hes1) as the factors accumulate within a progenitor. Depending on which factors accumulate fastest and reach the required supra-threshold levels (cell cycle activators or Notch signaling inhibitors), the progenitor either proliferates or begins to differentiate without any further proliferation when Notch signaling ceases. Thus, oscillatory gene expression may regulate an RPC's decision to proliferate or differentiate. Meanwhile, a post-mitotic precursor's selection of one retinal neuronal phenotype over many others depends on the expression level of key transcription factors (activators) required for each of these retinal neuronal phenotypes. Because the events described above are stochastic due to oscillatory gene expression and gene product inheritance from a mother RPC after its division, an RPC or precursor's decision requires the assignment of probabilities to specific outcomes in the selection process. While low and sustained (non-oscillatory) Notch signaling activity is required to promote the transition of retinal progenitors into various retinal neuronal phenotypes, we propose that the lateral inhibition mechanism, combined with high expression of the BMP signaling-induced Inhibitor of Differentiation (ID) protein family, promotes high and sustained (non-oscillatory) Hes1 and Hes5 expression. These events facilitate the transition of an RPC into the Müller glia (MG) phenotype at the late stage of retinal development.
Collapse
Affiliation(s)
- Dmitry Ivanov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
12
|
Colaluca IN, Basile A, Freiburger L, D'Uva V, Disalvatore D, Vecchi M, Confalonieri S, Tosoni D, Cecatiello V, Malabarba MG, Yang CJ, Kainosho M, Sattler M, Mapelli M, Pece S, Di Fiore PP. A Numb-Mdm2 fuzzy complex reveals an isoform-specific involvement of Numb in breast cancer. J Cell Biol 2018; 217:745-762. [PMID: 29269425 PMCID: PMC5800818 DOI: 10.1083/jcb.201709092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/03/2022] Open
Abstract
Numb functions as an oncosuppressor by inhibiting Notch signaling and stabilizing p53. This latter effect depends on the interaction of Numb with Mdm2, the E3 ligase that ubiquitinates p53 and commits it to degradation. In breast cancer (BC), loss of Numb results in a reduction of p53-mediated responses including sensitivity to genotoxic drugs and maintenance of homeostasis in the stem cell compartment. In this study, we show that the Numb-Mdm2 interaction represents a fuzzy complex mediated by a short Numb sequence encompassing its alternatively spliced exon 3 (Ex3), which is necessary and sufficient to inhibit Mdm2 and prevent p53 degradation. Alterations in the Numb splicing pattern are critical in BC as shown by increased chemoresistance of tumors displaying reduced levels of Ex3-containing isoforms, an effect that could be mechanistically linked to diminished p53 levels. A reduced level of Ex3-less Numb isoforms independently predicts poor outcome in BCs harboring wild-type p53. Thus, we have uncovered an important mechanism of chemoresistance and progression in p53-competent BCs.
Collapse
Affiliation(s)
| | - Andrea Basile
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Lee Freiburger
- Center for Integrated Protein Science Munich, Department of Chemistry, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Veronica D'Uva
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | | | - Manuela Vecchi
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | | | - Daniela Tosoni
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | - Valentina Cecatiello
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Maria Grazia Malabarba
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Chun-Jiun Yang
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Michael Sattler
- Center for Integrated Protein Science Munich, Department of Chemistry, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Salvatore Pece
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| |
Collapse
|
13
|
Rajendran D, Zhang Y, Berry DM, McGlade CJ. Regulation of Numb isoform expression by activated ERK signaling. Oncogene 2016; 35:5202-13. [PMID: 27041567 DOI: 10.1038/onc.2016.69] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 12/23/2015] [Accepted: 01/25/2016] [Indexed: 12/29/2022]
Abstract
The endocytic adaptor protein Numb has a major role in development as an intrinsic regulator of cell fate determination and inhibitor of the Notch signaling pathway. In vertebrates, four protein isoforms of Numb are produced through alternative splicing (AS) of two cassette exons (exons 3 and 9). AS of coding exon 9 (E9) produces E9-included (p72/p71) and -excluded (p66/p65) protein products. Expression of Numb isoforms is developmentally regulated and E9-included products are expressed in progenitors, whereas E9-excluded isoforms are dominantly expressed in differentiated cells. Analyses of AS events in multiple cancers previously identified a switch in Numb transcript and protein expression from the E9-excluded to the E9-included isoform, suggesting that misregulation of the mechanisms that control E9 inclusion may have a role in tumorigenesis. Here we identify splicing factors ASF/SF2 and PTBP1 as regulators of E9 splicing and show that activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway promotes E9 inclusion in cancer cells. Our evidence supports a mechanism by which Numb AS is regulated in response to oncogenic signaling pathways, and contributes to activation of downstream pathways to promote tumorigenesis.
Collapse
Affiliation(s)
- D Rajendran
- Program in Cell Biology, and The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Y Zhang
- Program in Cell Biology, and The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - D M Berry
- Program in Cell Biology, and The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - C J McGlade
- Program in Cell Biology, and The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Eddison M, Weber SJ, Ariza-McNaughton L, Lewis J, Daudet N. Numb is not a critical regulator of Notch-mediated cell fate decisions in the developing chick inner ear. Front Cell Neurosci 2015; 9:74. [PMID: 25814931 PMCID: PMC4357303 DOI: 10.3389/fncel.2015.00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/19/2015] [Indexed: 11/27/2022] Open
Abstract
The Notch signaling pathway controls differentiation of hair cells and supporting cells in the vertebrate inner ear. Here, we have investigated whether Numb, a known regulator of Notch activity in Drosophila, is involved in this process in the embryonic chick. The chicken homolog of Numb is expressed throughout the otocyst at early stages of development and is concentrated at the basal pole of the cells. It is asymmetrically allocated at some cell divisions, as in Drosophila, suggesting that it could act as a determinant inherited by one of the two daughter cells and favoring adoption of a hair-cell fate. To test the implication of Numb in hair cell fate decisions and the regulation of Notch signaling, we used different methods to overexpress Numb at different stages of inner ear development. We found that sustained or late Numb overexpression does not promote hair cell differentiation, and Numb does not prevent the reception of Notch signaling. Surprisingly, none of the Numb-overexpressing cells differentiated into hair cells, suggesting that high levels of Numb protein could interfere with intracellular processes essential for hair cell survival. However, when Numb was overexpressed early and more transiently during ear development, no effect on hair cell formation was seen. These results suggest that in the inner ear at least, Numb does not significantly repress Notch activity and that its asymmetric distribution in dividing precursor cells does not govern the choice between hair cell and supporting cell fates.
Collapse
Affiliation(s)
- Mark Eddison
- Howard Hughes Medical Institute, Janelia Research Campus Ashburn, VA, USA
| | - Sara J Weber
- Ear Institute, University College London London, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem cell Laboratory, Cancer Research UK, London Research Institute London, UK
| | - Julian Lewis
- Formerly of Vertebrate Development Laboratory, Cancer Research UK London, UK
| | | |
Collapse
|
15
|
Krieger JR, Taylor P, Moran MF, McGlade CJ. Comprehensive identification of phosphorylation sites on the Numb endocytic adaptor protein. Proteomics 2015; 15:434-46. [PMID: 25403733 DOI: 10.1002/pmic.201400232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/28/2014] [Accepted: 11/11/2014] [Indexed: 11/08/2022]
Abstract
Numb is an adaptor protein that functions in the endocytosis and intracellular trafficking of membrane receptors and adhesion molecules. Previous studies have indicated that Numb localization and function are regulated through phosphorylation by atypical protein kinase C at several key sites. Here, using LC-MS/MS, we report the identification of 25 serine/threonine Numb phosphorylation sites, and a single tyrosine phosphorylation site. Amino acid sequences flanking several of the sites identified conform to consensus motifs for cyclin-dependent kinase 5 (CDK5). In vitro kinase assays and immunoblotting confirmed that CDK5 phosphorylates Numb. LC-MS/MS analysis identified specific CDK5-directed phosphorylation of Numb at position S288 and at two additional regions. Therefore, Numb is likely to exist in multiple phospho-isoforms, and may be subject to phosphorylation-mediated regulation downstream of CDK5. These findings provide a basis for further investigations into the complex role of Numb phosphorylation in regulating its subcellular localization, protein interactions, and function. All MS data have been deposited in the ProteomeXchange with identifier PXD000997 (http://proteomecentral.proteomexchange.org/dataset/PXD000997).
Collapse
Affiliation(s)
- Jonathan R Krieger
- Program in Cell Biology, The Hospital For Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | |
Collapse
|
16
|
Krieger JR, Taylor P, Gajadhar AS, Guha A, Moran MF, McGlade CJ. Identification and selected reaction monitoring (SRM) quantification of endocytosis factors associated with Numb. Mol Cell Proteomics 2012; 12:499-514. [PMID: 23211419 DOI: 10.1074/mcp.m112.020768] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Numb is an endocytic adaptor protein that regulates the endocytosis and trafficking of transmembrane receptors including Notch, E-cadherin, and integrins. Vertebrate Numb is alternatively spliced at exons 3 and 9 to give rise to four protein isoforms. Expression of these isoforms varies at different developmental stages, and although the function of Numb isoforms containing exon 3 has been studied, the role of exon 9 inclusion has not been shown. Here we use affinity purification and tandem mass spectrometry to identify Numb associated proteins, including novel interactions with REPS1, BMP2K, and BCR. In vitro binding measurements indicated exon 9-independent Numb interaction with REPS1 and Eps15 EH domains. Selected reaction monitoring mass spectrometry was used to quantitatively compare the proteins associated with the p72 and p66 Numb isoforms, which differ by the exon 9 region. This showed that significantly more EPS15 and three AP-2 subunit proteins bound Numb isoforms containing exon 9. The EPS15 preference for exon 9-containing Numb was confirmed in intact cells by using a proximity ligation assay. Finally, we used multiplexed selected reaction monitoring mass spectrometry to assess the dynamic regulation of Numb association with endocytic proteins. Numb hyper-phosphorylation resulted in disassociation of Numb endocytic complexes, while inhibition of endocytosis did not alter Numb association with the AP-2 complex but altered recruitment of EPS15, REPS1, and BMP2K. Hence, quantitative mass spectrometric analysis of Numb protein-protein interactions has provided new insights into the assembly and regulation of protein complexes important in development and cancer.
Collapse
Affiliation(s)
- Jonathan R Krieger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Misquitta-Ali CM, Cheng E, O'Hanlon D, Liu N, McGlade CJ, Tsao MS, Blencowe BJ. Global profiling and molecular characterization of alternative splicing events misregulated in lung cancer. Mol Cell Biol 2011; 31:138-50. [PMID: 21041478 PMCID: PMC3019846 DOI: 10.1128/mcb.00709-10] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 07/19/2010] [Accepted: 10/25/2010] [Indexed: 01/02/2023] Open
Abstract
Alternative splicing (AS) is a widespread mechanism underlying the generation of proteomic and regulatory complexity. However, which of the myriad of human AS events play important roles in disease is largely unknown. To identify frequently occurring AS events in lung cancer, we used AS microarray profiling and reverse transcription-PCR (RT-PCR) assays to survey patient-matched normal and adenocarcinoma tumor tissues from the lungs of 29 individuals diagnosed with non-small cell lung cancer (NSCLC). Of 5,183 profiled alternative exons, four displayed tumor-associated changes in the majority of the patients. These events affected transcripts from the VEGFA, MACF1, APP, and NUMB genes. Similar AS changes were detected in NUMB and APP transcripts in primary breast and colon tumors. Tumor-associated increases in NUMB exon 9 inclusion correlated with reduced levels of NUMB protein expression and activation of the Notch signaling pathway, an event that has been linked to tumorigenesis. Moreover, short hairpin RNA (shRNA) knockdown of NUMB followed by isoform-specific rescue revealed that expression of the exon 9-skipped (nontumor) isoform represses Notch target gene activation whereas expression of the exon 9-included (tumor) isoform lacks this activity and is capable of promoting cell proliferation. The results thus reveal widespread AS changes in NSCLC that impact cell signaling in a manner that likely contributes to tumorigenesis.
Collapse
Affiliation(s)
- Christine M. Misquitta-Ali
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Edith Cheng
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Dave O'Hanlon
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Ni Liu
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - C. Jane McGlade
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Ming Sound Tsao
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Benjamin J. Blencowe
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, Canada M5S 3E1, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario, Canada M5G 1L7, Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
18
|
Karaczyn A, Bani-Yaghoub M, Tremblay R, Kubu C, Cowling R, Adams TL, Prudovsky I, Spicer D, Friesel R, Vary C, Verdi JM. Two novel human NUMB isoforms provide a potential link between development and cancer. Neural Dev 2010; 5:31. [PMID: 21122105 PMCID: PMC3009962 DOI: 10.1186/1749-8104-5-31] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 12/01/2010] [Indexed: 12/28/2022] Open
Abstract
We previously identified four functionally distinct human NUMB isoforms. Here, we report the identification of two additional isoforms and propose a link between the expression of these isoforms and cancer. These novel isoforms, NUMB5 and NUMB6, lack exon 10 and are expressed in cells known for polarity and migratory behavior, such as human amniotic fluid cells, glioblastoma and metastatic tumor cells. RT-PCR and luciferase assays demonstrate that NUMB5 and NUMB6 are less antagonistic to NOTCH signaling than other NUMB isoforms. Immunocytochemistry analyses show that NUMB5 and NUMB6 interact and complex with CDC42, vimentin and the CDC42 regulator IQGAP1 (IQ (motif) GTPase activating protein 1). Furthermore, the ectopic expression of NUMB5 and NUMB6 induces the formation of lamellipodia (NUMB5) and filopodia (NUMB6) in a CDC42- and RAC1-dependent manner. These results are complemented by in vitro and in vivo studies, demonstrating that NUMB5 and NUMB6 alter the migratory behavior of cells. Together, these novel isoforms may play a role in further understanding the NUMB function in development and cancer.
Collapse
Affiliation(s)
- Aldona Karaczyn
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Dr. Scarborough, ME 04074, USA
| | - Mahmud Bani-Yaghoub
- Neurogenesis and Brain Repair, Institute for Biological Sciences, National Research Council of Canada, Bldg M-54, 1500 Montreal Road, Ottawa, ON, K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada
| | - Roger Tremblay
- Neurogenesis and Brain Repair, Institute for Biological Sciences, National Research Council of Canada, Bldg M-54, 1500 Montreal Road, Ottawa, ON, K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada
| | - Chris Kubu
- USB Pharmaceuticals, Cleveland, OH 44128, USA
| | - Rebecca Cowling
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Tamara L Adams
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Dr. Scarborough, ME 04074, USA
| | - Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Dr. Scarborough, ME 04074, USA
| | - Douglas Spicer
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Dr. Scarborough, ME 04074, USA
| | - Robert Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Dr. Scarborough, ME 04074, USA
| | - Calvin Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Dr. Scarborough, ME 04074, USA
| | - Joseph M Verdi
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Dr. Scarborough, ME 04074, USA
| |
Collapse
|
19
|
Abstract
Numb carries the distinction of being the first molecule discovered to influence cell fate by being asymmetrically segregated during cell division. Originally identified from studies in Drosophila, further work has since demonstrated the importance of Numb in mammalian and, in particular, human systems, from diverse fields such as developmental neurobiology to cancer biology and neurodegenerative disease. This review surveys the body of knowledge concerning Numb, and discusses the relevance of Numb to human biology and disease.
Collapse
Affiliation(s)
- Benedict Yan
- Department of Pathology, National University Hospital and Yong Loo Lin's School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Republic of Singapore.
| |
Collapse
|
20
|
Abstract
The regulation of self-renewal, cell diversity, and differentiation can occur by modulating symmetric and asymmetric cell divisions. Remarkably, asymmetric cell divisions can arise through multiple processes in which molecules in the cytoplasm and nucleus, as well as template "immortal" DNA strands, can segregate to one daughter cell during cell division. Explaining how these events direct distinct daughter cell fates is a major challenge to understanding how the organism is assembled and maintained for a lifetime. Numerous technical issues that are associated with assessing how distinct cell fates are executed in vivo have resulted in divergent interpretations of experimental findings. This review addresses some of these points and considers different developmental model systems that attempt to investigate how cell fate decisions are determined, as well as the molecules that guide these choices.
Collapse
Affiliation(s)
- Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental Biology, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
21
|
Lu CB, Fu W, Xu X, Mattson MP. Numb-mediated neurite outgrowth is isoform-dependent, and requires activation of voltage-dependent calcium channels. Neuroscience 2009; 161:403-12. [PMID: 19344753 PMCID: PMC2692829 DOI: 10.1016/j.neuroscience.2009.03.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 01/05/2023]
Abstract
Numb is an evolutionarily conserved protein that controls the differentiation of neuronal progenitor cells by unknown mechanisms. Here we report that the neural cells expressing Numb isoforms with short phosphotyrosine-binding (SPTB) domain undergo extensive neurite outgrowth, an effect that can be blocked by voltage-gated Ca2+ channel (VGCC) inhibitor or by Ca2+ chelator. In contrast, tyrosine kinase inhibitor, genistein, and selective receptor tyrosine kinase (TrkA) inhibitor, K252alpha did not affect SPTB Numb-mediated neurite outgrowth. MAP kinase inhibitor, PD98059 partially reduced SPTB Numb-mediated neurite outgrowth. Cells expressing SPTB Numbs exhibit increased whole-cell Ca2+ current densities (ICa) which can be prevented by preincubation of either nifedipine or PD98095. Cells expressing LPTB Numbs expressed little ICa (density) and were not able to grow neurites. Our results indicate that Ca2+ influx through VGCC may be required for SPTB Numb-mediated neurite outgrowth, suggesting that Numb promotes neuronal differentiation by a mechanism involving PTB domain-specific regulation of Ca2+ influx and MAP kinase activation.
Collapse
Affiliation(s)
- Cheng B. Lu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
- IMSB, University of Leeds, United Kingdom
| | - Weiming Fu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Xiangru Xu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| |
Collapse
|
22
|
Gold K, Cotton JA, Stollewerk A. The role of Notch signalling and numb function in mechanosensory organ formation in the spider Cupiennius salei. Dev Biol 2008; 327:121-31. [PMID: 19121304 DOI: 10.1016/j.ydbio.2008.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 01/09/2023]
Abstract
In the spider Cupiennius salei the mechanosensory organs of the legs are generated from epithelial sensory precursor groups which are specified by elevated levels of the achaete-scute homologues CsASH1 and CsASH2. Neural precursors delaminate from the groups and occupy positions basal and proximal to the accessory cells which remain in the epithelium. Here we analyse the role of Notch signalling and numb function in the development of the mechanosensory organs of the spider. We show that Notch signalling is required for several processes: the selection of the sensory precursor groups, the maintenance of undifferentiated sensory precursors, the binary cell fate decision between accessory and neural fate and the differentiation of sensory neurons. Our data suggest that Numb antagonises Notch signalling in the neural precursors, which results in activation of the neural cell fate determinant Prospero and delamination of the neural precursors from the epithelium. Prospero is expressed de novo in sensory neural precursors and we assume that the expression of the gene is regulated by the Notch to Numb ratio within the sensory precursors. Interestingly, the spider numb RNAi phenotype resembles the numb/numblike loss of function phenotypes in the mammalian nervous system, indicating that the interaction between Notch signalling and Numb might play a similar role in both systems.
Collapse
Affiliation(s)
- Katrina Gold
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
23
|
Das AV, James J, Bhattacharya S, Imbalzano AN, Antony ML, Hegde G, Zhao X, Mallya K, Ahmad F, Knudsen E, Ahmad I. SWI/SNF Chromatin Remodeling ATPase Brm Regulates the Differentiation of Early Retinal Stem Cells/Progenitors by Influencing Brn3b Expression and Notch Signaling. J Biol Chem 2007; 282:35187-201. [PMID: 17855369 DOI: 10.1074/jbc.m706742200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Based on a variety of approaches, evidence suggests that different cell types in the vertebrate retina are generated by multipotential progenitors in response to interactions between cell intrinsic and cell extrinsic factors. The identity of some of the cellular determinants that mediate such interactions has emerged, shedding light on mechanisms underlying cell differentiation. For example, we know now that Notch signaling mediates the influence of the microenvironment on states of commitment of the progenitors by activating transcriptional repressors. Cell intrinsic factors such as the proneural basic helix-loop-helix and homeodomain transcription factors regulate a network of genes necessary for cell differentiation and maturation. What is missing from this picture is the role of developmental chromatin remodeling in coordinating the expression of disparate classes of genes for the differentiation of retinal progenitors. Here we describe the role of Brm, an ATPase in the SWI/SNF chromatin remodeling complex, in the differentiation of retinal progenitors into retinal ganglion cells. Using the perturbation of expression and function analyses, we demonstrate that Brm promotes retinal ganglion cell differentiation by facilitating the expression and function of a key regulator of retinal ganglion cells, Brn3b, and the inhibition of Notch signaling. In addition, we demonstrate that Brm promotes cell cycle exit during retinal ganglion cell differentiation. Together, our results suggest that Brm represents one of the nexus where diverse information of cell differentiation is integrated during cell differentiation.
Collapse
Affiliation(s)
- Ani V Das
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Katyal S, Gao Z, Liu RZ, Godbout R. Evolutionary conservation of alternative splicing in chicken. Cytogenet Genome Res 2007; 117:146-57. [PMID: 17675855 PMCID: PMC3726401 DOI: 10.1159/000103175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/13/2006] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing represents a source of great diversity for regulating protein expression and function. It has been estimated that one-third to two-thirds of mammalian genes are alternatively spliced. With the sequencing of the chicken genome and analysis of transcripts expressed in chicken tissues, we are now in a position to address evolutionary conservation of alternative splicing events in chicken and mammals. Here, we compare chicken and mammalian transcript sequences of 41 alternatively-spliced genes and 50 frequently accessed genes. Our results support a high frequency of splicing events in chicken, similar to that observed in mammals.
Collapse
Affiliation(s)
- S Katyal
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
25
|
Bani-Yaghoub M, Kubu CJ, Cowling R, Rochira J, Nikopoulos GN, Bellum S, Verdi JM. A switch in numb isoforms is a critical step in cortical development. Dev Dyn 2007; 236:696-705. [PMID: 17253625 DOI: 10.1002/dvdy.21072] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Loss of numb function suggests that numb maintains progenitors in an undifferentiated state. Herein, we demonstrate that numb1 and numb3 are expressed in undifferentiated cortical progenitors, whereas numb2 and numb4 become prominent throughout differentiation. To further assess the role of different numb isoforms in cortical neural development, we first created a Numb-null state with antisense morpholino, followed by the re-expression of specific numb isoforms. The re-expression of numb1 or numb3 resulted in a significant reduction of neural differentiation, correlating with an expansion of the cortical progenitor pool. In contrast, the expression of numb2 or numb4 resulted in a reduction of proliferating progenitors and a corresponding increase in mammalian achete-scute homologue (MASH1) expression, concurrent with the appearance of the microtubule[corrected]-associated [corrected] protein-2-positive neurons. Of interest, the effect of numb isoforms on neural differentiation could not be directly related to Notch, because classic canonical Notch signaling assays failed to uncover any differences in the four isoforms to inhibit the Notch downstream events. This finding suggests that numb may have other signaling properties during neuronal differentiation in addition to augmenting notch signal strength.
Collapse
Affiliation(s)
- Mahmud Bani-Yaghoub
- Laboratory of Neural Stem Cell Biology, Robarts Research Institute, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Kothapalli KS, Anthony JC, Pan BS, Hsieh AT, Nathanielsz PW, Brenna JT. Differential cerebral cortex transcriptomes of baboon neonates consuming moderate and high docosahexaenoic acid formulas. PLoS One 2007; 2:e370. [PMID: 17426818 PMCID: PMC1847718 DOI: 10.1371/journal.pone.0000370] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 03/20/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) are the major long chain polyunsaturated fatty acids (LCPUFA) of the central nervous system (CNS). These nutrients are present in most infant formulas at modest levels, intended to support visual and neural development. There are no investigations in primates of the biological consequences of dietary DHA at levels above those present in formulas but within normal breastmilk levels. METHODS AND FINDINGS Twelve baboons were divided into three formula groups: Control, with no DHA-ARA; "L", LCPUFA, with 0.33%DHA-0.67%ARA; "L3", LCPUFA, with 1.00%DHA-0.67%ARA. All the samples are from the precentral gyrus of cerebral cortex brain regions. At 12 weeks of age, changes in gene expression were detected in 1,108 of 54,000 probe sets (2.05%), with most showing <2-fold change. Gene ontology analysis assigns them to diverse biological functions, notably lipid metabolism and transport, G-protein and signal transduction, development, visual perception, cytoskeleton, peptidases, stress response, transcription regulation, and 400 transcripts having no defined function. PLA2G6, a phospholipase recently associated with infantile neuroaxonal dystrophy, was downregulated in both LCPUFA groups. ELOVL5, a PUFA elongase, was the only LCPUFA biosynthetic enzyme that was differentially expressed. Mitochondrial fatty acid carrier, CPT2, was among several genes associated with mitochondrial fatty acid oxidation to be downregulated by high DHA, while the mitochondrial proton carrier, UCP2, was upregulated. TIMM8A, also known as deafness/dystonia peptide 1, was among several differentially expressed neural development genes. LUM and TIMP3, associated with corneal structure and age-related macular degeneration, respectively, were among visual perception genes influenced by LCPUFA. TIA1, a silencer of COX2 gene translation, is upregulated by high DHA. Ingenuity pathway analysis identified a highly significant nervous system network, with epidermal growth factor receptor (EGFR) as the outstanding interaction partner. CONCLUSIONS These data indicate that LCPUFA concentrations within the normal range of human breastmilk induce global changes in gene expression across a wide array of processes, in addition to changes in visual and neural function normally associated with formula LCPUFA.
Collapse
Affiliation(s)
- Kumar S.D. Kothapalli
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, New York, United States of America
| | - Joshua C. Anthony
- Mead Johnson and Company, Evansville, Indiana, United States of America
| | - Bruce S. Pan
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, New York, United States of America
| | - Andrea T. Hsieh
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, New York, United States of America
| | - Peter W. Nathanielsz
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - J. Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, New York, United States of America
| |
Collapse
|
27
|
Corallini S, Fera S, Grisanti L, Falciatori I, Muciaccia B, Stefanini M, Vicini E. Expression of the adaptor protein m-Numb in mouse male germ cells. Reproduction 2006; 132:887-97. [PMID: 17127749 DOI: 10.1530/rep-06-0062] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Numb is an adaptor protein that is asymmetrically inherited at mitosis and controls the fate of sibling cells in different species. The role of m-Numb (mammalian Numb) as an important cell fate-determining factor has extensively been described mostly in neural tissues, particularly in progenitor cells, in the mouse. Biochemical and genetic analyses have shown that Numb acts as an inhibitor of the Notch signaling pathway, an evolutionarily conserved pathway involved in the control of cell proliferation, differentiation, and apoptosis. In the present study, we sought to determine m-Numb distribution in germ cells in the postnatal mouse testis. We show that all four m-Numb isoforms are widely expressed during postnatal testis development. By reverse transcriptase-PCR and western blot analyses, we further identify p71 as the predominantly expressed isoform in germ cells. Moreover, we demonstrate through co-immunoprecipitation studies that m-Numb physically associates with Ap2a1, a component of the endocytotic clathrin-coated vesicles. Finally, we employed confocal immunofluorescence microscopy of whole mount seminiferous tubules and isolated germ cells to gain more insight into the subcellular localization of m-Numb. These morphological analyses confirmed m-Numb and Ap2a1 co-localization. However, we did not observe asymmetric localization of m-Numb neither in mitotic spermatogonial stem cells nor in more differentiated spermatogonial cells, suggesting that spermatogonial stem cell fate in the mouse does not rely on asymmetric partitioning of m-Numb.
Collapse
Affiliation(s)
- Serena Corallini
- Dipartimento di Istologia ed Embriologia Medica, Università di Roma La Sapienza, Via Antonio Scarpa 14, 00161 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Cayouette M, Poggi L, Harris WA. Lineage in the vertebrate retina. Trends Neurosci 2006; 29:563-70. [PMID: 16920202 DOI: 10.1016/j.tins.2006.08.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 06/08/2006] [Accepted: 08/08/2006] [Indexed: 12/24/2022]
Abstract
Recent results are changing the way we think about cell-fate decision mechanisms in the retina. For a long time it was accepted that lineage was not important in retinal cellular determination but, as we review here, new data show that lineage programmes might be at the heart of this process. These programmes are intrinsic, but they are also plastic and are influenced by extrinsic signals.
Collapse
Affiliation(s)
- Michel Cayouette
- Cellular Neurobiology Laboratory, Institut de Recherches Cliniques de Montréal (IRCM) and Université de Montréal, Montréal, Quebec H2W 1R7, Canada.
| | | | | |
Collapse
|
29
|
Dho SE, Trejo J, Siderovski DP, McGlade CJ. Dynamic regulation of mammalian numb by G protein-coupled receptors and protein kinase C activation: Structural determinants of numb association with the cortical membrane. Mol Biol Cell 2006; 17:4142-55. [PMID: 16837553 PMCID: PMC1593178 DOI: 10.1091/mbc.e06-02-0097] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The cell fate determinant Numb is a membrane-associated adaptor protein involved in both development and intracellular vesicular trafficking. It has a phosphotyrosine-binding (PTB) domain and COOH-terminal endocytic-binding motifs for alpha-adaptin and Eps15 homology domain-containing proteins. Four isoforms of Numb are expressed in vertebrates, two of which selectively associate with the cortical membrane. In this study, we have characterized a cortical pool of Numb that colocalizes with AP2 and Eps15 at substratum plasma membrane punctae and cortical membrane-associated vesicles. Green fluorescent protein (GFP)-tagged mutants of Numb were used to identify the structural determinants required for localization. In addition to the previously described association of the PTB domain with the plasma membrane, we show that the AP2-binding motifs facilitate the association of Numb with cortical membrane punctae and vesicles. We also show that agonist stimulation of G protein-coupled receptors (GPCRs) that are linked to phospholipase Cbeta and protein kinase C (PKC) activation causes redistribution of Numb from the cortical membrane to the cytosol. This effect is correlated with Numb phosphorylation and an increase in its Triton X-100 solubility. Live-imaging analysis of mutants identified two regions within Numb that are independently responsive to GPCR-mediated lipid hydrolysis and PKC activation: the PTB domain and a region encompassing at least three putative PKC phosphorylation sites. Our data indicate that membrane localization of Numb is dynamically regulated by GPCR-activated phospholipid hydrolysis and PKC-dependent phosphorylation events.
Collapse
Affiliation(s)
- Sascha E. Dho
- *The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - JoAnn Trejo
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
| | - David P. Siderovski
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
| | - C. Jane McGlade
- *The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 2E4, Canada; and
| |
Collapse
|
30
|
Betschinger J, Knoblich JA. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 2004; 14:R674-85. [PMID: 15324689 DOI: 10.1016/j.cub.2004.08.017] [Citation(s) in RCA: 323] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One widespread mechanism for the generation of diverse cell types is the unequal inheritance of cell fate determinants. Several such determinants have been identified in the fruitfly Drosophila melanogaster and the worm Caenorhabditis elegans and the molecular machinery responsible for their asymmetric segregation is beginning to be unraveled. To divide asymmetrically, cells establish an axis of polarity, orient the mitotic spindle along this axis and localize cell fate determinants to one side of the cell. During cytokinesis, determinants are then segregated into one of the two daughter cells where they direct cell fate. Here, we outline the steps and factors that are involved in this process in Drosophila and C. elegans and discuss their potential conservation in vertebrates.
Collapse
Affiliation(s)
- Jörg Betschinger
- Research Institute of Molecular Pathology, Dr. Bohr Gasse 7, 1030 Vienna, Austria.
| | | |
Collapse
|
31
|
Abstract
Asymmetric cell division is a conserved mechanism for partitioning information during mitosis. Over the past several years, significant progress has been made in our understanding of how cells establish polarity during asymmetric cell division and how determinants, in the form of localized proteins and mRNAs, are segregated. In particular, genetic studies in Drosophila and Caenorhabditis elegans have linked cell polarity, G protein signaling and regulation of the cytoskeleton to coordination of mitotic spindle orientation and localization of determinants. Also, several new studies have furthered our understanding of how asymmetrically localized cell fate determinants, such as the Numb, a negative regulator Notch signaling, functions in biasing cell fates in the developing nervous system in Drosophila. In vertebrates, analysis of dividing neural progenitor cells by in vivo imaging has raised questions about the role of asymmetric cell divisions during neurogenesis.
Collapse
Affiliation(s)
- Fabrice Roegiers
- Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, 533 Parnassus Ave, San Francisco, California, 94122, USA
| | | |
Collapse
|
32
|
Abstract
Notch is a key regulator of vertebrate neurogenesis and the cytoplasmic adaptor protein Numb is a modulator of the Notch signaling pathway. To address the role of murine Numb in development of the central nervous system, we used a conditional gene ablation approach. We show that Numb is involved in the maturation of cerebellar granule cells. Although the specification of neural cell fates in the cerebellum is not affected in the absence of Numb, the transition from a mitotic progenitor to a mature granule cell is aberrant and migration of postmitotic granule cells to the internal granule cell layer is delayed. In some animals, this results in a complete agenesis of granule cells and a strong ataxia. We confirmed these findings in vitro and found that Numb-deficient cerebellar progenitor cells show a marked delay in granule cell maturation. Our results suggest that Numb plays a role in the transition of a mitotic progenitor to a fully differentiated granule cell in the cerebellum. In addition, the maturation of Purkinje cells is also delayed in Numb-deficient mice.
Collapse
Affiliation(s)
- Anne-Laurence Klein
- Max Planck Institute of Immunobiology, Department of Molecular Embryology, D-79108 Freiburg, Germany
| | | | | | | |
Collapse
|
33
|
Abstract
The majority of cells that build the nervous system of animals are generated early in embryonic development in a process called neurogenesis. Although the vertebrate nervous system is much more complex than that of insects, the underlying principles of neurogenesis are intriguingly similar. In both cases, neuronal cells are derived from polarized progenitor cells that divide asymmetrically. One daughter cell will continue to divide and the other daughter cell leaves the cell cycle and starts to differentiate as a neuron or a glia cell. In Drosophila, this process has been analyzed in great detail and several of the key players that control asymmetric cell division in the developing nervous system have been identified over the past years. Asymmetric cell division in vertebrate neurogenesis has been studied mostly at a descriptive level and so far little is known about the molecular mechanisms that control this process. In this review we will focus on recent findings dealing with asymmetric cell division during neurogenesis in Drosophila and vertebrates and will discuss common principles and apparent differences between both systems.
Collapse
Affiliation(s)
- Andreas Wodarz
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
34
|
Parker MH, Seale P, Rudnicki MA. Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet 2003; 4:497-507. [PMID: 12838342 DOI: 10.1038/nrg1109] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle has an intrinsic capacity for regeneration following injury or exercise. The presence of adult stem cells in various tissues with myogenic potential provides new opportunities for cell-based therapies to treat muscle disease. Recent studies have shown a conserved transcriptional hierarchy that regulates the myogenic differentiation of both embryonic and adult stem cells. Importantly, the molecules and signalling pathways that induce myogenic determination in the embryo might be manipulated or mimicked to direct the differentiation of adult stem cells either in vivo or ex vivo.
Collapse
Affiliation(s)
- Maura H Parker
- Ottawa Health Research Institute, Molecular Medicine Program, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | | | | |
Collapse
|
35
|
Cayouette M, Raff M. The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development 2003; 130:2329-39. [PMID: 12702648 DOI: 10.1242/dev.00446] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Asymmetric segregation of cell-fate determinants during cell division plays an important part in generating cell diversity in invertebrates. We showed previously that cells in the neonatal rat retina divide at various orientations and that some dividing cells asymmetrically distribute the cell-fate determinant Numb to the two daughter cells. Here, we test the possibility that such asymmetric divisions contribute to retinal cell diversification. We have used long-term videomicroscopy of green-fluorescent-protein (GFP)-labeled retinal explants from neonatal rats to visualize the plane of cell division and follow the differentiation of the daughter cells. We found that cells that divided with a horizontal mitotic spindle, where both daughter cells should inherit Numb, tended to produce daughters that became the same cell type, whereas cells that divided with a vertical mitotic spindle, where only one daughter cell should inherit Numb, tended to produce daughters that became different. Moreover, overexpression of Numb in the dividing cells promoted the development of photoreceptor cells at the expense of interneurons and Müller glial cells. These findings indicate that the plane of cell division influences cell-fate choice in the neonatal rat retina and support the hypothesis that the asymmetric segregation of Numb normally influences some of these choices.
Collapse
Affiliation(s)
- Michel Cayouette
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|