1
|
Meyer M, Slot J. The evolution and ecology of psilocybin in nature. Fungal Genet Biol 2023; 167:103812. [PMID: 37210028 DOI: 10.1016/j.fgb.2023.103812] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Fungi produce diverse metabolites that can have antimicrobial, antifungal, antifeedant, or psychoactive properties. Among these metabolites are the tryptamine-derived compounds psilocybin, its precursors, and natural derivatives (collectively referred to as psiloids), which have played significant roles in human society and culture. The high allocation of nitrogen to psiloids in mushrooms, along with evidence of convergent evolution and horizontal transfer of psilocybin genes, suggest they provide a selective benefit to some fungi. However, no precise ecological roles of psilocybin have been experimentally determined. The structural and functional similarities of psiloids to serotonin, an essential neurotransmitter in animals, suggest that they may enhance the fitness of fungi through interference with serotonergic processes. However, other ecological mechanisms of psiloids have been proposed. Here, we review the literature pertinent to psilocybin ecology and propose potential adaptive advantages psiloids may confer to fungi.
Collapse
Affiliation(s)
- Matthew Meyer
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA; Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Center for Psychedelic Drug Research and Education, The Ohio State University, Columbus, OH 43210, USA.
| | - Jason Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA; Center for Psychedelic Drug Research and Education, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Palmateer CM, Artikis C, Brovero SG, Friedman B, Gresham A, Arbeitman MN. Single-cell transcriptome profiles of Drosophila fruitless-expressing neurons from both sexes. eLife 2023; 12:e78511. [PMID: 36724009 PMCID: PMC9891730 DOI: 10.7554/elife.78511] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/08/2023] [Indexed: 02/02/2023] Open
Abstract
Drosophila melanogaster reproductive behaviors are orchestrated by fruitless neurons. We performed single-cell RNA-sequencing on pupal neurons that produce sex-specifically spliced fru transcripts, the fru P1-expressing neurons. Uniform Manifold Approximation and Projection (UMAP) with clustering generates an atlas containing 113 clusters. While the male and female neurons overlap in UMAP space, more than half the clusters have sex differences in neuron number, and nearly all clusters display sex-differential expression. Based on an examination of enriched marker genes, we annotate clusters as circadian clock neurons, mushroom body Kenyon cell neurons, neurotransmitter- and/or neuropeptide-producing, and those that express doublesex. Marker gene analyses also show that genes that encode members of the immunoglobulin superfamily of cell adhesion molecules, transcription factors, neuropeptides, neuropeptide receptors, and Wnts have unique patterns of enriched expression across the clusters. In vivo spatial gene expression links to the clusters are examined. A functional analysis of fru P1 circadian neurons shows they have dimorphic roles in activity and period length. Given that most clusters are comprised of male and female neurons indicates that the sexes have fru P1 neurons with common gene expression programs. Sex-specific expression is overlaid on this program, to build the potential for vastly different sex-specific behaviors.
Collapse
Affiliation(s)
- Colleen M Palmateer
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Catherina Artikis
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Savannah G Brovero
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Benjamin Friedman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Alexis Gresham
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Michelle N Arbeitman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
- Program of Neuroscience, Florida State UniversityTallahasseeUnited States
| |
Collapse
|
3
|
Knapp EM, Kaiser A, Arnold RC, Sampson MM, Ruppert M, Xu L, Anderson MI, Bonanno SL, Scholz H, Donlea JM, Krantz DE. Mutation of the Drosophila melanogaster serotonin transporter dSERT impacts sleep, courtship, and feeding behaviors. PLoS Genet 2022; 18:e1010289. [PMID: 36409783 PMCID: PMC9721485 DOI: 10.1371/journal.pgen.1010289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
The Serotonin Transporter (SERT) regulates extracellular serotonin levels and is the target of most current drugs used to treat depression. The mechanisms by which inhibition of SERT activity influences behavior are poorly understood. To address this question in the model organism Drosophila melanogaster, we developed new loss of function mutations in Drosophila SERT (dSERT). Previous studies in both flies and mammals have implicated serotonin as an important neuromodulator of sleep, and our newly generated dSERT mutants show an increase in total sleep and altered sleep architecture that is mimicked by feeding the SSRI citalopram. Differences in daytime versus nighttime sleep architecture as well as genetic rescue experiments unexpectedly suggest that distinct serotonergic circuits may modulate daytime versus nighttime sleep. dSERT mutants also show defects in copulation and food intake, akin to the clinical side effects of SSRIs and consistent with the pleomorphic influence of serotonin on the behavior of D. melanogaster. Starvation did not overcome the sleep drive in the mutants and in male dSERT mutants, the drive to mate also failed to overcome sleep drive. dSERT may be used to further explore the mechanisms by which serotonin regulates sleep and its interplay with other complex behaviors.
Collapse
Affiliation(s)
- Elizabeth M. Knapp
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Andrea Kaiser
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Rebecca C. Arnold
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Maureen M. Sampson
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Manuela Ruppert
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Li Xu
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | | | - Shivan L. Bonanno
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Henrike Scholz
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Jeffrey M. Donlea
- Department of Neurobiology, University of California, Los Angeles, California, United States of America
| | - David E. Krantz
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Maaroufi HO, Pauchova L, Lin YH, Wu BCH, Rouhova L, Kucerova L, Vieira LC, Renner M, Sehadova H, Hradilova M, Zurovec M. Mutation in Drosophila concentrative nucleoside transporter 1 alters spermatid maturation and mating behavior. Front Cell Dev Biol 2022; 10:945572. [PMID: 36105362 PMCID: PMC9467524 DOI: 10.3389/fcell.2022.945572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022] Open
Abstract
Concentrative nucleoside transporters (Cnts) are unidirectional carriers that mediate the energy-costly influx of nucleosides driven by the transmembrane sodium gradient. Cnts are transmembrane proteins that share a common structural organization and are found in all phyla. Although there have been studies on Cnts from a biochemical perspective, no deep research has examined their role at the organismal level. Here, we investigated the role of the Drosophila melanogaster cnt1 gene, which is specifically expressed in the testes. We used the CRISPR/Cas9 system to generate a mutation in the cnt1 gene. The cnt1 mutants exhibited defects in the duration of copulation and spermatid maturation, which significantly impaired male fertility. The most striking effect of the cnt1 mutation in spermatid maturation was an abnormal structure of the sperm tail, in which the formation of major and minor mitochondrial derivatives was disrupted. Our results demonstrate the importance of cnt1 in male fertility and suggest that the observed defects in mating behavior and spermatogenesis are due to alterations in nucleoside transport and associated metabolic pathways.
Collapse
Affiliation(s)
- Houda Ouns Maaroufi
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lucie Pauchova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Yu-Hsien Lin
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Bulah Chia-Hsiang Wu
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lenka Rouhova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lucie Kucerova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Ligia Cota Vieira
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Marek Renner
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Hana Sehadova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Miluse Hradilova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
- *Correspondence: Michal Zurovec,
| |
Collapse
|
5
|
Casado-Navarro R, Serrano-Saiz E. DMRT Transcription Factors in the Control of Nervous System Sexual Differentiation. Front Neuroanat 2022; 16:937596. [PMID: 35958734 PMCID: PMC9361473 DOI: 10.3389/fnana.2022.937596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Sexual phenotypic differences in the nervous system are one of the most prevalent features across the animal kingdom. The molecular mechanisms responsible for sexual dimorphism throughout metazoan nervous systems are extremely diverse, ranging from intrinsic cell autonomous mechanisms to gonad-dependent endocrine control of sexual traits, or even extrinsic environmental cues. In recent years, the DMRT ancient family of transcription factors has emerged as being central in the development of sex-specific differentiation in all animals in which they have been studied. In this review, we provide an overview of the function of Dmrt genes in nervous system sexual regulation from an evolutionary perspective.
Collapse
|
6
|
Sisterson MS, Brent CS. Nutritional and Physiological Regulation of Glassy-Winged Sharpshooter Oogenesis. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:526-538. [PMID: 35024833 DOI: 10.1093/jee/toab260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 06/14/2023]
Abstract
The glassy-winged sharpshooter (Homalodisca vitripennis (Germar); Hemiptera: Cicadellidae: Cicadellinae) is an invasive insect that transmits the plant pathogenic bacterium Xylella fastidiosa Wells et al. (Xanthomonadales: Xanthomonadacae). While adult glassy-winged sharpshooter must feed to produce eggs, the role of nutritional status on initiating oogenesis is poorly understood. To determine the effects of glassy-winged sharpshooter nutrition on nymphal development, oogenesis, and fecundity, glassy-winged sharpshooter were reared on cowpea, sunflower, sorghum, and a mixture of the three plant species. Adults emerging from cowpea, sunflower, or plant mixture treatments had shorter development times, attained larger size, and had greater estimated lipid reserves than females reared on sorghum. In choice tests, nymphs avoided sorghum and preferentially fed on cowpea and sunflower. Adult females provisioned with a single plant species during the nymphal stage were provided with either the same host plant species or a mixture of host plant species (cowpea, sunflower, sorghum) for a 9-wk oviposition period, with 37% of females initiating oogenesis. Ovipositing females had greater juvenile hormone and octopamine levels than reproductively inactive females, although topical application of the juvenile hormone analog Methoprene did not promote oogenesis. Across nymphal diets, reproductively active females produced more eggs when held on plant mixtures than on single plant species. In choice tests, adult females were observed most frequently on cowpea, although most eggs were deposited on sorghum, the host least preferred by nymphs. Results suggest that fecundity is largely determined by the quality of the adult diet, although the stimulus that initiates oogenesis does not appear to be related to nutrition.
Collapse
Affiliation(s)
- Mark S Sisterson
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Colin S Brent
- USDA, Agricultural Research Service, Maricopa, AZ, USA
| |
Collapse
|
7
|
Mine S, Sumitani M, Aoki F, Hatakeyama M, Suzuki MG. Effects of Functional Depletion of Doublesex on Male Development in the Sawfly, Athalia rosae. INSECTS 2021; 12:insects12100849. [PMID: 34680618 PMCID: PMC8538284 DOI: 10.3390/insects12100849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The sawfly, Athalia rosae, exploits a haplodiploid mode of reproduction, in which fertilized eggs develop into diploid females, whereas unfertilized eggs parthenogenetically develop into haploid males. The doublesex (dsx) gene is a well-conserved transcription factor that regulates sexual differentiation in insects. In the present study, we knocked down the A. rosae ortholog of dsx (Ardsx) during several developmental stages with repeated double-stranded RNA (dsRNA) injections. As a result, knockdown of Ardsx in haploid males caused almost complete male-to-female sex reversal, but the resulting eggs were infertile. The same knockdown approach using diploid males caused complete male-to-female sex reversal; they were able to produce fertile eggs and exhibited female behaviors. The same RNAi treatment did not affect female differentiation. These results demonstrated that dsx in the sawfly is essential for male development and its depletion caused complete male-to-female sex reversal. This is the first demonstration of functional depletion of dsx not causing intersexuality but inducing total sex reversal in males instead. Abstract The doublesex (dsx) gene, which encodes a transcription factor, regulates sexual differentiation in insects. Sex-specific splicing of dsx occurs to yield male- and female-specific isoforms, which promote male and female development, respectively. Thus, functional disruption of dsx leads to an intersexual phenotype in both sexes. We previously identified a dsx ortholog in the sawfly, Athalia rosae. Similar to dsx in other insects, dsx in the sawfly yields different isoforms in males and females as a result of alternative splicing. The sawfly exploits a haplodiploid mode of reproduction, in which fertilized eggs develop into diploid females, whereas unfertilized eggs parthenogenetically develop into haploid males. In the present study, we knocked down the A. rosae ortholog of dsx (Ardsx) during several developmental stages with repeated double-stranded RNA (dsRNA) injections. Knockdown of Ardsx via parental RNA interference (RNAi), which enables knockdown of genes in offspring embryos, led to a lack of internal and external genitalia in haploid male progeny. Additional injection of dsRNA targeting Ardsx in these animals caused almost complete male-to-female sex reversal, but the resulting eggs were infertile. Notably, the same knockdown approach using diploid males obtained by sib-crossing caused complete male-to-female sex reversal; they were morphologically and behaviorally females. The same RNAi treatment did not affect female differentiation. These results indicate that dsx in the sawfly is essential for male development and its depletion caused complete male-to-female sex reversal. This is the first demonstration of functional depletion of dsx not causing intersexuality but inducing total sex reversal in males instead.
Collapse
Affiliation(s)
- Shotaro Mine
- Department of Biosciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan;
| | - Megumi Sumitani
- Division of Biotechnology, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba 305-8634, Japan;
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan;
| | - Masatsugu Hatakeyama
- Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba 305-8634, Japan;
| | - Masataka G. Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan;
- Correspondence: ; Tel.: +81-4-7136-3694
| |
Collapse
|
8
|
Thornquist SC, Pitsch MJ, Auth CS, Crickmore MA. Biochemical evidence accumulates across neurons to drive a network-level eruption. Mol Cell 2021; 81:675-690.e8. [PMID: 33453167 PMCID: PMC7924971 DOI: 10.1016/j.molcel.2020.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 11/19/2022]
Abstract
Neural network computations are usually assumed to emerge from patterns of fast electrical activity. Challenging this view, we show that a male fly's decision to persist in mating hinges on a biochemical computation that enables processing over minutes to hours. Each neuron in a recurrent network contains slightly different internal molecular estimates of mating progress. Protein kinase A (PKA) activity contrasts this internal measurement with input from the other neurons to represent accumulated evidence that the goal of the network has been achieved. When consensus is reached, PKA pushes the network toward a large-scale and synchronized burst of calcium influx that we call an eruption. Eruptions transform continuous deliberation within the network into an all-or-nothing output, after which the male will no longer sacrifice his life to continue mating. Here, biochemical activity, invisible to most large-scale recording techniques, is the key computational currency directing behavior and motivational state.
Collapse
Affiliation(s)
- Stephen C Thornquist
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maximilian J Pitsch
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charlotte S Auth
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Crickmore
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Begum M, Paul P, Das D, Chakraborty K, Bhattacharjee A, Ghosh S. Genes regulating development and behavior exhibited altered expression in Drosophila melanogaster exposed to bisphenol A: use of real-time quantitative PCR (qRT-PCR) and droplet digital PCR (ddPCR) in genotoxicity study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7090-7104. [PMID: 33025430 DOI: 10.1007/s11356-020-10805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Toxicity of bisphenol A on morphological and life-history traits of model insect Drosophila melanogaster was reported in our previous work. In the present study, we have analyzed the adversity of bisphenol A on the reproductive behavior of adult and on the expression of selected genes in the larva and adult stage of fruit fly exposed to bisphenol A (0.007 g/2 ml. or 3.5 mg/ml), in addition to determination of LC50 value of bisphenol A in larva and pupal stage. We employed both the quantitative reverse transcriptase PCR and droplet digital PCR for analyzing the expression profile of seven genes namely, decapentaplegic, vestigial, wingless, foraging, insulin-like receptor, doublesex, and fruitless. We found bisphenol A has more adverse effects on male sexual behavior than females. Moreover, we observed significant downregulation of all the selected genes in treated larvae except, fruitless in male where it showed significant upregulation. On contrary among the treated adult flies, significant downregulation of all target genes in both sexes is evident, except, doublesex and fruitless in males which showed significant upregulation. We did not observe any deviation of male: female sex ratio from 1:1 under bisphenol A exposure. All these results suggest bisphenol A adversely affects the optimum functioning of genes which are involved in the regulation of metabolic pathways, behavioral pattern, stress response, endocrine homeostasis, neural functioning, and the development of the specific organ in Drosophila melanogaster. Our result not only provides a foundation to study further the bisphenol A toxicity on different pivotal genes in Drosophila but also suggests the use of the droplet digital PCR technology in toxicity measurement at the molecular level in eukaryotic model systems.
Collapse
Affiliation(s)
- Morium Begum
- Department of Zoology, Cytogenetics & Genomics Research Unit, University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35, Ballygunge Circular Road.Kolkata, West Bengal, 700019, India
| | - Pallab Paul
- Department of Zoology, Cytogenetics & Genomics Research Unit, University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35, Ballygunge Circular Road.Kolkata, West Bengal, 700019, India
| | - Debasmita Das
- Department of Zoology, Cytogenetics & Genomics Research Unit, University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35, Ballygunge Circular Road.Kolkata, West Bengal, 700019, India
| | - Kaustav Chakraborty
- Amity Institute of Biotechnology, Amity-University Kolkata, Plot no 36, 37, and 38, Major Arterial Road (South-East), Action Area II, Newtown, Kolkata, West Bengal, 700135, India
| | - Ashima Bhattacharjee
- Amity Institute of Biotechnology, Amity-University Kolkata, Plot no 36, 37, and 38, Major Arterial Road (South-East), Action Area II, Newtown, Kolkata, West Bengal, 700135, India
| | - Sujay Ghosh
- Department of Zoology, Cytogenetics & Genomics Research Unit, University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35, Ballygunge Circular Road.Kolkata, West Bengal, 700019, India.
| |
Collapse
|
10
|
Allen AM, Neville MC, Birtles S, Croset V, Treiber CD, Waddell S, Goodwin SF. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. eLife 2020; 9:e54074. [PMID: 32314735 PMCID: PMC7173974 DOI: 10.7554/elife.54074] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila ventral nerve cord (VNC) receives and processes descending signals from the brain to produce a variety of coordinated locomotor outputs. It also integrates sensory information from the periphery and sends ascending signals to the brain. We used single-cell transcriptomics to generate an unbiased classification of cellular diversity in the VNC of five-day old adult flies. We produced an atlas of 26,000 high-quality cells, representing more than 100 transcriptionally distinct cell types. The predominant gene signatures defining neuronal cell types reflect shared developmental histories based on the neuroblast from which cells were derived, as well as their birth order. The relative position of cells along the anterior-posterior axis could also be assigned using adult Hox gene expression. This single-cell transcriptional atlas of the adult fly VNC will be a valuable resource for future studies of neurodevelopment and behavior.
Collapse
Affiliation(s)
- Aaron M Allen
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Sebastian Birtles
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Vincent Croset
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | | | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
11
|
Talyn B, Lemon R, Badoella M, Melchiorre D, Villalobos M, Elias R, Muller K, Santos M, Melchiorre E. Roundup ®, but Not Roundup-Ready ® Corn, Increases Mortality of Drosophila melanogaster. TOXICS 2019; 7:E38. [PMID: 31370250 PMCID: PMC6789507 DOI: 10.3390/toxics7030038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Genetically modified foods have become pervasive in diets of people living in the US. By far the most common genetically modified foods either tolerate herbicide application (HT) or produce endogenous insecticide (Bt). To determine whether these toxicological effects result from genetic modification per se, or from the increase in herbicide or insecticide residues present on the food, we exposed fruit flies, Drosophila melanogaster, to food containing HT corn that had been sprayed with the glyphosate-based herbicide Roundup®, HT corn that had not been sprayed with Roundup®, or Roundup® in a variety of known glyphosate concentrations and formulations. While neither lifespan nor reproductive behaviors were affected by HT corn, addition of Roundup® increased mortality with an LC50 of 7.1 g/L for males and 11.4 g/L for females after 2 days of exposure. Given the many genetic tools available, Drosophila are an excellent model system for future studies about genetic and biochemical mechanisms of glyphosate toxicity.
Collapse
Affiliation(s)
- Becky Talyn
- College of Natural Science, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA.
| | - Rachael Lemon
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Maryam Badoella
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | | | - Maryori Villalobos
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Raquel Elias
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Kelly Muller
- Chemistry and Biochemistry Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Maggie Santos
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Erik Melchiorre
- Geology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| |
Collapse
|
12
|
Nojima T, Chauvel I, Houot B, Bousquet F, Farine JP, Everaerts C, Yamamoto D, Ferveur JF. The desaturase1 gene affects reproduction before, during and after copulation in Drosophila melanogaster. J Neurogenet 2019; 33:96-115. [PMID: 30724684 DOI: 10.1080/01677063.2018.1559843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Desaturase1 (desat1) is one of the few genes known to be involved in the two complementary aspects of sensory communication - signal emission and signal reception - in Drosophila melanogaster. In particular, desat1 is necessary for the biosynthesis of major cuticular pheromones in both males and females. It is also involved in the male ability to discriminate sex pheromones. Each of these two sensory communication aspects depends on distinct desat1 putative regulatory regions. Here, we used (i) mutant alleles resulting from the insertion/excision of a transposable genomic element inserted in a desat1 regulatory region, and (ii) transgenics made with desat1 regulatory regions used to target desat1 RNAi. These genetic variants were used to study several reproduction-related phenotypes. In particular, we compared the fecundity of various mutant and transgenic desat1 females with regard to the developmental fate of their progeny. We also compared the mating performance in pairs of flies with altered desat1 expression in various desat1-expressing tissues together with their inability to disengage at the end of copulation. Moreover, we investigated the developmental origin of altered sex pheromone discrimination in male flies. We attempted to map some of the tissues involved in these reproduction-related phenotypes. Given that desat1 is expressed in many brain neurons and in non-neuronal tissues required for varied aspects of reproduction, our data suggest that the regulation of this gene has evolved to allow the optimal reproduction and a successful adaptation to varied environments in this cosmopolitan species.
Collapse
Affiliation(s)
- Tetsuya Nojima
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France.,b Graduate School of Life Sciences , Tohoku University , Sendai , Japan.,c Centre for Neural Circuits and Behaviour , University of Oxford , Oxford , United Kingdom
| | - Isabelle Chauvel
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Benjamin Houot
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France.,d Division of Chemical Ecology, Department of Plant Protection Biology , Swedish University of Agricultural Sciences , Alnarp , Sweden
| | - François Bousquet
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Jean-Pierre Farine
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Claude Everaerts
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Daisuke Yamamoto
- b Graduate School of Life Sciences , Tohoku University , Sendai , Japan.,e Neuro-Network Evolution Project, Advanced ICT Research Institute , National Institute of Information and Communications Technology , Nishi-Ku , Japan Kobe
| | - Jean-François Ferveur
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| |
Collapse
|
13
|
Jois S, Chan YB, Fernandez MP, Leung AKW. Characterization of the Sexually Dimorphic fruitless Neurons That Regulate Copulation Duration. Front Physiol 2018; 9:780. [PMID: 29988589 PMCID: PMC6026680 DOI: 10.3389/fphys.2018.00780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/04/2018] [Indexed: 11/13/2022] Open
Abstract
Male courtship in Drosophila melanogaster is a sexually dimorphic innate behavior that is hardwired in the nervous system. Understanding the neural mechanism of courtship behavior requires the anatomical and functional characterization of all the neurons involved. Courtship involves a series of distinctive behavioral patterns, culminating in the final copulation step, where sperms from the male are transferred to the female. The duration of this process is tightly controlled by multiple genes. The fruitless (fru) gene is one of the factors that regulate the duration of copulation. Using several intersectional genetic combinations to restrict the labeling of GAL4 lines, we found that a subset of a serotonergic cluster of fru neurons co-express the dopamine-synthesizing enzyme, tyrosine hydroxylase, and provide behavioral and immunological evidence that these neurons are involved in the regulation of copulation duration.
Collapse
Affiliation(s)
- Shreyas Jois
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yick Bun Chan
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Maria Paz Fernandez
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Adelaine Kwun-Wai Leung
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Sex Determination Cascade in Insects: A Great Treasure House of Alternative Splicing. DIVERSITY AND COMMONALITY IN ANIMALS 2018. [DOI: 10.1007/978-4-431-56609-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Serotonergic neuronal death and concomitant serotonin deficiency curb copulation ability of Drosophila platonic mutants. Nat Commun 2016; 7:13792. [PMID: 27958269 PMCID: PMC5159827 DOI: 10.1038/ncomms13792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/31/2016] [Indexed: 01/10/2023] Open
Abstract
Drosophila platonic (plt) males court females, but fail to copulate. Here we show that plt is an allele of scribbler (sbb), a BMP signalling component. sbb knockdown in larvae leads to the loss of approximately eight serotonergic neurons, which express the sex-determinant protein Doublesex (Dsx). Genetic deprivation of serotonin (5-HT) from dsx-expressing neurons results in copulation defects. Thus, sbb+ is developmentally required for the survival of a specific subset of dsx-expressing neurons, which support the normal execution of copulation in adults by providing 5-HT. Our study highlights the conserved involvement of serotonergic neurons in the control of copulatory mechanisms and the key role of BMP signalling in the formation of a sex-specific circuitry. Drosophila platonic (plt) mutant males court with females but fail to copulate. Here, the authors find plt is an allele of scribbler and may disrupt courtship behaviour via developmental disruption of a subgroup of serotonergic Doublesex+ neurons in the abdominal ganglion.
Collapse
|
16
|
Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons. G3-GENES GENOMES GENETICS 2016; 6:2455-65. [PMID: 27247289 PMCID: PMC4978899 DOI: 10.1534/g3.115.019265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1) underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2-5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP) identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons.
Collapse
|
17
|
Brent CS, Miyasaki K, Vuong C, Miranda B, Steele B, Brent KG, Nath R. Regulatory roles of biogenic amines and juvenile hormone in the reproductive behavior of the western tarnished plant bug (Lygus hesperus). J Comp Physiol B 2015; 186:169-79. [DOI: 10.1007/s00360-015-0953-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
|
18
|
Nojima T, Neville MC, Goodwin SF. Fruitless isoforms and target genes specify the sexually dimorphic nervous system underlying Drosophila reproductive behavior. Fly (Austin) 2015; 8:95-100. [PMID: 25483248 PMCID: PMC4197022 DOI: 10.4161/fly.29132] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Courtship is pivotal to successful reproduction throughout the animal kingdom. Sexual differences in the nervous system are thought to underlie courtship behavior. Male courtship behavior in Drosophila is in large part regulated by the gene fruitless (fru). fru has been reported to encode at least three putative BTB-zinc-finger transcription factors predicted to have different DNA-binding specificities. Although a large number of previous studies have demonstrated that fru plays essential roles in male courtship behavior, we know little about the function of Fru isoforms at the molecular level. Our recent study revealed that male-specific Fru isoforms are expressed in highly overlapping subsets of neurons in the male brain and ventral nerve cord. Fru isoforms play both distinct and redundant roles in male courtship behavior. Importantly, we have identified for the first time, by means of the DamID technique, direct Fru transcriptional target genes. Fru target genes overwhelmingly represent genes previously reported to be involved in the nervous system development, such as CadN, lola and pdm2. Our study provides important insight into how the sexually dimorphic neural circuits underlying reproductive behavior are established.
Collapse
Affiliation(s)
- Tetsuya Nojima
- a Department of Physiology, Anatomy and Genetics; University of Oxford; Oxford, UK
| | | | | |
Collapse
|
19
|
Bates KE, Molnar J, Robinow S. The unfulfilled gene and nervous system development in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:217-23. [PMID: 24953188 DOI: 10.1016/j.bbagrm.2014.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/07/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022]
Abstract
The unfulfilled gene of Drosophila encodes a member of the NR2E subfamily of nuclear receptors. Like related members of the NR2E subfamily, UNFULFILLED is anticipated to function as a dimer, binding to DNA response elements and regulating the expression of target genes. The UNFULFILLED protein may be regulated by ligand-binding and may also be post-transcriptionally modified by sumoylation and phosphorylation. unfulfilled mutants display a range of aberrant phenotypes, problems with eclosion and post-eclosion behaviors, compromised fertility, arrhythmicity, and a lack of all adult mushroom body lobes. The locus of the fertility problem has not been determined. The behavioral arrhythmicity is due to the unfulfilled-dependent disruption of gene expression in a set of pacemaker neurons. The eclosion and the mushroom body lobe phenotypes of unfulfilled mutants are the result of developmental problems associated with failures in axon pathfinding or re-extension. Interest in genes that act downstream of unfulfilled has resulted in the identification of a growing number of unfulfilled interacting loci, providing the first glimpse into the composition of unfulfilled-dependent gene networks. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Karen E Bates
- Department of Biology, University of Hawaii, Honolulu, HI 96822, USA
| | - Janos Molnar
- Department of Biology, University of Hawaii, Honolulu, HI 96822, USA
| | - Steven Robinow
- Department of Biology, University of Hawaii, Honolulu, HI 96822, USA.
| |
Collapse
|
20
|
Luo J, Lushchak OV, Goergen P, Williams MJ, Nässel DR. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior. PLoS One 2014; 9:e99732. [PMID: 24923784 PMCID: PMC4055686 DOI: 10.1371/journal.pone.0099732] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/19/2014] [Indexed: 12/19/2022] Open
Abstract
A set of 14 insulin-producing cells (IPCs) in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5). Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.
Collapse
Affiliation(s)
- Jiangnan Luo
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Philip Goergen
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
21
|
Genome wide identification of fruitless targets suggests a role in upregulating genes important for neural circuit formation. Sci Rep 2014; 4:4412. [PMID: 24642956 PMCID: PMC3958720 DOI: 10.1038/srep04412] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/28/2014] [Indexed: 11/09/2022] Open
Abstract
The fruitless gene (fru) encodes a set of transcription factors (Fru) that display sexually dimorphic gene expression in the brain of the fruit-fly; Drosophila melanogaster. Behavioural studies have demonstrated that fru is essential for courtship behaviour in the male fly and is thought to act by directing the development of sex-specific neural circuitry that encodes this innate behavioural response. This study reports the identification of direct regulatory targets of the sexually dimorphic isoforms of the Fru protein using an in vitro model system. Genome wide binding sites were identified for each of the isoforms using Chromatin Immunoprecipitation coupled to deep sequencing (ChIP-Seq). Putative target genes were found to be involved in processes such as neurotransmission, ion-channel signalling and neuron development. All isoforms showed a significant bias towards genes located on the X-chromosome, which may reflect a specific role for Fru in regulating x-linked genes. Taken together with expression analysis carried out in Fru positive neurons specifically isolated from the male fly brain, it appears that the Fru protein acts as a transcriptional activator. Understanding the regulatory cascades induced by Fru will help to shed light on the molecular mechanisms that are important for specification of neural circuitry underlying complex behaviour.
Collapse
|
22
|
Crickmore MA, Vosshall LB. Opposing dopaminergic and GABAergic neurons control the duration and persistence of copulation in Drosophila. Cell 2013; 155:881-93. [PMID: 24209625 PMCID: PMC4048588 DOI: 10.1016/j.cell.2013.09.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/10/2013] [Accepted: 09/24/2013] [Indexed: 11/22/2022]
Abstract
Behavioral persistence is a major factor in determining when and under which circumstances animals will terminate their current activity and transition into more profitable, appropriate, or urgent behavior. We show that, for the first 5 min of copulation in Drosophila, stressful stimuli do not interrupt mating, whereas 10 min later, even minor perturbations are sufficient to terminate copulation. This decline in persistence occurs as the probability of successful mating increases and is promoted by approximately eight sexually dimorphic, GABAergic interneurons of the male abdominal ganglion. When these interneurons were silenced, persistence increased and males copulated far longer than required for successful mating. When these interneurons were stimulated, persistence decreased and copulations were shortened. In contrast, dopaminergic neurons of the ventral nerve cord promote copulation persistence and extend copulation duration. Thus, copulation duration in Drosophila is a product of gradually declining persistence controlled by opposing neuronal populations using conserved neurotransmission systems.
Collapse
Affiliation(s)
- Michael A. Crickmore
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10065, USA
| | - Leslie B. Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10065, USA
| |
Collapse
|
23
|
Castellanos MC, Tang JCY, Allan DW. Female-biased dimorphism underlies a female-specific role for post-embryonic Ilp7 neurons in Drosophila fertility. Development 2013; 140:3915-26. [PMID: 23981656 DOI: 10.1242/dev.094714] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Drosophila melanogaster, much of our understanding of sexually dimorphic neuronal development and function comes from the study of male behavior, leaving female behavior less well understood. Here, we identify a post-embryonic population of Insulin-like peptide 7 (Ilp7)-expressing neurons in the posterior ventral nerve cord that innervate the reproductive tracts and exhibit a female bias in their function. They form two distinct dorsal and ventral subsets in females, but only a single dorsal subset in males, signifying a rare example of a female-specific neuronal subset. Female post-embryonic Ilp7 neurons are glutamatergic motoneurons innervating the oviduct and are required for female fertility. In males, they are serotonergic/glutamatergic neuromodulatory neurons innervating the seminal vesicle but are not required for male fertility. In both sexes, these neurons express the sex-differentially spliced fruitless-P1 transcript but not doublesex. The male fruitless-P1 isoform (fruM) was necessary and sufficient for serotonin expression in the shared dorsal Ilp7 subset, but although it was necessary for eliminating female-specific Ilp7 neurons in males, it was not sufficient for their elimination in females. By contrast, sex-specific RNA-splicing by female-specific transformer is necessary for female-type Ilp7 neurons in females and is sufficient for their induction in males. Thus, the emergence of female-biased post-embryonic Ilp7 neurons is mediated in a subset-specific manner by a tra- and fru-dependent mechanism in the shared dorsal subset, and a tra-dependent, fru-independent mechanism in the female-specific subset. These studies provide an important counterpoint to studies of the development and function of male-biased neuronal dimorphism in Drosophila.
Collapse
Affiliation(s)
- Monica C Castellanos
- Department of Cellular and Physiological Sciences, 2401 Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
24
|
Zagrobelny M, Motawia MS, Olsen CE, Bak S, Møller BL. Male-to-female transfer of 5-hydroxytryptophan glucoside during mating in Zygaena filipendulae (Lepidoptera). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1037-1044. [PMID: 24012995 DOI: 10.1016/j.ibmb.2013.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/19/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
Zygaena filipendulae accumulates the cyanogenic glucosides linamarin and lotaustralin by larval sequestration from the food plant or de novo biosynthesis. We have previously demonstrated that the Z. filipendulae male transfers linamarin and lotaustralin to the female in the course of mating. In this study we report the additional transfer of 5-hydroxytryptophan glucoside (5-(β-d-glucopyranosyloxy)-L-Tryptophan) from the Z. filipendulae male internal genitalia to the female spermatophore around 5 h into the mating process. 5-Hydroxytryptophan glucoside is present in the virgin male internal genitalia, and production continues during the early phase of mating. Following initiation of 5-hydroxytryptophan glucoside transfer to the female, the amount in male internal genitalia is drastically reduced until after mating where it is slowly replenished. For unambiguous structural identification, 5-hydroxytryptophan glucoside was chemically synthesized and used as an authentic standard. The biological function of 5-hydroxytryptophan glucoside remains to be established, although we have indications that it may be involved in inducing the female to stay in copula and delay egg-laying to prevent re-mating of the female. To our knowledge 5-hydroxytryptophan glucoside has not previously been reported present in animal tissues.
Collapse
Affiliation(s)
- Mika Zagrobelny
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark; Villum Research Center "Plant Plasticity", Denmark.
| | | | | | | | | |
Collapse
|
25
|
Liu SS, Li AY, Witt CM, Pérez de León AA. Effects of reserpine on reproduction and serotonin immunoreactivity in the stable fly Stomoxys calcitrans (L.). JOURNAL OF INSECT PHYSIOLOGY 2013; 59:974-982. [PMID: 23321479 PMCID: PMC4407495 DOI: 10.1016/j.jinsphys.2012.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/19/2012] [Accepted: 12/28/2012] [Indexed: 06/01/2023]
Abstract
Biogenic amines are known to play critical roles in key insect behaviors such as feeding and reproduction. This study documents the effects of reserpine on mating and egg-laying behaviors of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), which is one of the most significant biting fly pests affecting cattle. Two sperm staining techniques were adapted successfully to reveal the morphology of stable fly sperm, for the first time, and determine successful mating in females through the assessment of sperm transfer. This approach was also applied to assess sperm transfer by males treated with different doses of reserpine. Mating or sperm transfer did not occur in flies during the first 3 days after emergence. Thereafter, the percentage of females that mated increased with age. Reserpine treatment of males reduced sperm transfer in a dose-dependent manner. Older males were more sensitive to reserpine treatment than younger flies. Reserpine treatment of 5 days old females reduced the number of eggs laid, but had no effect on egg-hatching rates. Results of immunoreactivity (IR) experiments indicated that serotonin in the neuronal processes innervating male testes was completely depleted by reserpine within 5h after treatment. This effect was transient as the serotonin immunoreactive signal was recovered in 33.3% of the males at 1 day post-treatment and in 94.4% of the flies at 3 days post-treatment. The results of this study concur with previous findings in other insect species and extend our knowledge of the critical roles biogenic amines play in mating and oviposition behaviors of the stable fly. The work could provide a foundation to further characterize the specific roles of individual biogenic amines and their receptors in stable fly reproduction.
Collapse
Affiliation(s)
- Samuel S. Liu
- USDA, ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX 78028, USA
| | - Andrew Y. Li
- USDA, ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX 78028, USA
| | - Colleen M. Witt
- Department of Biology, RCMI Advanced Imaging Core, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | |
Collapse
|
26
|
Latham KL, Liu YS, Taylor BJ. A small cohort of FRU(M) and Engrailed-expressing neurons mediate successful copulation in Drosophila melanogaster. BMC Neurosci 2013; 14:57. [PMID: 23688386 PMCID: PMC3664081 DOI: 10.1186/1471-2202-14-57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Drosophila, male flies require the expression of the male-specific Fruitless protein (FRU(M)) within the developing pupal and adult nervous system in order to produce male courtship and copulation behaviors. Recent evidence has shown that specific subsets of FRU(M) neurons are necessary for particular steps of courtship and copulation. In these neurons, FRU(M) function has been shown to be important for determining sex-specific neuronal characteristics, such as neurotransmitter profile and morphology. RESULTS We identified a small cohort of FRU(M) interneurons in the brain and ventral nerve cord by their co-expression with the transcription factor Engrailed (En). We used an En-GAL4 driver to express a fru(M) RNAi construct in order to selectively deplete FRU(M) in these En/FRU(M) co-expressing neurons. In courtship and copulation tests, these males performed male courtship at wild-type levels but were frequently sterile. Sterility was a behavioral phenotype as these En-fru(M)RNAi males were less able to convert a copulation attempt into a stable copulation, or did not maintain copulation for long enough to transfer sperm and/or seminal fluid. CONCLUSIONS We have identified a population of interneurons necessary for successful copulation in Drosophila. These data confirm a model in which subsets of FRU(M) neurons participate in independent neuronal circuits necessary for individual steps of male behavior. In addition, we have determined that these neurons in wild-type males have homologues in females and fru mutants, with similar placement, projection patterns, and neurochemical profiles.
Collapse
Affiliation(s)
- Kristin L Latham
- Department of Zoology, Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331-2914, USA.
| | | | | |
Collapse
|
27
|
Meier N, Käppeli SC, Hediger Niessen M, Billeter JC, Goodwin SF, Bopp D. Genetic control of courtship behavior in the housefly: evidence for a conserved bifurcation of the sex-determining pathway. PLoS One 2013; 8:e62476. [PMID: 23630634 PMCID: PMC3632534 DOI: 10.1371/journal.pone.0062476] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/21/2013] [Indexed: 12/30/2022] Open
Abstract
In Drosophila melanogaster, genes of the sex-determination hierarchy orchestrate the development and differentiation of sex-specific tissues, establishing sex-specific physiology and neural circuitry. One of these sex-determination genes, fruitless (fru), plays a key role in the formation of neural circuits underlying Drosophila male courtship behavior. Conservation of fru gene structure and sex-specific expression has been found in several insect orders, though it is still to be determined whether a male courtship role for the gene is employed in these species due to the lack of mutants and homologous experimental evidence. We have isolated the fru ortholog (Md-fru) from the common housefly, Musca domestica, and show the gene's conserved genomic structure. We demonstrate that male-specific Md-fru transcripts arise by conserved mechanisms of sex-specific splicing. Here we show that Md-fru, is similarly involved in controlling male courtship behavior. A male courtship behavioral function for Md-fru was revealed by the behavioral and neuroanatomical analyses of a hypomorphic allele, Md-tra(man) , which specifically disrupted the expression of Md-fru in males, leading to severely impaired male courtship behavior. In line with a role in nervous system development, we found that expression of Md-fru was confined to neural tissues in the brain, most prominently in optic neuropil and in peripheral sensory organs. We propose that, like in Drosophila, overt sexual differentiation of the housefly depends on a sex-determining pathway that bifurcates downstream of the Md-tra gene to coordinate dimorphic development of non-neuronal tissues mediated by Md-dsx with that of neuronal tissues largely mediated by Md-fru.
Collapse
Affiliation(s)
- Nicole Meier
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | | | | | | - Stephen F. Goodwin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Daniel Bopp
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
28
|
Gospodaryov DV, Yurkevych IS, Jafari M, Lushchak VI, Lushchak OV. Lifespan extension and delay of age-related functional decline caused by Rhodiola rosea depends on dietary macronutrient balance. LONGEVITY & HEALTHSPAN 2013; 2:5. [PMID: 24472572 PMCID: PMC3922952 DOI: 10.1186/2046-2395-2-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 02/11/2013] [Indexed: 01/04/2023]
Abstract
Background This study was conducted to evaluate the effects of rhizome powder from the herb Rhodiola rosea, a traditional Western Ukraine medicinal adaptogen, on lifespan and age-related physiological functions of the fruit fly Drosophila melanogaster. Results Flies fed food supplemented with 5.0 mg/ml and 10.0 mg/ml of R. rosea rhizome powder had a 14% to 17% higher median lifespan, whereas at 30.0 mg/ml lifespan was decreased by 9% to 12%. The preparation did not decrease fly fecundity. The effect of R. rosea supplement on lifespan was dependent on diet composition. Lifespan extension by 15% to 21% was observed only for diets with protein-to-carbohydrate ratios less than 1. Lifespan extension was also dependent on total concentration of macronutrients. Thus, for the diet with 15% yeast and 15% sucrose there was no lifespan extension, while for the diet with protein-to-carbohydrate ratio 20:1 R. rosea decreased lifespan by about 10%. Flies fed Rhodiola preparation were physically more active, less sensitive to the redox-cycling compound menadione and had a longer time of heat coma onset compared with controls. Positive effects of Rhodiola rhizome on stress resistance and locomotor activity were highest at the ‘middle age’. Conclusions The present data show that long-term food supplementation with R. rosea rhizome not only increases D. melanogaster lifespan, but also delays age-related decline of physical activity and increases stress resistance, what depends on protein-to-carbohydrate ratio of the diet.
Collapse
Affiliation(s)
| | | | | | | | - Oleh V Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76025, Ukraine.
| |
Collapse
|
29
|
Tayler TD, Pacheco DA, Hergarden AC, Murthy M, Anderson DJ. A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. Proc Natl Acad Sci U S A 2012; 109:20697-702. [PMID: 23197833 PMCID: PMC3528491 DOI: 10.1073/pnas.1218246109] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Innate behaviors are often executed in concert with accompanying physiological programs. How this coordination is achieved is poorly understood. Mating behavior and the transfer of sperm and seminal fluid (SSFT) provide a model for understanding how concerted behavioral and physiological programs are coordinated. Here we identify a male-specific neural pathway that coordinates the timing of SSFT with the duration of copulation behavior in Drosophila. Silencing four abdominal ganglion (AG) interneurons (INs) that contain the neuropeptide corazonin (Crz) both blocked SSFT and substantially lengthened copulation duration. Activating these Crz INs caused rapid ejaculation in isolated males, a phenotype mimicked by injection of Crz peptide. Crz promotes SSFT by activating serotonergic (5-HT) projection neurons (PNs) that innervate the accessory glands. Activation of these PNs in copulo caused premature SSFT and also shortened copulation duration. However, mating terminated normally when these PNs were silenced, indicating that SSFT is not required for appropriate copulation duration. Thus, the lengthened copulation duration phenotype caused by silencing Crz INs is independent of the block to SSFT. We conclude that four Crz INs independently control SSFT and copulation duration, thereby coupling the timing of these two processes.
Collapse
Affiliation(s)
| | | | - Anne C. Hergarden
- Division of Biology 156-29 and
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125; and
| | - Mala Murthy
- Princeton Neuroscience Institute and
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - David J. Anderson
- Division of Biology 156-29 and
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125; and
| |
Collapse
|
30
|
Curran KP, Chalasani SH. Serotonin circuits and anxiety: what can invertebrates teach us? INVERTEBRATE NEUROSCIENCE : IN 2012; 12:81-92. [PMID: 22918570 PMCID: PMC3505513 DOI: 10.1007/s10158-012-0140-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/26/2012] [Indexed: 11/08/2022]
Abstract
Fear, a reaction to a threatening situation, is a broadly adaptive feature crucial to the survival and reproductive fitness of individual organisms. By contrast, anxiety is an inappropriate behavioral response often to a perceived, not real, threat. Functional imaging, biochemical analysis, and lesion studies with humans have identified the HPA axis and the amygdala as key neuroanatomical regions driving both fear and anxiety. Abnormalities in these biological systems lead to misregulated fear and anxiety behaviors such as panic attacks and post-traumatic stress disorders. These behaviors are often treated by increasing serotonin levels at synapses, suggesting a role for serotonin signaling in ameliorating both fear and anxiety. Interestingly, serotonin signaling is highly conserved between mammals and invertebrates. We propose that genetically tractable invertebrate models organisms, such as Drosophila melanogaster and Caenorhabditis elegans, are ideally suited to unravel the complexity of the serotonin signaling pathways. These model systems possess well-defined neuroanatomies and robust serotonin-mediated behavior and should reveal insights into how serotonin can modulate human cognitive functions.
Collapse
Affiliation(s)
- Kevin P. Curran
- Molecular Neurobiology Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037 USA
| | - Sreekanth H. Chalasani
- Molecular Neurobiology Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|
31
|
Toda H, Zhao X, Dickson B. The Drosophila Female Aphrodisiac Pheromone Activates ppk23+ Sensory Neurons to Elicit Male Courtship Behavior. Cell Rep 2012; 1:599-607. [DOI: 10.1016/j.celrep.2012.05.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/17/2012] [Accepted: 05/14/2012] [Indexed: 11/26/2022] Open
|
32
|
Zheng W, Peng T, He W, Zhang H. High-throughput sequencing to reveal genes involved in reproduction and development in Bactrocera dorsalis (Diptera: Tephritidae). PLoS One 2012; 7:e36463. [PMID: 22570719 PMCID: PMC3343016 DOI: 10.1371/journal.pone.0036463] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/06/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tephritid fruit flies in the genus Bactrocera are of major economic significance in agriculture causing considerable loss to the fruit and vegetable industry. Currently, there is no ideal control program. Molecular means is an effective method for pest control at present, but genomic or transcriptomic data for members of this genus remains limited. To facilitate molecular research into reproduction and development mechanisms, and finally effective control on these pests, an extensive transcriptome for the oriental fruit fly Bactrocera dorsalis was produced using the Roche 454-FLX platform. RESULTS We obtained over 350 million bases of cDNA derived from the whole body of B. dorsalis at different developmental stages. In a single run, 747,206 sequencing reads with a mean read length of 382 bp were obtained. These reads were assembled into 28,782 contigs and 169,966 singletons. The mean contig size was 750 bp and many nearly full-length transcripts were assembled. Additionally, we identified a great number of genes that are involved in reproduction and development as well as genes that represent nearly all major conserved metazoan signal transduction pathways, such as insulin signal transduction. Furthermore, transcriptome changes during development were analyzed. A total of 2,977 differentially expressed genes (DEGs) were detected between larvae and pupae libraries, while there were 1,621 DEGs between adults and larvae, and 2,002 between adults and pupae. These DEGs were functionally annotated with KEGG pathway annotation and 9 genes were validated by qRT-PCR. CONCLUSION Our data represent the extensive sequence resources available for B. dorsalis and provide for the first time access to the genetic architecture of reproduction and development as well as major signal transduction pathways in the Tephritid fruit fly pests, allowing us to elucidate the molecular mechanisms underlying courtship, ovipositing, development and detailed analyses of the signal transduction pathways.
Collapse
Affiliation(s)
- Weiwei Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control and Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Tao Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control and Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Wei He
- Shanghai Hanyu Bio-Lab, Shanghai, People's Republic of China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control and Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
- * E-mail:
| |
Collapse
|
33
|
Brooks ES, Greer CL, Romero-Calderón R, Serway CN, Grygoruk A, Haimovitz JM, Nguyen BT, Najibi R, Tabone CJ, de Belle JS, Krantz DE. A putative vesicular transporter expressed in Drosophila mushroom bodies that mediates sexual behavior may define a neurotransmitter system. Neuron 2011; 72:316-29. [PMID: 22017990 DOI: 10.1016/j.neuron.2011.08.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 11/15/2022]
Abstract
Vesicular transporters are required for the storage of all classical and amino acid neurotransmitters in synaptic vesicles. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male's position during copulation that is rescued by expression in KCs. Because prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning.
Collapse
Affiliation(s)
- Elizabeth S Brooks
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology and Jane & Terry Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, 695 Charles Young Drive, Los Angeles, CA 90095-1761, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Park JH, Kwon JY. A systematic analysis of Drosophila gustatory receptor gene expression in abdominal neurons which project to the central nervous system. Mol Cells 2011; 32:375-81. [PMID: 21870111 PMCID: PMC3887639 DOI: 10.1007/s10059-011-0128-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 12/11/2022] Open
Abstract
In Drosophila, the gustatory receptor (Gr) gene family contains 60 family members that encode 68 proteins through alternative splicing. Some gustatory receptors (Grs) are involved in the sensing of sugars, bitter substrates, CO(2), pheromones, and light. Here, we systematically examined the expression of all 68 Grs in abdominal neurons which project to the abdominal ganglion of the central nervous system using the GAL4/UAS system. Gr gene expression patterns have been successfully analyzed in previous studies by using the GAL4/UAS system to drive reporter gene expression. Interestingly, 21 Gr-GAL4 drivers showed abdominal ganglion projection, and 18 of these 21 Gr-GAL4 drivers labeled multidendritic neurons of the abdominal wall. 4 drivers also labeled neuronal processes innervating the reproductive organs. The peripheral expression of Gr-GAL4 drivers in abdominal multidendritic neurons or neurons innervating the reproductive organs suggests that these Grs have atypical sensory functions in these organs not limited to conventional taste sensing.
Collapse
Affiliation(s)
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
35
|
Blenau W, Thamm M. Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies: lessons from Drosophila melanogaster and Apis mellifera. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:381-394. [PMID: 21272662 DOI: 10.1016/j.asd.2011.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 05/30/2023]
Abstract
The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) plays a key role in regulating and modulating various physiological and behavioral processes in both protostomes and deuterostomes. The specific functions of serotonin are mediated by its binding to and subsequent activation of membrane receptors. The vast majority of these receptors belong to the superfamily of G-protein-coupled receptors. We report here the in vivo expression pattern of a recently characterized 5-HT(1) receptor of the honeybee Apis mellifera (Am5-HT(1A)) in the mushroom bodies. In addition, we summarize current knowledge on the distribution of serotonin and serotonin receptor subtypes in the brain and specifically in the mushroom bodies of the fruit fly Drosophila melanogaster and the honeybee. Functional studies in these two species have shown that serotonergic signaling participates in various behaviors including aggression, sleep, circadian rhythms, responses to visual stimuli, and associative learning. The molecular, pharmacological, and functional properties of identified 5-HT receptor subtypes from A. mellifera and D. melanogaster will also be summarized in this review.
Collapse
Affiliation(s)
- Wolfgang Blenau
- Institute of Biochemistry and Biology, University of Potsdam, Germany.
| | | |
Collapse
|
36
|
Meissner GW, Manoli DS, Chavez JF, Knapp JM, Lin TL, Stevens RJ, Mellert DJ, Tran DH, Baker BS. Functional dissection of the neural substrates for sexual behaviors in Drosophila melanogaster. Genetics 2011; 189:195-211. [PMID: 21705753 PMCID: PMC3176112 DOI: 10.1534/genetics.111.129940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 06/13/2011] [Indexed: 11/18/2022] Open
Abstract
The male-specific Fruitless proteins (FruM) act to establish the potential for male courtship behavior in Drosophila melanogaster and are expressed in small groups of neurons throughout the nervous system. We screened ∼1000 GAL4 lines, using assays for general courtship, male-male interactions, and male fertility to determine the phenotypes resulting from the GAL4-driven inhibition of FruM expression in subsets of these neurons. A battery of secondary assays showed that the phenotypic classes of GAL4 lines could be divided into subgroups on the basis of additional neurobiological and behavioral criteria. For example, in some lines, restoration of FruM expression in cholinergic neurons restores fertility or reduces male-male courtship. Persistent chains of males courting each other in some lines results from males courting both sexes indiscriminately, whereas in other lines this phenotype results from apparent habituation deficits. Inhibition of ectopic FruM expression in females, in populations of neurons where FruM is necessary for male fertility, can rescue female infertility. To identify the neurons responsible for some of the observed behavioral alterations, we determined the overlap between the identified GAL4 lines and endogenous FruM expression in lines with fertility defects. The GAL4 lines causing fertility defects generally had widespread overlap with FruM expression in many regions of the nervous system, suggesting likely redundant FruM-expressing neuronal pathways capable of conferring male fertility. From associations between the screened behaviors, we propose a functional model for courtship initiation.
Collapse
Affiliation(s)
- Geoffrey W. Meissner
- Neurosciences Program, and
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | | | - Jose F. Chavez
- Department of Biology, Stanford University, Stanford, California 94305
| | - Jon-Michael Knapp
- Neurosciences Program, and
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Tasha L. Lin
- Department of Biology, Stanford University, Stanford, California 94305
| | - Robin J. Stevens
- Department of Biology, Stanford University, Stanford, California 94305
| | - David J. Mellert
- Department of Biology, Stanford University, Stanford, California 94305
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - David H. Tran
- Department of Biology, Stanford University, Stanford, California 94305
| | - Bruce S. Baker
- Neurosciences Program, and
- Department of Biology, Stanford University, Stanford, California 94305
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| |
Collapse
|
37
|
Boerjan B, Tobback J, De Loof A, Schoofs L, Huybrechts R. Fruitless RNAi knockdown in males interferes with copulation success in Schistocerca gregaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:340-347. [PMID: 21296153 DOI: 10.1016/j.ibmb.2011.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/17/2011] [Accepted: 01/24/2011] [Indexed: 05/30/2023]
Abstract
In Drosophila melanogaster, the male-specific splice isoform of the fruitless gene (Fru(M)) codes for a set of transcription factors that are involved in the regulation of male courtship and copulation. Fru(M) is expressed in an interconnected neuronal circuit containing central and sensory neurons as well as motor neurons. A partial sequence from the Schistocerca gregaria fru-gene from an EST database allowed quantitative real time analysis of fru-expression in adult locusts, and revealed the highest expression in the testes, accessory glands as well as the brain (and optic lobes). Starting fru specific RNAi knockdown in the third and fourth nymphal stage resulted in a significantly lower cumulative copulation frequency of the RNAi-treated animals compared to controls after 3 h of observation. In addition, the testes of RNAi-treated males weigh less. Analysis of the egg pods resulting from a successful copulation event revealed that egg pods from females that mated with an RNAi-treated male were smaller and contained less fertilized eggs compared to egg pods from females who mated with control males. Starting injections in the fifth nymphal stage showed the complete opposite for the cumulative copulation frequency and testes weight. We conclude that already in the early nymphal phases of male desert locusts, fruitless starts to play an important role in the regulation of successful copulation in the adult. The RNAi treatment in the male has also its effects on fertility and fecundity. It remains unknown whether this effect is coming from aberrant courtship behaviour or from an altered composition of the sperm or seminal fluids.
Collapse
Affiliation(s)
- Bart Boerjan
- Research Group Functional Genomics and Proteomics, K.U. Leuven, Naamsestraat 59, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
38
|
Infertility and male mating behavior deficits associated with Pde1c in Drosophila melanogaster. Genetics 2010; 186:159-65. [PMID: 20551439 DOI: 10.1534/genetics.110.118018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pde1c is a calcium/calmodulin-regulated, dual-specificity cyclic nucleotide phosphodiesterase. We have used a transposon insertion line to investigate the physiological function of Pde1c in Drosophila melanogaster and to show that the insertion leads to male sterility and male mating behavior defects that include reduced copulation rates. Sterility appears to be primarily due to elimination of sperm from the female reproductive system. The male mating behavior defects were fully rescued by expression of exogenous Pde1c under the control of either a Pde1c or a pan-neuronal promoter, whereas the sterility could be only partially rescued by expression of exogenous Pde1c under the control of these promoters. We also show that Pde1c has a male-specific expression pattern in the CNS with an increased number of Pde1c-expressing neurons in the abdominal ganglion in males.
Collapse
|
39
|
Norville K, Sweeney ST, Elliott CJH. Postmating change in physiology of male Drosophila mediated by serotonin (5-HT). J Neurogenet 2010; 24:27-32. [PMID: 20067436 DOI: 10.3109/01677060903477601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sex peptides transferred during mating from male to female fly profoundly influence the female's behavior and physiology, including an increase in the movement of eggs along the oviduct. In the male ejaculatory duct, the authors have identified peristaltic waves that travel distally with an average frequency of 0.6 Hz. The frequency of peristalsis is increased by 0.1 microM serotonin (5-HT) and completely blocked by 5-HT antagonists (IC(50)< 1 microM). The authors also report that mating affects the male reproductive tract; peristaltic waves along the ejaculatory duct are significantly reduced postcopulation by 30%. Serotonergic neurons innervate the ejaculatory duct, but their genetic ablation does not prevent peristalsis. The authors propose that peristalsis may be modulated by serotonin circulating in the hemolymph. As serotonin is linked with attentiveness in both flies and mammals, this bioassay suggests reduced behavioral sensitivity of the male fly after mating.
Collapse
|
40
|
Alekseyenko OV, Lee C, Kravitz EA. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One 2010; 5:e10806. [PMID: 20520823 PMCID: PMC2875409 DOI: 10.1371/journal.pone.0010806] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/02/2010] [Indexed: 11/23/2022] Open
Abstract
Dopamine (DA) and serotonin (5HT) are reported to serve important roles in aggression in a wide variety of animals. Previous investigations of 5HT function in adult Drosophila behavior have relied on pharmacological manipulations, or on combinations of genetic tools that simultaneously target both DA and 5HT neurons. Here, we generated a transgenic line that allows selective, direct manipulation of serotonergic neurons and asked whether DA and 5HT have separable effects on aggression. Quantitative morphological examination demonstrated that our newly generated tryptophan hydroxylase (TRH)-Gal4 driver line was highly selective for 5HT-containing neurons. This line was used in conjunction with already available Gal4 driver lines that target DA or both DA and 5HT neurons to acutely alter the function of aminergic systems. First, we showed that acute impairment of DA and 5HT neurotransmission using expression of a temperature sensitive form of dynamin completely abolished mid- and high-level aggression. These flies did not escalate fights beyond brief low-intensity interactions and therefore did not yield dominance relationships. We showed next that manipulation of either 5HT or DA neurotransmission failed to duplicate this phenotype. Selective disruption of 5HT neurotransmission yielded flies that fought, but with reduced ability to escalate fights, leading to fewer dominance relationships. Acute activation of 5HT neurons using temperature sensitive dTrpA1 channel expression, in contrast, resulted in flies that escalated fights faster and that fought at higher intensities. Finally, acute disruption of DA neurotransmission produced hyperactive flies that moved faster than controls, and rarely engaged in any social interactions. By separately manipulating 5HT- and DA- neuron systems, we collected evidence demonstrating a direct role for 5HT in the escalation of aggression in Drosophila.
Collapse
Affiliation(s)
- Olga V Alekseyenko
- Neurobiology Department, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
41
|
Rodriguez Moncalvo VG, Campos AR. Role of serotonergic neurons in the Drosophila larval response to light. BMC Neurosci 2009; 10:66. [PMID: 19549295 PMCID: PMC2711092 DOI: 10.1186/1471-2202-10-66] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 06/23/2009] [Indexed: 11/24/2022] Open
Abstract
Background Drosophila larval locomotion consists of forward peristalsis interrupted by episodes of pausing, turning and exploratory behavior (head swinging). This behavior can be regulated by visual input as seen by light-induced increase in pausing, head swinging and direction change as well as reduction of linear speed that characterizes the larval photophobic response. During 3rd instar stage, Drosophila larvae gradually cease to be repelled by light and are photoneutral by the time they wander in search for a place to undergo metamorphosis. Thus, Drosophila larval photobehavior can be used to study control of locomotion. Results We used targeted neuronal silencing to assess the role of candidate neurons in the regulation of larval photobehavior. Inactivation of DOPA decarboxylase (Ddc) neurons increases the response to light throughout larval development, including during the later stages of the 3rd instar characterized by photoneutral response. Increased response to light is characterized by increase in light-induced direction change and associated pause, and reduction of linear movement. Amongst Ddc neurons, suppression of the activity of corazonergic and serotonergic but not dopaminergic neurons increases the photophobic response observed during 3rd instar stage. Silencing of serotonergic neurons does not disrupt larval locomotion or the response to mechanical stimuli. Reduced serotonin (5-hydroxytryptamine, 5-HT) signaling within serotonergic neurons recapitulates the results obtained with targeted neuronal silencing. Ablation of serotonergic cells in the ventral nerve cord (VNC) does not affect the larval response to light. Similarly, disruption of serotonergic projections that contact the photoreceptor termini in the brain hemispheres does not impact the larval response to light. Finally, pan-neural over-expression of 5-HT1ADro receptors, but not of any other 5-HT receptor subtype, causes a significant decrease in the response to light of 3rd instar larvae. Conclusion Our data demonstrate that activity of serotonergic and corazonergic neurons contribute to the control of larval locomotion by light. We conclude that this control is carried out by 5-HT neurons located in the brain hemispheres, but does not appear to occur at the photoreceptor level and may be mediated by 5-HT1ADro receptors. These findings provide new insights into the function of 5-HT neurons in Drosophila larval behavior as well as into the mechanisms underlying regulation of larval response to light.
Collapse
|
42
|
Siwicki KK, Kravitz EA. Fruitless, doublesex and the genetics of social behavior in Drosophila melanogaster. Curr Opin Neurobiol 2009; 19:200-6. [PMID: 19541474 DOI: 10.1016/j.conb.2009.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
Two genes coding for transcription factors, fruitless and doublesex, have been suggested to play important roles in the regulation of sexually dimorphic patterns of social behavior in Drosophila melanogaster. The generalization that fruitless specified the development of the nervous system and doublesex specified non-neural tissues culminated with claims that fruitless was both necessary and sufficient to establish sex-specific patterns of behavior. Several recent articles refute this notion, however, demonstrating that at a minimum, both fruitless and doublesex are involved in establishing sexually dimorphic features of neural circuitry and behavior in fruit flies.
Collapse
Affiliation(s)
- Kathleen K Siwicki
- Department of Biology, Swarthmore College, 500 College Aveune, Swarthmore, PA 19081, USA.
| | | |
Collapse
|
43
|
Bertossa RC, van de Zande L, Beukeboom LW. The Fruitless gene in Nasonia displays complex sex-specific splicing and contains new zinc finger domains. Mol Biol Evol 2009; 26:1557-69. [PMID: 19349644 DOI: 10.1093/molbev/msp067] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The transcription factor Fruitless exerts a broad range of functions during Drosophila development, the most apparent of which is the determination of sexual behavior in males. Although fruitless sequences are found in other insect orders, little is known about fruitless structure and function outside Diptera. We have performed a thorough analysis of fruitless transcripts in the haplo-diploid wasp Nasonia vitripennis and found both sex-specific and non-sex-specific transcripts similar to those found in Drosophila. In Nasonia, however, a novel, large fruitless transcript is present in females only. Putative binding sites for sex-specific splicing factors found in Nasonia fruitless and doublesex as well as Apis mellifera doublesex transcripts were sufficient to identify a corresponding female-specific fruitless exon in A. mellifera, suggesting that similar factors in both hymenopteran species could be responsible for sex-specific splicing of both genes. Furthermore, new C(2)H(2) zinc finger domains found in Nasonia fruitless transcripts were also identified in the fruitless locus of major holometabolous insect species but not in drosophilids. Conservation of important domains and sex-specific splicing in Diptera and Hymenoptera support the hypothesis that fruitless is an ancient gene and has conserved functions in insects. Considerable divergences in other parts of the gene are expected to underlie species-specific differences and may help to explain diversity observed in insect sexual behaviors.
Collapse
Affiliation(s)
- Rinaldo C Bertossa
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, The Netherlands.
| | | | | |
Collapse
|
44
|
Abstract
Decisions about whom to mate with can sometimes be difficult, but making the right choice is critical for an animal's reproductive success. The ubiquitous fruit fly, Drosophila, is clearly very good at making these decisions. Upon encountering another fly, a male may or may not choose to court. He estimates his chances of success primarily on the basis of pheromone signals and previous courtship experience. The female decides whether to accept or reject the male, depending on her perception of his pheromone and acoustic signals, as well as her own readiness to mate. This simple and genetically tractable system provides an excellent model to explore the neurobiology of decision making.
Collapse
Affiliation(s)
- Barry J Dickson
- Research Institute of Molecular Pathology, Doktor Bohr-gasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
45
|
Drosophila vesicular monoamine transporter mutants can adapt to reduced or eliminated vesicular stores of dopamine and serotonin. Genetics 2008; 181:525-41. [PMID: 19033154 DOI: 10.1534/genetics.108.094110] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Physiologic and pathogenic changes in amine release induce dramatic behavioral changes, but the underlying cellular mechanisms remain unclear. To investigate these adaptive processes, we have characterized mutations in the Drosophila vesicular monoamine transporter (dVMAT), which is required for the vesicular storage of dopamine, serotonin, and octopamine. dVMAT mutant larvae show reduced locomotion and decreased electrical activity in motoneurons innervating the neuromuscular junction (NMJ) implicating central amines in the regulation of these activities. A parallel increase in evoked glutamate release by the motoneuron is consistent with a homeostatic adaptation at the NMJ. Despite the importance of aminergic signaling for regulating locomotion and other behaviors, adult dVMAT homozygous null mutants survive under conditions of low population density, thus allowing a phenotypic characterization of adult behavior. Homozygous mutant females are sterile and show defects in both egg retention and development; males also show reduced fertility. Homozygotes show an increased attraction to light but are mildly impaired in geotaxis and escape behaviors. In contrast, heterozygous mutants show an exaggerated escape response. Both hetero- and homozygous mutants demonstrate an altered behavioral response to cocaine. dVMAT mutants define potentially adaptive responses to reduced or eliminated aminergic signaling and will be useful to identify the underlying molecular mechanisms.
Collapse
|
46
|
Ferri SL, Bohm RA, Lincicome HE, Hall JC, Villella A. fruitless Gene products truncated of their male-like qualities promote neural and behavioral maleness in Drosophila if these proteins are produced in the right places at the right times. J Neurogenet 2008; 22:17-55. [PMID: 18363163 DOI: 10.1080/01677060701671947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To bring GAL4 production under the control of the sex promoter (P1) contained within Drosophila's fruitless gene, a gal4 cassette was previously inserted downstream of P1. This insert should eliminate male-specific FRU(M) proteins, which normally contain 101 amino acids (aa's) at their N termini. Thus males homozygous for the P1-gal4 insert should be courtless, as was briefly stated to be so in the initial report of this transgenic type. But XY flies whose only fru form is P1-gal4 have now been found to court vigorously. P1-gal4 females displayed no appreciable male-like actions except courtship rejection behaviors; yet, they developed a male-specific abdominal muscle. No immunoreactivity against the male-specific aa's was detectable in P1-gal4 flies. But male-like neural signals were observed in XY or XX P1-gal4 pupae and adults after applying an antibody that detects all FRU isoforms; transgenic females displayed reduced expression of such proteins. RT-PCR's rationalized these findings: P1 transcripts include anomalous splice forms from which gal4 was removed, allowing FRU's lacking M aa's to be produced in male-like patterns in both sexes. Within males, such defective proteins promote neural differentiation and function that is sufficient to support spirited P1-gal4 courtship. But dispensability of the male-specific FRU N-terminus is tempered by the finding that intra-fru sequences encoding these 101 aa's are highly conserved among interspecific relatives of D. melanogaster.
Collapse
Affiliation(s)
- Sarah L Ferri
- Department of Biology, Brandeis University, Waltham, Massachusettes 02454-9110, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
The reproductive biology of Drosophila melanogaster is described and critically discussed, primarily with regard to genetic studies of sex-specific behavior and its neural underpinnings. The investigatory history of this system includes, in addition to a host of recent neurobiological analyses of reproductive phenotypes, studies of mating as well as the behaviors leading up to that event. Courtship and mating have been delved into mostly with regard to male-specific behavior and biology, although a small number of studies has also pointed to the neural substrates of female reproduction. Sensory influences on interactions between courting flies have long been studied, partly by application of mutants and partly by surgical experiments. More recently, molecular-genetic approaches to sensations passing between flies in reproductive contexts have aimed to "dissect" further the meaning of separate sensory modalities. Notable among these are olfactory and contact-chemosensory stimuli, which perhaps have received an inordinate amount of attention in terms of the possibility that they could comprise the key cues involved in triggering and sustaining courtship actions. But visual and auditory stimuli are heavily involved as well--appreciated mainly from older experiments, but analyzable further using elementary approaches (single-gene mutations mutants and surgeries), as well as by applying the molecularly defined factors alluded to above. Regarding regulation of reproductive behavior by components of Drosophila's central nervous system (CNS), once again significant invigoration of the relevant inquiries has been stimulated and propelled by identification and application of molecular-genetic materials. A distinct plurality of the tools applied involves transposons inserted in the fly's chromosomes, defining "enhancer-trap" strains that can be used to label various portions of the nervous system and, in parallel, disrupt their structure and function by "driving" companion transgenes predesigned for these experimental purposes. Thus, certain components of interneuronal routes, functioning along pathways whose starting points are sensory reception by the peripheral nervous system (PNS), have been manipulated to enhance appreciation of sexually important sensory modalities, as well as to promote understanding of where such inputs end up within the CNS: Where are reproductively related stimuli processed, such that different kinds of sensation would putatively be integrated to mediate sex-specific behavioral readouts? In line with generic sensory studies that have tended to concentrate on chemical stimuli, PNS-to-CNS pathways focused upon in reproductive experiments relying on genic enhancers have mostly involved smell and taste. Enhancer traps have also been applied to disrupt various regions within the CNS to ask about the various ganglia, and portions thereof, that contribute to male- or female-specific behavior. These manipulations have encompassed structural or functional disruptions of such regions as well as application of molecular-genetic tricks to feminize or masculinize a given component of the CNS. Results of such experiments have, indeed, identified certain discrete subsets of centrally located ganglia that, on the one hand, lead to courtship defects when disrupted or, on the other, must apparently maintain sex-specific identity if the requisite courtship actions are to be performed. As just implied, perturbations of certain neural tissues not based on manipulating "sex factors" might lead to reproductive behavioral abnormalities, even though changing the sexual identity of such structures would not necessarily have analogous consequences. It has been valuable to uncover these sexually significant subsets of the Drosophila nervous system, although it must be said that not all of the transgenically based dissection outcomes are in agreement. Thus, the good news is that not all of the CNS is devoted to courtship control, whereby any and all locales disrupted might have led to sex-specific deficits; but the bad news is that the enhancer-trap approach to these matters has not led to definitive homing-in on some tractable number of mutually agreed-upon "courtship centers" within the brain or within the ventral nerve cord (VNC). The latter neural region, which comprises about half of the fly's CNS, is underanalyzed as to its sex-specific significance: How, for example, are various kinds of sensory inputs to posteriorly located PNS structures processed, such that they eventually end up modulating brain functions underlying courtship? And how are sex-specific motor outputs mediated by discrete collections of neurons within VNC ganglia--so that, for instance, male-specific whole-animal motor actions and appendage usages are evoked? These behaviors can be thought of as fixed action patterns. But it is increasingly appreciated that elements of the fly's reproductive behavior can be modulated by previous experience. In this regard, the neural substrates of conditioned courtship are being more and more analyzed, principally by further usages of various transgenic types. Additionally, a set of molecular neurogenetic experiments devoted to experience-dependent courtship was based on manipulations of a salient "sex gene" in D. melanogaster. This well-defined factor is called fruitless (fru). The gene, its encoded products, along with their behavioral and neurobiological significance, have become objects of frenetic attention in recent years. How normal, mutated, and molecularly manipulated forms of fru seem to be generating a good deal of knowledge and insight about male-specific courtship and mating is worthy of much attention. This previews the fact that fruitless matters are woven throughout this chapter as well as having a conspicuous section allocated to them. Finally, an acknowledgment that the reader is being subjected to lengthy preview of an article about this subject is given. This matter is mentioned because--in conjunction with the contemporary broadening and deepening of this investigatory area--brief summaries of its findings are appearing with increasing frequency. This chapter will, from time to time, present our opinion that a fair fraction of the recent minireviews are replete with too many catch phrases about what is really known. This is one reason why the treatment that follows not only attempts to describe the pertinent primary reports in detail but also pauses often to discuss our views about current understandings of sex-specific behavior in Drosophila and its underlying biology.
Collapse
|
48
|
Hall JC. Issues revolving round the regulation of reproductively related genes in Drosophila. J Neurogenet 2007; 21:75-103. [PMID: 17849283 DOI: 10.1080/01677060701382982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jeffrey C Hall
- Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
49
|
Shirangi TR, McKeown M. Sex in flies: what 'body--mind' dichotomy? Dev Biol 2007; 306:10-9. [PMID: 17475234 DOI: 10.1016/j.ydbio.2007.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/15/2007] [Accepted: 03/18/2007] [Indexed: 10/23/2022]
Abstract
Sexual behavior in Drosophila results from interactions of multiple neural and genetic pathways. Male-specific fruitless (fruM) is a major component inducing male behaviors, but recent work indicates key roles for other sex-specific and sex-non-specific components. Notably, male-like courtship by retained (retn) mutant females reveals an intrinsic pathway for male behavior independent of fruM, while behavioral differences between males and females with equal levels of fruM expression indicate involvement of another sex-specific component. Indeed, sex-specific products of doublesex (dsxF and dsxM), that control sexual differentiation of the body, also contribute to sexual behavior and neural development of both sexes. In addition, the single product of the dissatisfaction (dsf) gene is needed for appropriate behavior in both sexes, implying additional complexities and levels of control. The genetic mechanisms controlling sexual behavior are similar to those controlling body sexual development, suggesting biological advantages of modifying an intermediate intrinsic pathway in generation of two substantially different behavioral or morphological states.
Collapse
Affiliation(s)
- Troy R Shirangi
- Molecular Biology, Cellular Biology, and Biochemistry Department, 185 Meeting Street Box G-L368, Providence, RI 02912, USA
| | | |
Collapse
|
50
|
Yamamoto D. The neural and genetic substrates of sexual behavior in Drosophila. ADVANCES IN GENETICS 2007; 59:39-66. [PMID: 17888794 DOI: 10.1016/s0065-2660(07)59002-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
fruitless (fru), originally identified with its mutant conferring male homosexuality, is a neural sex determination gene in Drosophila that produces sexually dimorphic sets of transcripts. In the nervous system, Fru is translated only in males. Fru proteins likely regulate the transcription of a set of downstream genes. The expression of Fru proteins is sufficient to induce male sexual behavior in females. A group of fru-expressing neurons called "mAL" neurons in the brain shows conspicuous sexual dimorphism. mAL is composed of 5 neurons in females and 30 neurons in males. It includes neurons with bilateral projections in males and contralateral projections in females. Terminal arborization patterns are also sexually dimorphic. These three characteristics are feminized in fru mutant males. The inactivation of cell death genes results in the production of additional mAL neurons that are of the male type in the female brain. This suggests that male-specific Fru inhibits mAL neuron death, leading to the formation of a male-specific neural circuit that underlies male sexual behavior. Fru orchestrates a spectrum of downstream genes as a master control gene to establish the maleness of the brain.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Division of Neurogenetics, Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|